

Integration of European Electricity Markets: Evidence from Spot Prices

Klaus Gugler, Adhurim Haxhimusa, Mario Liebensteiner* *Contact: <u>mario.liebensteiner@wu.ac.at</u>

Regulierungsworkshop, WU Vienna, November 10, 2015

Research Question

- How well integrated are European electricity markets?
 - Assessment of current state of well-functioning of market interaction
 - Propagation of EU internal energy market
 - Why market integration?
 - Supply security enhanced balancing of supply
 - Reduces need for reserve capacity
 - Better integration of intermittent renewables
 - Increases welfare (and consumer surplus) through allocative efficiency
 - Induces competition
 - Limits market power (strategic withholding of capacity)
 - Mitigation of uncertainty (better investment signals?)
 - Reduction of spot prices (on average, but winners & losers)

How to Integrate Markets?

- Investment in interconnector capacity
- Reduction of (intra-market) transmission bottlenecks
- Market coupling: efficient auctioning of capacity
 - Explicit auctions:
 - Power and interconnector capacity are auctioned *separately*
 - Consequences: coordination failures and strategic withholding of interconnection capacity
 - Implicit auctions:
 - Power and interconnector capacity are auctioned *simultaneously* (and synchronization of market rules, e.g. closing hours)

Price Convergence

- Market integration is a prerequisite for price convergence
 Market coupling
 - ☑ Uncongested interconnection capacity
 - → Unconstrained electricity trade: Law of One Price holds (!)
 - Caution: "spurious" convergence (!):
 - Markets' merit orders determine magnitude of price differences
 - If supply & demand similar, prices converge (but not because of trade)
- Price convergence from market integration
 - On average lower prices, but...
 - ... Prices in high-price market decrease
 - ... Prices in low-price market increase
 - Creates winners and losers!
 - Thus, practical implementation of market integration cumbersome
 - E.g. discussion on market splitting between DE and AT

Scenario 1: Autarky

1) Autarky: **P**_A < **P**_B

Marginal Marginal $EXP_{A \rightarrow B}$ Costs (€) Costs (€) $IMP_{A \rightarrow B}$ <u>A</u> B S_A SR DA D_B $P_{B,Autarky}$ $P_{B,CapLim}$ $P_{A,CapLim}$ $P_{A,Autarky}$ Capacity (MW) $IMP_{A \rightarrow B}$ Capacity (MW) ↔ Interconnector capacity constraint 1) Autarky: **P**_A < **P**_B

Scenario 2: Limited Interconnection Capacity

2) Constrained trade: P_A < P_{A,CapLim} < P_{B,CapLim} < P_B
 Consumers: −A+C+D, Producers: +A+B−C, Welfare: +B+D

Scenario 3: Full Market Integration

- 1) Autarky: *P_A < P_B*
- 2) Constrained trade: P_A < P_{A,CapLim} < P_{B,CapLim} < P_B
 Consumers: −A+C+D, Producers: +A+B−C, Welfare: +B+D
- 3) Unconstrained trade: $P_A < P_{A,CapLim} < P_{NoCong} < P_{B,CapLim} < P_B$ Consumers: -A+C+D-E+G+H, Producers: +A+B-C+E+F-G, Welfare: +B+D+F+H

Share of Electricity Traded at Power Exchanges

		Volumes Traded (GWh)		National loa	d (GWh)	Share (%)		
Country	Exchange	2010	2014	2010	2014	2010	2014	
DE/AT	EPEX	205,000	285,000	547,000	625,000	37%	46%	
FR	EPEX	52,600	73,100	512,000	514,000	10%	14%	
CH	EPEX	9,325	22,000	58,500	51,400	16%	43%	
SL	\mathbf{SP}	179	6,806	7,086	14,100	3%	48%	
ESP	OMIP	196,000	187,000	260,000	265,000	75%	71%	

- Share of electricity traded via power exchanges increases
- Rising significance of power exchanges over time

- Changing supply structures (more RES) lead to drop in spot prices
- Some markets seem better integrated (DE, FR, DKe) than others (IT)

Direction of Congestion

Direction of congested hours: DE and selected neighbors

J							
Direction	Market Coupling	2010	2011	2012	2013	2014	2015Q1,2
DE>FR		90.4%	10.8%	30.4%	41.9%	31.7%	66.7%
FR>DE		84.6%	27.0%	6.9%	11.5%	17.3%	6.5%
Total	09.11.2010	91.5%	37.8%	37.3%	53.4%	49.1%	73.3%
DE>HU			94.3%	99.8%	99.4%	100.0%	100.0%
HU>DE			96.8%	98.9%	99.1%	98.8%	99.4%
Total	no MC		99.5%	100.0%	100.0%	100.0%	100.0%

DE-FR: • Market coupling has led to reduction in congested hours

- Over time, congestion increased (due to RES production in DE)
- DE-HU: Without market coupling, congestion throughout
 - In absence of market coupling: capacity misallocation → interconnectors congested in both directions

Methodology (1)

1st stage: Cointegration analysis:

 $P_{A,t} = \alpha + \beta P_{B,t} + Z_t:$

 α ...systematic difference (transport costs, institutional differences) β ...long-run equilibrium relation between P_A and P_B

- 1. Full convergence (full market integration):
 - $\alpha_1 = 0$, $\beta_1 = 1$, if export < capacity and market coupling = 1
- 2. Partial convergence:
 - α₂ > 0, 0 < β₂ < 1, if export = capacity and/or market coupling = 0
 → deviation in relative efficiency
- 3. Autarky:
 - α₃ > 0, β₃ < β₂, if export = 0 (implies market coupling = 0)
 → deviation in relative efficiency becomes larger

Methodology (2)

- 2nd stage: Error Correction Model
 - $1. \quad P_{A,t} = \alpha + \beta P_{B,t} + \mathbf{Z}_t$
 - 2. $\Delta P_{A,t} = \gamma + \delta \Delta P_{A,t-24} + \eta \widehat{Z}_{t-24} + \theta' X + \varepsilon_t$

Model valid for daily prices or hourly prices during interconnection congestion

 Δ represents difference (e.g. $\Delta P_{A,t} = P_{A,t} - P_{A,t-24}$),

- X = structural variables:
- Number of congested hours
- Market coupling dummy
- Solar & wind forecasts
- Fuel prices (coal, gas, oil)
- Seasonality (day of week, months, years, holidays)

Data & Add-Ons to Existing Literature

- Hourly data, 2010/Q1–2015/Q2
- 25 electricity markets: SK, CZ, EST, LT, LV, FIN, NO1, NO2, NO3, NO4, NO5, ES, PT, SE1, SE2, SE3, SE4, DKW, DKE, IT, HU, SL, CH, FR, DE
- We discuss lag structure (1h, 24h demand and supply stickiness)
- Relevant market: hour of the day (not whole day)
- Inclusion of congestion & market coupling
 - Direction of congestion (without MC, interconnectors may be congested in both directions)
 - No congestion & market coupling: prices converge instantaneously
 - \rightarrow Error correction model misleading
 - \rightarrow Focus on congestion spells (i.e. consecutive congested hours)
 - How efficiently do markets work during congested hours?

Adjunct market pairs												
Year	Pairs	β>	0.95	β> 0.90		β> 0.80		β> 0.70		β> 0.60		
2010	50	14	28%	19	38%	23	46%	28	56%	36	72%	
2011	72	31	43%	35	49%	44	61%	52	72%	56	78%	
2012	72	28	39%	33	46%	44	61%	53	74%	62	86%	
2013	76	27	36%	38	50%	49	64%	50	66%	58	76%	
2014	76	30	39%	33	43%	46	61%	52	68%	56	74%	
2015Q1	76	32	42%	39	51%	46	61%	52	68%	61	80%	
Indirect market pairs												
Year	Pairs	β>	0.95	β>	β> 0.90		β> 0.80		β> 0.70		β> 0.60	
2010	292	24	8%	31	11%	43	15%	61	21%	81	28%	
2011	434	37	9%	43	10%	71	16%	96	22%	124	29%	
2012	434	33	8%	43	10%	83	19%	141	32%	194	45%	
2013	524	94	18%	118	23%	153	29%	177	34%	202	39%	
2014	524	98	19%	113	22%	139	27%	165	31%	198	38%	
2015Q1	524	133	25%	154	29%	185	35%	221	42%	260	50%	

First Stage Results: β -coefficients above given thresholds

- Over time, price correlations between markets increase
- Adjacent market pairs exhibit already high correlations
- Indirect market pairs' correlations catch up (= better international integration?)

	Peak period			-		Off-Peak period	1			
-		FR		IT			FR		IT	
-	$\Delta P_{DE,t-1}$	0.0004		-0.0182		$\Delta P_{DE,t-1}$	-0.1745	***	-0.1928	***
1.	ECT_{t-1}	-0.4513	***	-0.2778	***	ECT_{t-1}	-0.4925	***	-0.2204	***
2.	<pre>#cong_hours</pre>	-0.2091	***	-0.0056		#cong_hours	-0.6260	***	-0.0261	
3.	dummy_MC	1.4540	*	0.7810		dummy_MC	-3.4946	***	0.8305	
	Δ solarforecast	0.0022		0.0023		Δ solarforecast	-0.0006	***	-0.0008	***
	$\Delta windforecast$	-0.0000	***	-0.0000		$\Delta windforecast$	-0.0000		-0.0000	
	Δp_gas	0.8129		0.7292	***	Δp_gas	1.8034	***	1.8127	***
	Δp_oil	-0.0535		-0.0279		Δp_{oil}	-0.1349		-0.0330	
-	Obs.	1,944		1,944		Obs.	1,944		1,944	
	R2	0.411		0.383		R2	0.707		0.659	

Results 2nd Stage: Daily Peak vs. Off-Peak: DE/AT and selected neighbors

Notes: Dependent variable: $\Delta P_{DE,t}$. Regressions include seasonal fixed effects (dow, months, years, holidays), constant.

- 1. DE-FR exhibit higher efficiency (are better integrated) than DE-IT
- 2. DE price lower during times of congestion
- 3. Market coupling in DE leads to higher prices during peaks & lower prices during off-peaks

2nd stage results conditional on congestion spells: Error correction term between DE and FR at given hours

Discussion & Conclusions (1)

- Market integration necessitates
 - Reduction of transmission bottlenecks, interconnection capacity, market coupling
- Fully integrated electricity markets:
 - One single spot price
 - Represents normative benchmark for policy analysis
 - Optimization of social welfare, but also welfare redistribution (!)
 - Practical implementation tough
 - Market integration reduces need for reserve capacity...
 - ... as long as supply technologies are not too similar across markets

Discussion & Conclusions (2)

- Electricity markets become better integrated over time
 - But seem far from being perfectly integrated
 - Some markets tend to be more efficient (DE & FR, DE & CH) than others
 - Market coupling and interconnection congestion may bring about price increases and declines during peak or off-peak periods
- On the notion of market integration:
 - One price desirable given differences in transmission costs?
 → price discrimination
 - Nodal pricing better?
 - Off-set between costly capacity investment and positive welfare effects

Thank you!

