Transmission and Generation Investment in Electricity Markets: the Effects of Market Splitting and Network Fee Regimes

Gregor Zöttl

Vienna November 4, 2014

Joint work with V. Grimm, A. Martin, C. Sölch, M. Weibelzahl

FACHBEREICH WIRTSCHAFTS-WISSENSCHAFTEN

Grand Challenges

- Abandoning nuclear energy requires complete reorientation of power supply schemes.
- Old plants get dismanteld or need repowering.
- A lot of fluctuating renewable sources have been installed.
- We need market rules that generate adequate investment incentives:
 - => right capacities
 - => right locations

Transmission constraints become an issue

Transmission constraints become relevant – both within and between countries.

Possible solutions include: gas power plants, network capacity, demand side management, storage facilities and smart technologies

The locations and capacities of generation facilities have crucial relevance for the network expansion.

Source: EWI, Trendstudie 2022. Case: high wind in-feed.2022.

The Current Literature

- Models on optimal transmission and investment planning
- Disregards incentives of different agents in liberalized markets
- Investment models for generation facilities (e.g. peak load pricing literature, "Capacity-market"-discussion).
- typically disregards network and network expansion ("copper plate")
- Models analyzing impact of different network management regimes (nodal pricing, zonal pricing, redispatch)
- typically focus on the short run perspective (given network & generation facilities)
- For several important policy questions we also need to consider the interdependence of those issues!

Questions we have in mind (examples)

- what is the impact of changed way of charging network fees on generation investment and associated network expansion
- What are the incentives to invest in responsive consumption units and what is the impact on optimal transmission investment?
- what is the quantifiable impact of adopting a different transmission management regime (e.g. market based redispatch, price zones,..., nodal pricing) taking into account long run investment
- We present a computable equilibrium framework which allows to analyze those issues

Roadmap of this talk

- (1) Introduction
- (2) Computational Equilibrium Framework
- (3) Testexample (6-node-network)
- (4) Very first results on Germany&Neighbours
- (5) Conclusion

6

What we have in mind

Model Components

- Network expansion by social planner
- Competitve Firms invest in different production technologies throughout the network
- Demand at the nodes (net of renewable feed-in) can be fluctuating and uncertain.
- We want to explicitly take into account impact of different network management regimes (redispatch, market splitting)

Illustration

Main purpose: to identify the impact of market rules on investment decisions (overall system optimization is just a benchmark!)

Model: Timing

- The transmission system operator chooses to realize line investments from set of options (integer decisions).
- Competitive firms choose how much to invest in available production technologies at each node t=1,2,..., each technology (k_t,c_t) has marginal cost of production c_t, marginal cost of investment k_t at the supply node.
- Spot market competition
- Management of network congestion by cost based redispatch.

Model Components: modelling the physical network

• We consider the usual linear **lossless** DC-Approximation:

Model Components: Network Management Regimes

Cost based Redispatch:

- All bids at the spot markets are made entirely independently of network constraints, we obtain a uniform price accross the entire market.
- Quantities traded may be physically unfeasible. Then the TSO has to find the cheapest possible re-dispatch to make final quantities physically feasible.

Market Splitting:

- The market region is divided into price zones, potential congestion among zones (but not within zones!) is already taken into account at the spot markets.
- > Remaining physical infeasibilities are still resolved through redispatch.

Model Components: Network Fees

The TSO is facing the following cost:

- Network expansion investment
- Cost of redispatch

In our framework TSO is supposed to not make any profits, the above spendings have to be recovered by network fees. We consider the following cases:

- Iump sum
- ➢ energy based fees (e.g. Germany, 5 €ct/KWh)
- capacity based fees
- Fees payed either by generators or by consumers

Illustration of our 3-stage approach

Network Expansion (social planner)

Investment in Generation Facilities

Trading at Spot Markets

(competitive companies)

Redispatch taking into account renewable production (social planner)

Our 3-stage approach, more formally

Max Welfare(N ,K,S,R) s.t.	Network expansion-stage: Social planner chooses network(expansion) maximizing WF
K,S is competitve equilibrium, s.t. Traded quantities S can be produced by capacities K	Market-stage: Competitive Firms choose capacities and Spotmarket-bids to maximize profits.
Min REDCost(N,K,S,R) s.t. quantities can be transmitted	Redispatch-stage: Social planner chooses Redispatch R to minimize Redispatchcost REDCost , s.t. all
by network and can be produced by plants	quantities are feasible.

Benchmark: system optimization / first best

Max Welfare(N ,K,S,R) s.t.	Integrated perspective: Social planner chooses network(expansion), generation investment and production to maximize Welfare
Production schedule is feasible	
Transmission is feasible	s.t. feasibility constraints.

Computational Results, 6 node test example

- To test our equilibrium framwork we consider a common 6-node-example (adapted for long run decisions).
- Lines connecting nodes 1,2,3 and nodes 4,5,6 have sufficient capacities. Only lines 10 6 and 20 5 cause problems. Potential line investment 10 6 and 20 5.
- Three demand nodes (3,5,6).
- Investment in generation facilities only at the supply nodes (1,2,4)
- Notice: Storage facilities are not (yet) included.

Computational Results, 6 Node Test Example

TABLE 3. Basic Demand Parameters

Network Node	Intercept	Slope
3	37.5	0.05
5	75	0.1
6	80	0.1

• We used 2011 data to generate 52 demand scenarios.

6 node test example, scenarios analyzed

Computational Results, 6 Node Test Example

_	Benchmark (fist best)	Single Zone	Two zones
Welfare (norm.):	■ 1	■ 0 . 93	■ 0.98
Generation. Invest	∴ ■ All locations	Only node 1	Only nodes 1 and 3
<u>Network Invest.:</u>	 Build no line 	 Build both lines 	• Build 2 5

INSTALLED GENERATION CAPACITIES

NORMALIZED WELFARE (FIRST BEST = 100)

6 node test example, Summary of Results

- Under Cost Based Redispatch Regime investment in generation facilities in the "South" is too low and network investments are too high (relative to the first best).
- Energy based fees potentially aggravate problems of overinvestment in the "North".
- Consideration of different regions already at the spot market (market splitting) would aleviate but not eliminate distortions
- <u>Perspective:</u> Our framework allows to precisely quantify all those differences, also for detailled calibration of specific market regions.

Regional Model "Electricity Transport 2013"

- 8784 hours (= year 2012)
- 20 regions for Germany:
 - 2 regions for off-shore wind energy plants (North and Baltic Sea),
 - 18 regions on the German mainland
- 9 regions for neighboring countries:
 - Austria,
 - Belgium,
 - Switzerland,
 - Czech Republic,
 - Denmark (West),
 - France,
 - the Netherlands,
 - Poland,
 - Northern Europe (Denmark East, Norway, Sweden)

Used data and parameters

Data for 2012 from:

- eex.com (German prices)
- entsoe.eu (Consumption)
- Transparency homepages of TSOs (solar, wind, cross border physical flow)
- Electricity market homepages of neighboring countries (prices)

Parameters:

. . .

- Price elasticity: -0.25
 => slope of demand function: -4
- Generation technologies:

Туре	Investment cost (€/ (MW * a))	Variable cost (€)
Nuclear	no new investment	10,00
Lignite	235730	27,32
Hard coal	202330	40,69
Gas	80100	73,68

First Results I

- First best model vs. Redispatch model (single zone, lump sum)
- Without net investment vs. (forced) investment in 1 line: high-voltage DC-link
 - start: Lauchstädt (Saxony-Anhalt)
 - end: Meitingen (Bavaria)
 - capacity: 2 GW
 - length: 450 km
 - cost: 1.40 m €/km
 - annuity: 0.11 m €/(km*a)

FACHBEREICH WIRTSCHAFTS-WISSENSCHAFTEN

First Results I

	Benchmark (first best)	Single Zone
<u>Welfare (p.c.)</u> : No line invest. Forced line inv	 100.00 % est. 99.99 % 	 96.37 % 96.38 %
Generation. Inv	<u>vest.:</u>	
No line invest.	 Build Gas (596 MW) in Bade Wuerttemberg 	en- No investment
Forced line inv	 Build Gas (414 MW) in Bade Wuerttemberg 	en- No investment

First Results II

First Results II

First best Solution

Market Solution (Cost based redispatch)

Summary

- We have established a framework where a planner chooses transmission line investment and competitive firms invest in generation facilities.
- The framework allows to explicitly analyze the impact of different network management regimes (network fees, price zones,...) on generation and network investment.
- First qualitative results based on test example:
 - 1) Redispatch leads to underinvestment in the "South".
 - Energy based fees aggravate problems of overinvestment in the "North".
 - 3) Splitting in separate zones only partially overcomes those problems!
- Future work: analyze regional differentiation of transmission fees, those might at least partially heal the problems!