

Centre for Energy Policy and Economics Department of Management, Technology Università della Svizzera italiana Facoltà di scienze economiche Istituto di microeconomia ed economia pubblica MecoP

Unbeobachtete Heterogenität und die Messung der Produktionseffizienz in EVU

Massimo Filippini

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

- "Allerdings ist dabei zu berücksichtigen, dass ein aussagekräftiges Benchmarking nur möglich ist, wenn alle Faktoren, die von den Netzbetreibern nicht kontrolliert werden können, dabei berücksichtigt werden."
- Filippini, M. and Wild, J., 2002, Berücksichtigung von regionalen Unterschieden beim Benchmarking von Stromverteilnetzen, Zeitschrift für Energiewirtschaft, 26, 51-59.

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Überblick

- Ausgangslage
- Parametrische Methoden zur Messung der Produktionseffizienz
- Empirische Analyse aufgrund Norwegischer Daten
- Schlussfolgerungen

A. Ausgangslage

- In den letzten zwei Jahrzehnten haben die Elektrizität- und Gasverteilungssektoren eine Welle an **regulatorischen Reformen** erlebt.
- Wettbewerb in Produktion und Verkauf sowie **neue regulatorische Instrumente** in Übertragung und Verteilung, die weiterhin ein **natürliches Monopol** bilden, wurden eingeführt (Price-cap, ...).
- Für die Anwendung einiger dieser Instrumente benötigt man Informationen über das Niveau der Produktionseffizienz der EVU, das geschätzt wird aufgrund verschiedener Modelle

сере

Centre for Energy Policy and Economics

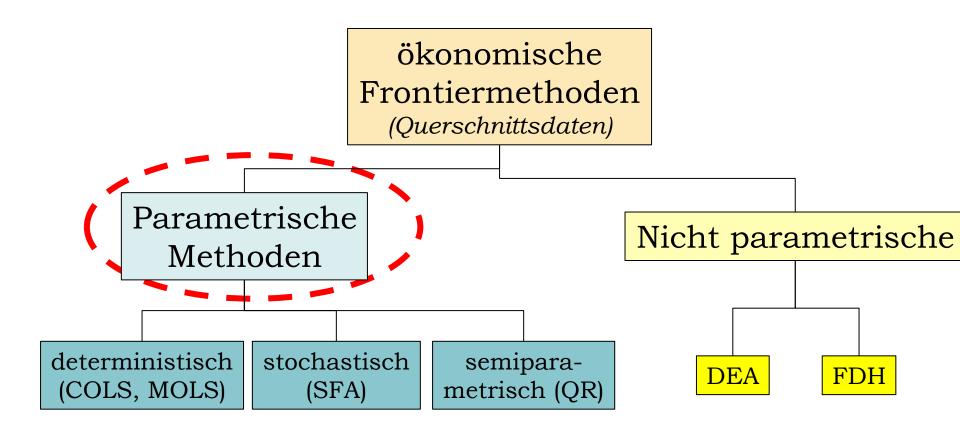
Department of Management, Technology
and Economics

Allgemeine Price Cap Formel

Preis
$$_{(t+1)}$$
 = Preis $_{(t)}$ * $(1 + \Delta CPI - X) \pm Z$

X firmenspezifisch:

Effizienzsteigerungsziel für jede einzelne Firma


Problem der Messung von X. Methode?

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Centre for Energy Policy and Economics

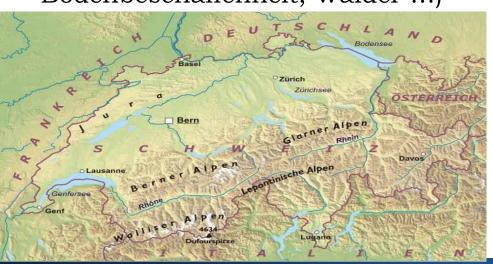
Department of Management, Technology
and Economics

European practice

Land	Messung X	Methode	Data
Netherlands	Nicht parametrisch	DEA	Querschnitts- data
United Kingdom	Nicht parametrisch und parametrisch	DEA, COLS	Querschnitts- data
Norway	Nicht parametrisch	DEA	Querschnitts- data
Germany	Nicht parametrisch und parametrisch	DEA, SFA	Querschnitts- data
Austria	Nicht parametrisch und parametrisch	DEA, MOLS	Querschnitts- data

7

Es gilt festzustellen


- Empirische Effizienzschätzungen zeigen, dass die Effizienzwerte und die Rangreihenfolgen sensitiv auf
- → den Ansatz (parametrisch / nicht-parametrisch) und
- → auf das Modell reagieren (Variablen die man berücksichtigt).

(Jamasb und Pollit (2003), Estache et al. (2004), Farsi und Filippini (2004, 2005)), Agrell et. Al. (2012))

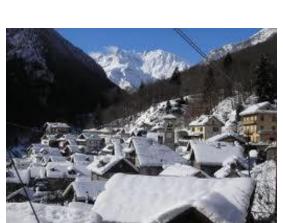
- Möglicher Grund: Viele Modelle berücksichtigen die Heterogenität der Produktionsprozesse nicht hinreichend.
- Viele Modelle, die von Regulierungsbehörden angewendet werden, berücksichtigen nicht die Heterogenität

Unbeobachtete Faktoren, die über die Zeit nicht variieren, werden nicht immer von den Modellen gut eingefangen (**Umfeldfaktoren:** räumliche Organisation der Gesellschaft, Kundendichte im Siedlungsgebiet, Gebäude außerhalb des Siedlungsgebiets, Netze in Höhenlagen, Schneemengen im Winter, Bodenbeschaffenheit, Wälder ...)

cepe

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics



- Heterogenität ist hoch
- Modelle sollten ein faires, präzises benchmarking ermöglichen

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

сере

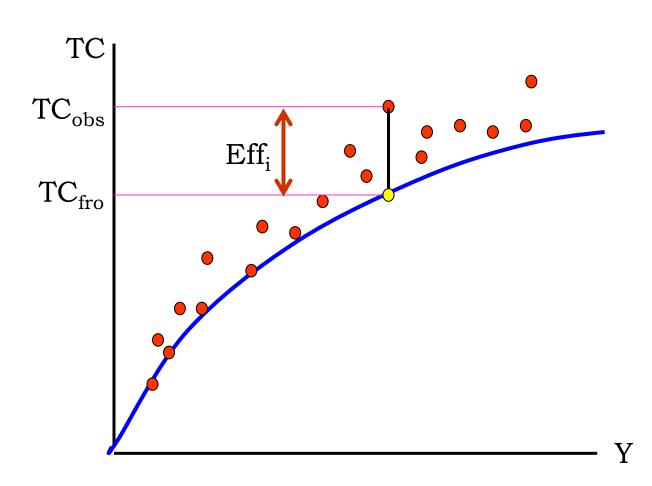
Centre for Energy Policy and Economics

Department of Management, Technology and Economics

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

B. Parametrische Methoden zur Messung der Produktionseffizienz



Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Frontier Kostenfunktion und Kosteneffizienz

Kosteneffizienz

misst inwiefern ein Unternehmen die Kosten minimiert

$$EFF_i = \frac{TC_{Frontier}}{TC_{Observed}} \le 1$$

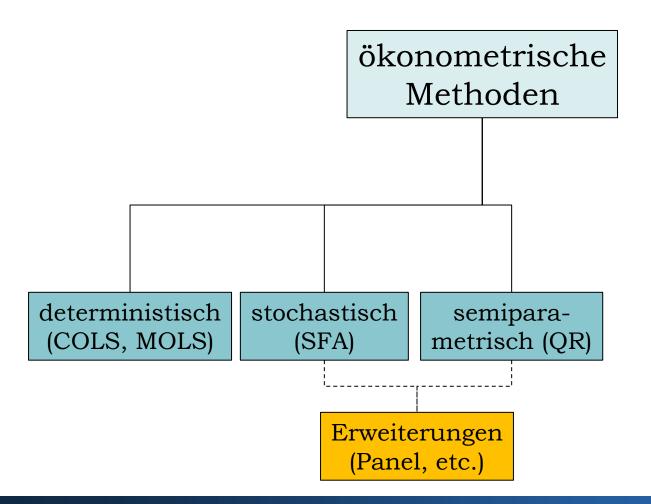
Zum Beispiel: ein Unternehmen kann zu 85% effizient sein

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Modellwahl

- Querschnittsmodelle (DOLS, SFA)
- Paneldatenmodelle (TRE, TFE, PITT/LEE,...)
- Zweistufige Modelle (Latent Class Modell, ...)

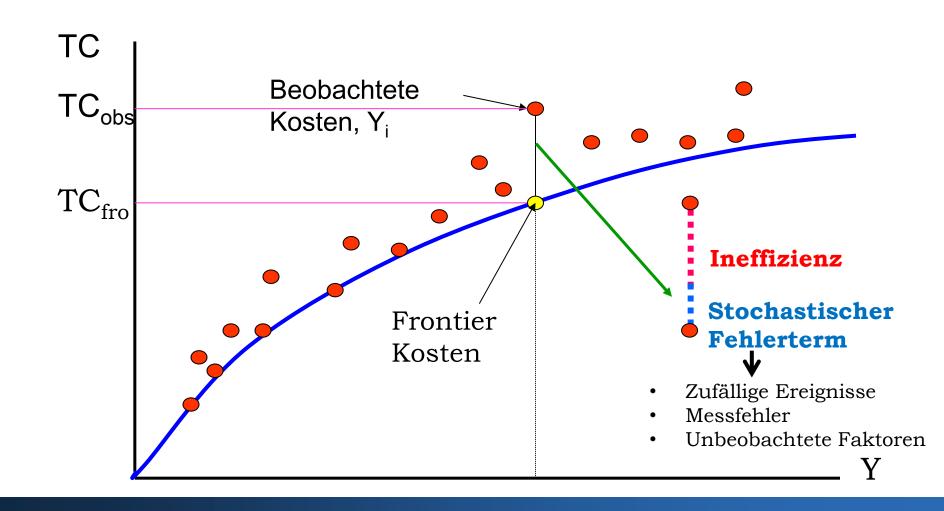


cepe

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

B1. Querschnittsmodelle



cepe

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

SFA

B2. Paneldatenmodelle und Heterogenität

- Es braucht Modelle, die mit der zu erwartenden Heterogenität umgehen können. In Frage kommen parametrische Paneldatenmodelle oder zweistufige Modelle.
- Aktives Forschungsgebiet
- Regulatoren suchen einfache Methoden... Forscher neigen dazu, komplizierte Modelle vorzuschlagen...

сере

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

Ökonometrische Erweiterungen für Paneldaten Modelle

Gepoolte Modelle

Corrected OLS
(COLS),

Modified OLS
(MOLS),
Stochastic
Frontier (SFA)
(Aigner et al. 1977)

Traditionelle Modelle

SFA (Pitt & Lee 1981, Schmidt & Sickles 1984, Battese & Coelli 1988) sowie **Modified GLS**

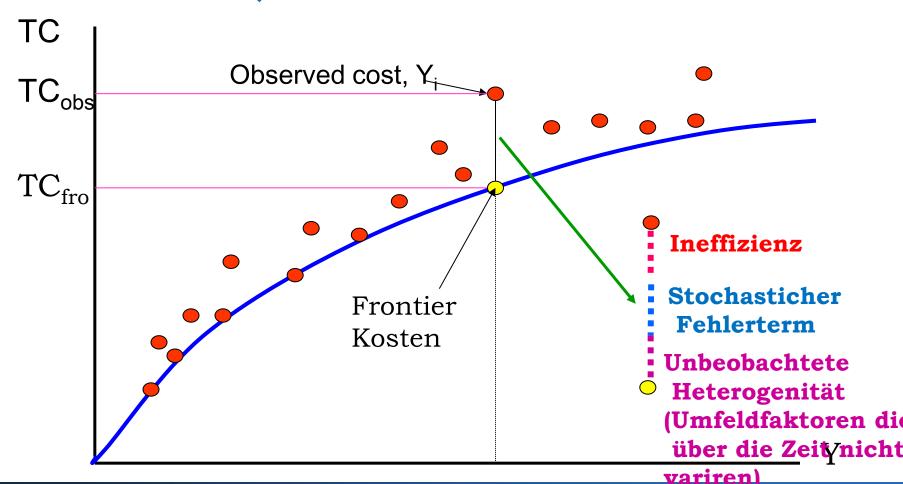
Neuere Modelle

SFA (True Fixed and Random Effects Random Coefficient

(Greene 2005) Farsi, Filippini, Greene (2005))

Modelle: provide time varying and time persistent level of efficiency

- → Kumbhakar/Tsionas (2012): bayesian econometric approach
- → Filippini/Greene (2013): classical econometric approach



cepe

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

"Neue" Paneldatenmodelle (Greene 2005, TRE and TFE)

Econometric models

$$Ln e_{it} = \alpha_i + \alpha_y lny_{it} + u_{it} + v_{it}$$

 $u_{it} \ge 0$

Individual heterogeneity

is interpreted as an indicator of efficiency and is assumed to be half-normal distributed

a symmetric disturbance capturing the effect of noise and as usual is assumed to be normally distributed

NEW

$$Ln e_{it} = \alpha_i + \gamma_i + \alpha_y \ln y_{it} + u_{it} + v_{it}$$

 $u_{it} \ge 0$

Individual heterogeneity

Time invariant inefficiency

Time varying inefficiency

Centre for Energy Policy and Economics

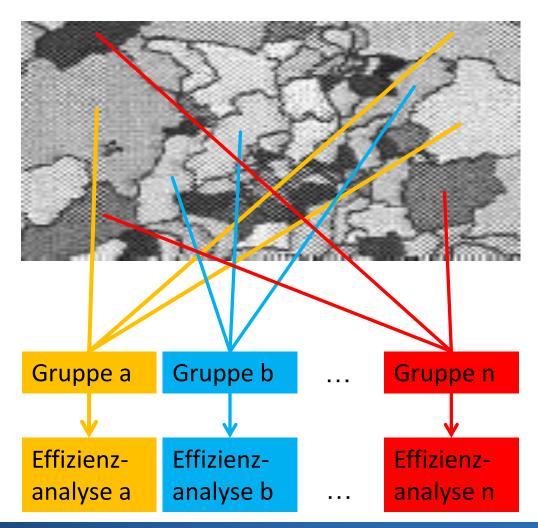
Department of Management, Technology
and Economics

B3. Zweistufige Modelle

• Bei zweistufigen Modellen werden

→ in der ersten Stufe vergleichbare Unternehmen identifiziert und Technologieklassen gebildet

→ in der zweiten Stufe, da die Heterogenität in den Technologieklassen tief ist, werden die üblichen Modelle benutzt, um die Produktionseffizienz zu schätzen

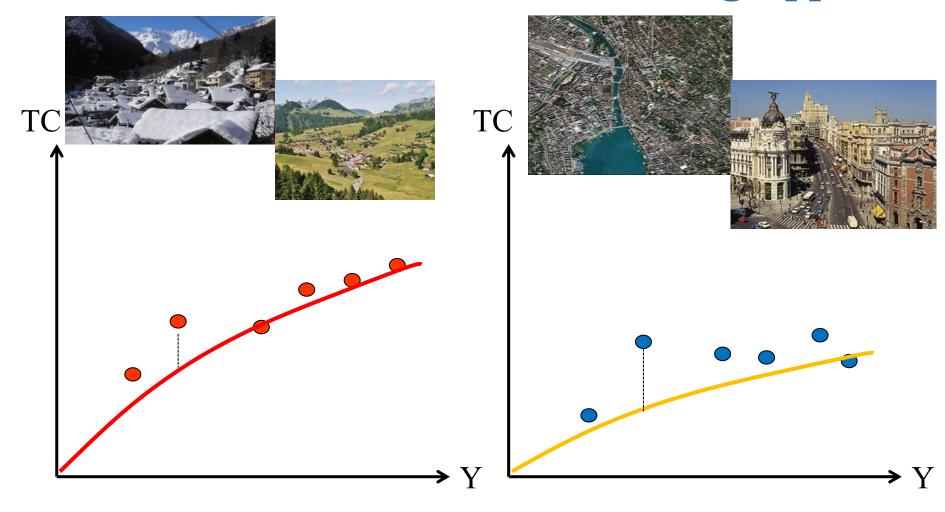

cepe

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Zweistufiges Verfahren (erste mögliche Lösung)

- 1. Gruppenbildung (Latent Class Analysis, Quantile Regression)
- 2. Effizienzanalyse nur innerhalb dieser Gruppen mit unterschiedlichen Modellen (DEA, MOLS, SFA,..)



сере

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

«Latent class models»: Unternehmensgruppen

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

C. Empirische Analyse

сере

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Das Modell

TC = f(Q, PL, PC, D, LS)

TC: Total Kosten des EVU

PL: Input-Preis für Arbeit

PC: Input-Preis für Kapital

Q: Gelieferte Menge Elektrizität

D: Netzdichte

LS: Anteil an Hochspannungsnetz

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Table 1: Descriptive summary, 1998-2002

Variable description	Variabl	e Mean	Std.dev.	Min	p25	Median	p75	Max
Total cost (10 6 NOK)	TC	36.5	73.4	1.28	11.7	18.1	35.8	862
Labor cost (10 6 NOK)		10.2	16.8	0.47	3.70	5.58	10.2	161
Fulltime equivalents (FTE)		30.0	48.9	2.00	10.0	16.0	31.0	419
Price labor (10 ³ NOK/FTE)	P_L	349	52.9	120	312	344	383	586
Transformer capacity (MVA)		243	698	4.08	38.8	75.7	201	7'944
Price capital (10 ³ NOK/MVA)	P_{C}	176	83.6	31.6	112	160	220	528
Distributed electroicity (GWh)	Q	316	942	6.86	66.4	127	267	11'200
Number of customers		11'445	32'622	288	2'812	5'002	10'176	373'290
Line length (km)		1'351	1'871	56.5	467	762	1'609	13'583
Density (customers/km)	D	7.00	3.25	1.32	5.16	6.23	7.66	29.0
Line length, high voltage (km)		492	703	10.0	159	267	557	4'995
Line length, low voltage (km)		859	1'209	0.00	292	493	930	10'090
Line length, high voltage share	LS	0.37	0.11	0.09	0.30	0.36	0.43	1.00
Year dummies	dyear	0.20	0.40	0.00	0.00	0.00	0.00	1.00

T = 5 (panel of years 1998-2002), i = 111, N = 555

cepe

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Ökonometrisches Modell

$$\ln \frac{TC_{it}}{P_{Cit}} = \alpha_{0j} + \beta_{Pj} \ln \frac{P_{Lit}}{P_{Cit}} + \beta_{Qj} \ln Q_{it} + \beta_{Dj} \ln D_{it} + \beta_{LSj} LS_{it} + \varepsilon_{it|j}$$

c-ep-€

Centre for Energy Policy and Economics

Department of Management, Technology and Fconomics

Table 2: Estimation results latent class model with four classes, first step

First step	Class 1	Class 2	Class 3	Class 4
Variable	Coefficient (SE)	Coefficient (SE)	Coefficient (SE)	Coefficient (SE)
Input price ratio (P)	0.8581 *** (0.034)	0.4591 *** (0.020)	0.8675 *** (0.028)	0.6869 *** (0.014)
Distributed electricity (Q)	0.9083 *** (0.016)	0.7752 *** (0.008)	1.0600 *** (0.016)	0.9871 *** (0.008)
Density (D)	-0.4228 *** (0.052)	-0.3301 *** (0.026)	-0.9295 *** (0.067)	-0.0537 *** (0.020)
Share HV network (S)	0.5928 *** (0.153)	0.0875 (0.107)	2.7845 *** (0.197)	0.7600 *** (0.056)
Constant	5.0126 *** (0.016)	4.6728 *** (0.007)	4.6591 *** (0.012)	4.7313 *** (0.006)
Sigma (σ^2)	0.1939 *** (0.009)	0.0739 *** (0.005)	0.0939 *** (0.009)	0.0804 *** (0.004)
Prior class probability	0.2157 *** (0.040)	0.2833 *** (0.046)	0.1752 *** (0.039)	0.3258 *** (0.048)

***, **, *: significant at 1%, 5% and 10%, respectively; standard errors given in brackets.

T = 5 (panel of years 1998-2002), i = 111, n = 555

Centre for Energy Policy and Economics Department of Management, Technology and Economics

Table 5: Efficiency scores, second step

	Class 1			Class 2			Class 3			Class 4		
	DEA	MOLS	SFA	DEA	MOLS	SFA	DEA	MOLS	SFA	DEA	MOLS	SFA
Mean	0.568	0.776	0.829	0.695	0.906	0.978	0.807	0.882	0.946	0.771	0.899	0.964
SDev	0.207	0.131	0.093	0.168	0.062	0.006	0.149	0.076	0.018	0.125	0.065	0.010
Min	0.267	0.362	0.531	0.374	0.732	0.916	0.481	0.695	0.883	0.559	0.740	0.933
p25	0.429	0.702	0.793	0.559	0.860	0.976	0.680	0.836	0.939	0.682	0.861	0.960
Median	0.496	0.773	0.843	0.652	0.902	0.978	0.799	0.881	0.950	0.743	0.895	0.965
p75	0.688	0.854	0.890	0.832	0.954	0.981	0.958	0.938	0.959	0.860	0.947	0.971
Max	1	1	0.962	1	1	0.986	1	1	0.976	1	1	0.983
									T =	5 (1998-20	02), i = 111	, N = 555

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Table 7: Efficiency scores, conventional analysis

	DEA	MOLS	SFA		
Mean	0.554	0.762	0.802		
SDev	0.151	0.148	0.104		
Min	0.246	0.319	0.498		
p25	0.453	0.645	0.727		
Median	0.527	0.769	0.827		
p75	0.625	0.871	0.887		
Max	1	1	0.960		
T = 5 (1998-2002), $i = 111$, $N = 555$					

Centre for Energy Policy and Economics

Department of Management, Technology and Economics

D. Schlussfolgerungen

Schlussfolgerungen (I)

 Wegen unbeobachteter Heterogenität ist die empirische Analyse der Produktionseffizienz anspruchvoll

Anspruchsvolle und komplizierte Modelle sind nicht immer von Regulatoren beliebt, weil die Möglichkeit besteht, juristisch belangt zu werden!

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Schlussfolgerungen (II)

- Querschnittsmodelle empfehlen wir generell nicht, da sie mit der zu erwartenden Heterogenität nicht umgehen können (ausser N sehr gross ist)
- Wir empfehlen
- → Paneldatenmodelle
- → Zweistufige Modelle

Schlussfolgerungen (III)

- Generell, kommen wir zum Schluss, dass Effizienzindikatoren nicht so geeignet sind um in einer mechanischen Art und Weise bei der Bestimmung des Preises benützt zu werden.
- Mechanische Benutzung mit Vorsicht
- Diese Indikatoren sollten eher als unterstutzende Informationsquelle bei der Bestimmung des Preises benützt werden.
- ROR Regulierung + Benchmarking um kritische Ineffiziente Firmen zu identifizieren

cepe

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Literatur

- Farsi M., Filippini M. (2009). **Efficiency Measurement in the Electricity and Gas Distribution Sectors**. in International Handbook on the Economics of Energy, Leister Hunt and Joanne Evans (editors), Edward Elgar (2009).
- P. J. Agrell, M. Farsi, M. Filippini and M. Koller (2013), *Unobserved heterogeneous effects in the cost efficiency analysis of electricity distribution systems*, Working Paper 13/171, Economics Working Paper Series, ETH.
- Filippini, M. and Wild, J., 2002, Berücksichtigung von regionalen Unterschieden beim Benchmarking von Stromverteilnetzen, Zeitschrift für Energiewirtschaft, 26, 51-59.

Centre for Energy Policy and Economics

Department of Management, Technology
and Economics

Grazie!