

Determinants of the Premium in Electricity Forward Contracts

Christian Redl¹ and Derek W. Bunn²

¹Energy Economics Group, Vienna University of Technology ²Energy Markets Group, London Business School

Wiener Forschungsseminar zur Regulierung von Netzwerkindustrien WU Wien, 11 November 2011

An empirical finding

- Market power increases forward premium
 - → Market monitoring implications

AGENDA

- 1. Research background
- 2. Data
- 3. Multifactor Propositional Framework
- 4. Modelling the month-ahead forward premium
- 5. Conclusions

(1) Research background: Introduction

- Trading volume significantly higher than physical demand
- o Questions of *efficiency and determinants* of realised forward premia arise
- Resulting *transaction costs* (i.e. premia) may *erode* some *potential benefits* of forwards (market completeness, risk management, potential greater competitive behaviour on spots)
- Focus on electricity characteristics render forward pricing special:
 - "Flow" rather than "stock" product absence of 1:1 correspondence between forwards and spots; Premia complicated by averaging over extended delivery periods
 - Nonstorability precludes cost of carry equilibrium
 - Equilibrium in expectations and risk aversion (Keynes, 1930): $F_{t,T} = E(S_T) + FP_{t,T}$ • *Ex post forward premium* key variable assessed in (empirical) literature:

$$F_{t,T} - S_T = \underbrace{F_{t,T} - E_t(S_T)}_{T} + \underbrace{E_t(S_T) - S_T}_{T} = e_F P_{t,T} + \varepsilon_{t,T}$$

 Ex post premium equals *ex ante premium* plus *random error* of price forecast due to shocks between *t* and *T*

- Derived commodity: Technologies using gas, coal or oil set price
 - How much of price of risk is due to electricity sector; How much is supply-chain transmission of underlying fuel premia?
- Industry structure: Oligopoly pricing serious concern
 - \circ Market concentration may induce additional market power effects in premium

(1) Research background: Theoretical literature

- Two streams of *equilibrium modeling* of forward markets:
 - Risk aversion in competitive environment; *Bessembinder and Lemmon (2002)*: Result depends on utility function, price process, second order Taylor series expansion: VAR (-) and SKEW (+) determine forward premium;
 - Strategic effects of contracts in oligopolistic risk neutral environment; *Allaz ('92), Allaz & Villa ('93)*: Cournot producers end up short on forward market; Prices decrease
 o Pro-competitive effect of forward markets
 - Both issues not resolved by empirical (and theoretical) literature

(1) Research background: Aim and scope of analysis

- Aim to provide more complete multi-factor analysis of empirical determinants of forward premium
 - Literature focuses on risk aversion (variance, skewness) and shocks in generation (hydro) and demand
 - We assess forward pricing at biggest regional European power market:
 Western European power market; Leading power exchange: *EEX*, Germany.

• Our *analysis* focuses on *month-ahead futures*:

- Most liquid contract and most price data available
- Shorter and subsequent delivery period implies lowest forecast errors
- Prices on the last trading day are considered
 - Monthly averaging of futures prices yields autocorrelation in residuals
 - Considering full price history of a specific contract: Results may not be robust due to the increased time to delivery – and lack of trading;
 - \circ Lacking fundamental data on a daily basis (e.g. reserve margin)

Data (2)

0

→ Forecasting problem

→ Incentive to reduce risk exposure

(2) Data: Realised month-ahead forward premia

• Relative ex-post difference between forward prices in the trading period and spot prices in the delivery period (%-forward premia):

$$\Delta_T = \frac{F_{T-1,T} - S_T}{S_T}$$

(10/'03 to 1/'10)	EEX			
	Base load		Peak load	
	Monthly average	Last trading day	Monthly average	Last trading day
Mean	9%	5%	12%	7%
Standard dev.	21%	15%	26%	20%
Minimum	-38%	-38%	-50%	-50%
Maximum	87%	65%	98%	72%
Skewness	0.79	0.47	0.58	0.24
Kurtosis	4.88	5.47	3.98	4.80
t-statistic	3.66*	2.96*	4.04*	3.16*

(2) Data: Realised month-ahead forward premia

(3) Multifactor Propositional Framework

- (Realised) forward premia affected by market assessment and corresponding risk behaviour
 - Stochastics of spot price (caused by convex supply function and inelastic demand)
 - Fundamentals (electricity derived commodity)
 - Fuel prices (and corresponding hedging decisions)
 - Scarcity in supply system
 - Behavioural biases (e.g. adaptive heuristics, anchoring)
 - Market power in forward premium (highly concentrated industry)
 - Shocks (Distinction between effects on forward price and shocks to spot drivers)
- Taxonomy of forward premia determinants:
 - Fundamental influences
 - Behavioral effects
 - Market conduct
 - o Dynamic effects
 - Shock effects

(3) Multifactor Propositional Framework

- Taxonomy of forward premia determinants and corresponding propositions:
 - Fundamental influences:
 - o Fuels and their risk premia (gas): Increases in gas premia increase electricity premia
 - o Scarcity: Negative relationship between observed margin and forward premium
 - Behavioural effects:
 - We postulate adaptive/myopic adjustment w.r.t. risk/market assessments
 - <u>Higher moments</u>: VAR(+)/SKEW(+)/KURT(+) are of importance for risk assessment of market actors
 - o Spikes: Forward premium increases due to spikes in the spot market
 - o Oil market volatility: Oil market volatility increases electricity premium
 - Market conduct:
 - o Market power: Exercise of spot market power positively affects premium
 - **Dynamic effects:**
 - \circ <u>Basis</u>: Increasing basis increases forward premium
 - Shock effects: Margin shocks positively influence forward premium

Observable for market participants on forward trading day

(3) Multifactor Propositional Framework

○ Summary of forward premia determinants:

	Effect on forward premium	Proxy variable		
F undamentals*				
Premia in fuels	+	Month ahead gas forward premium		
Scarcity	-	Reserve margin: Ratio generation/consumption in the regional market		
Behavioural effects*				
Variance	+	Coefficient of variation of spot price		
Skewness	+	Skewness of spot price		
- Kurtosis	+	Kurtosis of spot price		
Spikes	+	Count spikes outside 1, 1.5, 2, 2.5, 3 standard deviations of mean spo		
Oil volatility	+	Coefficient of variation of Brent oil spot price		
Conduct* Spot market				
power	+	Fundamental cost mark up estimate for regional spot market		
Dynamics*				
L Basis	+	Difference of forward price and spot price average in trading month		
Shocks				
Margin shocks	+	Change in supply margin during delivery month		

(4) Modelling the month-ahead forward premium

• Base load:

 $F_{t,T} - S_T = b_1 + b_2 c_v(S_t) + b_3 c_v(Brent_t) + b_4 FP_{Gas,t-1,t} + b_5 M \arg in_t + b_6 Basis_t$

 $+b_7 M \arg in_T + \varepsilon_{t,T}$

*, **, *** denotes significance on the 10%, 5% and 1%-level

Coefficient	Variable	Baseload	Elasticity	Response
b ₁	Constant	9.06 (.18)		of 1SD rise
b ₂	Coeff. of var. (Spot _t)	26.77 (5.00)***	4	3
b ₃	Coeff. of var. (Brent _t)	97.47 (3.54)***	2.4	2
b_4	Forward premium gas t	0.26 (1.51)		1
b ₅	Margin t	-238.73 (-2.60)**		
b ₆	Basis t	0.39 (2.77)***	0.4	
b ₇	Margin T	220.92 (2.89)***		
$R^2 (R^2_{corr})$		0.30 (0.23)		
DW		1.99		
F-statistic		4.73		
Serial correlation	χ^2_{12} (p-value)	0.231		
Functional form	χ^2_1 (p-value)	0.691		
Normality	JB (p-value)	0.000		
Heteroscedasticity	χ^{2}_{6} (p-value)	0.361		
Observations		74; 11/03-12/09		

(4) Modelling the month-ahead forward premium

 $\circ \text{ Peak load:} F_{t,T} - S_T = b_1 + b_2 Skew(S_t) + b_3 Spike_{2sd,t} + b_4 FP_{Gas,t-1,t} + b_5 Marketpowe_t + b_6 Basis_t$

 $+b_7 Basis_t + b_8 M \arg in_T + \varepsilon_{t,T}$

*, **, *** denotes significance on the 10%, 5% and 1%-level

Coefficient	Variable	Peak load	Elasticity	Response
\mathbf{b}_1	Constant	86.00 (0.44)		of 1SD rise
b ₂	Skew spot t	2.84 (2.11)**	0.4	3.6
b ₃	Spike spot 2sd t	-4.98 (-2.06)**		
b_4	Forward premium gas t	1.18 (3.02)***	0.15	4
b ₅	Market power spot t	20.99 (3.86)***	0.9	6
b_6	Margin t	-459.33 (-2.62)**		
b ₇	Basis t	0.39 (2.87)***	0.3	
<u>b</u> ₈	Margin T	379.38 (2.89)***		
$R^2 (R^2_{corr})$		0.25 (0.17)		
DW		1.96		
F-statistic		3.18		
Serial correlation	χ^2_{12} (p-value)	0.483		
Functional form	χ^2_1 (p-value)	0.285		
Normality	JB (p-value)	0.000		
Heteroscedasticity	χ^2_7 (p-value)	0.668		
Observations		74; 11/03-12/09		

(5) Conclusions

• Multifactor analysis of electricity forward premia determinants shows several new effects:

- Ex post nature of analysis is controlled by (significant) margin shock
- As derived commodity electricity translates fair amount of underlying fuel's market price of risk
- As part of energy commodity bundle, oil sentiments spill over
- Market concentration has double effect on prices
 - $\,\circ\,$ Besides potential effect on spot prices it increases forward premium
 - Forward may make spot more competitive though compensated through premium
- Significant effects of scarcity, spot vola and skewness → Consistent with risk aversion
- Premium *complex function* of fundamental, behavioural, dynamic, market conduct, shock components
 - o Analysis in terms of stochastic properties of spots is oversimplification
- Market concentration translates market power effects into premium
 - *Market monitoring* implications since forwards have been considered procompetitive
- \circ Reserve *margin* plays crucial role \rightarrow Reduction implies double hit for consumers
- Forward premia should be considered key elements of transaction cost analysis of market efficiency
 - Transparency initiatives indicated (market data availability, short/long positions)
 - o EC proposed regulation on energy market integrity and transparency

Thank you for your attention!

For questions / remarks etc. ...

- Email: redl@eeg.tuwien.ac.at
- Tel.: +43-1-58801-370361