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1 Introduction

In the foreign exchange (FX) market, the price of risk represents the compensation required by investors for a

unit exposure to the systematic risk resulting from holding investments denominated in foreign currencies.

Since the seminal paper of Lustig and Verdelhan (2007), cross-sectional asset pricing has been applied

successfully to currency returns, and a growing literature continues to develop with the aim of explaining

the cross section of currency returns and to provide estimates of the price of currency risk. At the same

time, we have also observed a proliferation of currency investment strategies, which attract a large fraction

of the over 6 trillion U.S. dollars traded in currency markets daily. It is therefore crucial, for investors and

market observers alike, to uncover the sources of the underlying risk-return trade-off in this titanic market.

To this end, in this paper we provide new evidence on the optimal factor model for currency returns and

robust estimates of currency risk premia.1

Thus far, the FX literature has largely established the risk-return trade-off in terms of tradable risk

factors. These factors represent convolutions of returns associated with currency investment strategies

(e.g., carry and momentum factors) and therefore prevent a deep economic interpretation. Only a few

papers focus on nontradable risk factors, i.e., factors representing macroeconomic and financial risks such

as for example the global volatility factor of Menkhoff et al. (2012a). But this strand of the literature is

evolving rapidly, so that we observe also a proliferation of FX risk factors, i.e., a “factor zoo”, albeit more

contained than for equities (e.g., Feng et al., 2020).2

When a new candidate factor is proposed, the first goal is to determine its risk premium (or price of

risk). If the factor is tradable, a model-free estimate of its risk premium is readily available, being simply

the time-series average of its excess return (Cochrane, 2005). By contrast, if the factor is nontradable, the

task of estimating its risk premium is not trivial. A nontradable factor is by definition a non-return-based

factor and, as a consequence, its mean is not informative about its price of risk. Therefore, one needs to
1The most popular currency strategies include carry-trade strategies based on interest rate differentials across countries (e.g.,

Lustig et al., 2011; Menkhoff et al., 2012a; Lettau et al., 2014), momentum strategies based on past currency returns (e.g.,
Menkhoff et al., 2012b, Asness et al., 2013), value strategies based on deviations from purchasing power parity (e.g., Asness
et al., 2013; Kroencke et al., 2014; Menkhoff et al., 2017), global imbalances strategies based on imbalances in trade and capital
flows (Della Corte et al., 2016), and macro strategies based on, for example, output gap differentials (Colacito et al., 2020).

2At first, the empirical asset pricing literature rested on a single factor, namely the market factor, to price the cross section
of stock returns (Sharpe, 1964; Lintner, 1965). Since then, more than 300 risk factors have been claimed to explain stock
returns with some statistical significance (Harvey et al., 2016), but some of these factors could just be “lucky” (Harvey and
Liu, 2021).
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recur to statistical methods, such as for example the standard two-pass procedure of Fama and MacBeth

(1973) – FMB thereafter – to obtain an estimate of the factor risk premium.

While the two-pass FMB procedure can be easily implemented, the resulting price of risk estimates

can be biased for two main reasons. First, some relevant factors entering the pricing kernel, or stochastic

discount factor (SDF), could be omitted (omitted-variable bias). Second, the candidate factor could be

measured with noise (measurement-error bias). Recently, Giglio and Xiu (2021) developed a three-pass

procedure that helps address both sources of bias by exploiting the information contained in a reasonably

large cross section of test assets. This literature, albeit very young, has already established a set of useful

results for the U.S. stock market. In this paper, we build on this literature but shift the focus to currency

markets. Specifically, we address the following two questions: How many (and which) factors should the

optimal currency SDF comprise? Which nontradable factors, out of the plethora of factors proposed in the

finance literature, are priced in the cross section of currency portfolio returns?

The FX literature has generally looked at each investment strategy in isolation, therefore resting on

small cross sections of test assets. However, the use of a limited cross section of test assets may not provide

a robust/valid test of an asset pricing model (Lewellen et al., 2010). In addition, the omitted-variable

and measurement-error problems inherent in the estimation of the prices of risk have not been taken fully

into account. For these reasons, it is fair to argue that the economic sources of the risk-return trade-off

underlying popular currency investment strategies are still hotly debated. To fill this gap, we estimate the

risk premia of a long list of nontradable macro-financial candidate factors from a reasonably large cross

section of currency portfolios, or test assets. We do this by combining the three-pass model of Giglio and

Xiu (2021) with the statistical method of Lettau and Pelger (2020a,b). The latter, as explained in detail

below, is key to first extract the underlying latent factors accurately and determine the structure of the

latent-factor currency SDF.

The three-pass method of Giglio and Xiu (2021) – GX thereafter – that we employ to revisit the macro-

financial determinants of currency risk premia serves our purpose, as it tackles both the omitted-variable

and measurement-error problems. To do so, it exploits the information contained in the panel of test-

asset returns and, in particular, in the underlying latent pricing factors that are extracted from the panel

of returns. In practice, this procedure projects the nontradable candidate factors onto the space of the
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latent pricing factors. The nontradable factors’ risk-premium estimates are then simply given by linear

combinations of the prices of risk of the latent pricing factors. In this way, one can remain agnostic about

the set of ‘true’ risk factors (i.e., the controls), and yet obtain robust estimates of nontradable factors’ risk

premia.

It is evident, however, that the method of GX heavily relies first on estimating the latent factors, and

then on determining the factor structure of the optimal SDF, i.e., the relevant pricing factors. For this

reason, we amend the GX procedure by resorting to the Risk-Premium Principal Component Analysis (RP-

PCA) method of Lettau and Pelger (2020a,b) – LP thereafter. In essence, RP-PCA is a generalized version

of PCA, regularized by a pricing-error penalty term (named risk-premium weight or RP-weight), which

“overweights” the test-asset mean returns relative to their variances. As a result, the estimated factors fit

not only the time series, but also the cross section of expected returns. Strong systematic factors should be

estimated more efficiently, and weak factors which possess high risk premia (Sharpe ratios) can be detected

more easily. LP show that in their setting the RP-PCA estimator can be asymptotically more efficient than

PCA in the sense that the SDF and factors estimated by RP-PCA are more highly correlated with the

‘true’ SDF and factors than those estimated by PCA. Therefore, by inspecting the properties of the factors

extracted with RP-PCA, one obtains also clear indications on the structure of the optimal latent-factor

currency SDF. We refer to this combined procedure that uses the methods developed separately by GX and

LP as the augmented three-pass method, and we show that the use of RP-PCA enhances the three-pass

model pricing performance.

In the empirical analysis, the underlying FX data consist of 49 individual currencies sampled at monthly

frequency, from 1983 to 2017. We take the perspective of a U.S. investor, so that the individual currencies

are expressed relative to the U.S. dollar. In the baseline analysis, the test assets consist of 46 currency port-

folios, resulting from nine of the most popular currency investment strategies. Turning to the nontradable

candidate risk factors, our list consists of more than 100 factors, which we categorize into three groups:

financial, macro, and text-based factors. The latter factors are obtained by aggregating into an index news

coverage about specific sources of uncertainty. To our knowledge, we are the first to consider such a large

number of nontradable factors, capturing a wide range of macro-financial risks, and assess their implications

for currency returns. Based on this extensive dataset, we uncover a number of interesting findings that help
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shed light (i) on the optimal latent-factor currency SDF, and (ii) on the macro-financial sources of the

risk-return trade-off inherent in currency investment strategies. We present the findings in this order.

First, we show that the currency SDF consists of at least three latent pricing factors. The first factor is

a strong factor, while the remaining two explain fewer portfolios, and hence are in line with a weak-factor

interpretation. Yet, also these weak factors are relevant pricing factors, as they display high Sharpe ratios,

and hence cannot be excluded from the SDF. Notably, the third factor is detected by RP-PCA but not by

standard PCA. Hence, by neglecting the information in the portfolio means, one incurs the risk of omitting

relevant factors with high Sharpe ratios, which can in turn distort the nontradable factor risk-premium

estimates.

Relatedly, we find that RP-PCA changes materially the information spanned by the factors relative to

PCA in a way that the estimated factors should be closer to the underlying ‘true’ pricing factors. For

example, considering three-factor SDFs, the pricing errors drop significantly and the maximal SDF Sharpe

ratio increases substantially using RP-PCA with a reasonably high RP-weight instead of PCA – note that

PCA is a special case of RP-PCA with no “overweight” on the means. These differences are evident for

SDFs of equal size and become even starker if one compares the respective optimal SDFs (i.e., implied

by formal tests for the number of factors), which consist of three and two factors for RP-PCA and PCA,

respectively. Importantly, we also document that, while the pricing accuracy improves with the RP-weights,

the explained systematic variance remains essentially unchanged. Thus, in practice, there is no trade-off in

choosing even very high RP-weights.3

Moreover, the analysis of the portfolio risk exposures reveals that the extracted, orthogonalized latent

factors retain a clear economic interpretation. The first latent factor plays the role of a currency level factor,

as it displays roughly equal factor loadings across currency portfolios. This factor therefore resembles the

Dollar factor of Verdelhan (2018). By contrast, the remaining factors are slope factors, as we can identify

investment strategies for which the corner portfolios take factor loadings of opposite signs, with almost

monotonic patterns across portfolios. Put simply, these latent factors behave as spread portfolios (which

are self-financed long-short investment strategies), and therefore naturally connect to specific investment
3We show that the gains seem to stabilize for reasonably high RP-weights. Hence, in the main analysis, we select an RP-

weight of 20, which is in line with that chosen by LP for equity portfolios. However, it is important to note that the gain
from using RP-PCA rather than PCA is smaller out of sample, which makes sense since RP-PCA is designed to maximize the
in-sample Sharpe ratio.
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strategies. In particular, the second-latent factor is a “Carry” factor, while the third factor is a (short-term)

“Momentum” factor.4 The fourth factor seems to be a “long Value short (long-term) Momentum” factor,

but it is not selected by any of the statistical criteria employed, consistent with the fact that its inclusion in

the SDF improves only marginally the overall model pricing performance and Sharpe ratio.5 Therefore, this

analysis ultimately shows that the currency SDF comprises three pricing factors that can be interpreted as

“Dollar”, “Carry”, and “Momentum” factors.

Second, based on this optimal SDF, we turn to estimate the risk premia of the nontradable candidate

factors. To start with, we find that the spanning regressions of the nontradable factors on the pricing

latent factors deliver, on average, low R2s. In the GX’s framework, this would indicate that a large portion

of nontradable risk factors is due to measurement error. The problem is particularly severe for macro

factors, while some of the text-based and, especially, of the financial factors are measured more precisely.

In particular, text-based and financial factors are mainly exposed to the “Carry” factor, but some of these

factors (mostly financial ones) also display significant exposures to the “Momentum” factor. Interestingly,

the exposures of these candidate factors to the “Carry” and “Momentum” factors generally take opposite

sign. This indicates that the two strategies respond to some of the same sources of financial risk, but in

opposite ways. For example, when volatility increases “Momentum” tends to perform well, while “Carry”

performs poorly, in line with what is observed during periods of markets turmoil, such as during the global

financial crisis. This in turn implies that, if the “Momentum” factor is omitted from the SDF, the return-

based candidate factors – the original nontradable factors cleaned from measurement error and converted

into return factors using the fitted value of the spanning regressions – can display different behaviors and

risk premia.

Turning more specifically to the risk-premium estimates, we show that the risk premia obtained using

the augmented three-pass method are substantially different from the FMB two-pass estimates.6 In fact,
4Short-term and long-term momentum strategies differ in that they use as sorting signals the one-month and one-year past

returns, respectively. Menkhoff et al. (2012b) show that both of these strategies are profitable and imperfectly correlated,
although short-term momentum generates higher expected returns.

5While this factor, call-it simply “Value”, displays a statistically significant mean return, the magnitudes of its return and
Sharpe ratio are small in comparison with those of the “Carry” and “Momentum” factors. This helps explain why this factor
takes a small weight in a four-factor SDF. We also document that the remaining latent factors retain no clear interpretation.
Indeed, they are time-series factors as they have zero prices of risk, and hence take zero weights in the SDF.

6The FMB estimates are intentionally subject to both the omitted-variable and measurement-error problems, as no control
factor other than the Dollar factor (captured by the constant) is included, in addition to the candidate factor.
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the two-pass method seems to deliver higher absolute point estimates and a larger number of candidate

factors with significant risk premia. This is not surprising given that inflated prices of risk are common

among nontradable factors, exactly because they contain noise (Adrian et al., 2014). We document that

the measurement-error problem is indeed pervasive also for a large number of our nontradable factors. To-

gether with the omitted-variable problem, it can lead to biased risk-premium estimates and/or to erroneous

selection of currency risk factors.

At the same time, thanks to the augmented three-pass method, we can also show that some nontradable

factors are indeed priced in currency returns. While the list of relevant factors is shorter than using the

two-pass method, it is still diverse, and mainly pertains to financial and text-based factors. Some of the

nontradable factors previously uncovered by the literature turn out to be less or even not relevant, but other

“novel” factors (i.e., which were not considered in previous currency research) appear to have significant

risk premia, disclosing a tight link between currency and other financial markets, mainly channeled through

“Carry”, in line with the conjecture of Koijen et al. (2018). In particular, our findings highlight the relevance

of uncertainty and volatility measures (both financial and text-based) and of liquidity factors to explain

currency returns. Specifically, the global volatility factor of Menkhoff et al. (2012a) and the global Economic

Policy Uncertainty (EPU) of Baker et al. (2016) are singled out, as their risk premia are large and precisely

estimated. Moreover, the signs of the risk-premium estimates of the financial and text-based factors appear

intuitively clear. Factors that perform poorly (well) in bad states of the world command positive (negative)

currency risk premia, and hence are procyclical (countercyclical) factors, based on the three-pass estimator.

However, the results point to a substantial disconnect between currency returns and macroeconomic

variables, which is disappointing as it is hardly imputable to their measurement error given that the three-

pass method accounts for that. Moreover, even among the few macro factors with weakly significant premia

estimates, some display risk premia with counterintuitive signs. We then show that the disconnect is not

the consequence of macro factors being weak factors (i.e., factors that are relevant only for a subset of

the test assets). In fact, we find similar results using the supervised principal component analysis (SPCA)

estimator, recently developed by Giglio et al. (2021c) to explicitly tackle the issue of weak candidate factors

in the estimation of factor risk premia. Moreover, the SPCA results show that even the few macro factors

with significant risk premia can be very poorly hedged out of sample using currency portfolios. As a result,
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the disconnect between macro factors and currency portfolio returns is confirmed using SPCA. We show

that these results hold in a number of robustness checks and additional analysis.

Finally, we verify through a simulation exercise that the augmented three-pass method works well also

in finite samples that match the dimension and properties of the FX portfolio returns in our paper. The

simulation is calibrated on a reduced-form SDF specification which allows for four factors that mimick the

optimal SDF documented in the empirical analysis and generates simulated data that reproduce the features

of our FX portfolio returns. Given this data generating process (DGP), the simulation results demonstrate

that the method works well in finite samples that match our data, and also make clear that both the omitted-

variable and measurement-error problems can be material in the estimation of currency risk premia, in a

similar way as documented by GX for equity markets. This evidence gives us further comfort that the

methods employed here are both reliable and desirable for our purposes, and that the unconditional three-

pass model, if well specified, provides a satisfactory description of dynamically rebalanced FX portfolio

returns.

The closest paper to ours is independent work by Chernov et al. (2021), which tackles similar objectives to

the ones targeted in our paper, in a very different way. Specifically, Chernov et al. (2021) address the question

of the optimal factor model for pricing currency risk, which relates to the first goal of our paper. They

do so by studying directly the mean-variance efficient portfolio, and relying on the conditional projection

of the SDF onto excess returns of individual currencies. Reducing the dimensionality of the problem by

limiting the sample to G10 currencies, they show that this approach allows to price individual currencies

and several canonical strategies (derived from carry, momentum, and value signals), both conditionally and

unconditionally. On the one hand, this approach has the advantage, relative to the methods adopted in our

paper, that currency pricing is carried out more directly since the estimated SDF is represented as a linear

function of the unconditional mean-variance efficient portfolio. On the other hand, working directly with

the mean-variance efficient portfolio can only be achieved on a set of assets that is small enough to allow

reliable estimation of the covariance matrix of currency returns. Moreover, one needs to assume that the

set of factors or signals that drive the conditional mean are known. In turn, this exposes the approach to

omitted-variable problems (in addition to potential measurement-error problems), which are instead taken

into account using the GX three-pass methods employed in our paper. Ultimately, we view the study of
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Chernov et al. (2021) as complementary to our paper.

The remainder of the paper is organized as follows. Section 2 presents the augmented three-pass method,

and Section 3 describes the FX portfolios and the nontradable candidate risk factors. Section 4 presents the

baseline empirical findings, as well as robustness exercises. Section 5 studies the finite-sample performance

of the estimator in simulation, whereas Section 6 deals with the weak-factor problem via SPCA. Section 7

concludes. A separate Internet Appendix briefly reviews the two-pass estimator (Section I); presents the

FX investment strategies (Section II); the nontradable factors (Section III); additional empirical evidence

(Sections IV and V); the simulation exercise (Section VI); and the weak-factor analysis (Section VII).

2 Asset Pricing Methods

The FMB two-pass method has long represented the workhorse model to estimate risk premia in empirical

asset pricing (see a brief description of FMB in the Internet Appendix, Section I). In currency asset pricing,

it is widely employed at least since the influential study of Lustig and Verdelhan (2007). Over the years,

some fixes to the original two pass-procedure have been proposed, and they mainly regard the efficiency

of the estimates, which relates to the use of the generated β̂ covariates in the second-pass regression (e.g.,

Shanken, 1992; Burnside, 2011). By contrast, the omitted-variable and measurement-error problems have

received less attention.

The omitted-variable problem arises when (some of) the relevant risk factors are omitted from the SDF.

This omission biases the estimates of the risk exposures in the first pass, and the estimates of the prices

of risk in the second pass. As a result, the researcher attributes the effect of the missing factors/exposures

to the estimated effect of the included factors/exposures. In the first pass, the severity of the bias depends

on the time-series correlation between the factors included and those omitted. In the second pass, it varies

with the cross-sectional correlation of the estimated exposures and the missing exposures associated with the

omitted factors. The measurement-error problem instead emerges even when the researcher includes all the

‘true’ risk factors in the SDF, but the factors are measured with noise. This problem is particularly severe in

the case of nontradable (i.e., non-return-based) factors, especially those based on macroeconomic variables.

The use of noisy factors may bias the first-pass estimates of the risk exposures and, as a consequence, the

second-pass estimates of the prices of risk.
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Both problems can manifest in many situations. A clear example is when the researcher wants to

estimate the price of risk of a novel nontradable factor gt, λg. In principle, the standard FMB procedure

is viable but the researcher would need to (i) know the set of control factors, i.e., the set of ‘true’ factors

entering the SDF, ft; and (ii) use factors that are cleaned, i.e., measured without noise. By contrast, the

three-pass method of GX delivers an estimate of the price of risk of the candidate factor that is not affected

by (i) and (ii). To do so, the GX method exploits the information in the test assets, by projecting the

candidate factor onto the space of the latent pricing factors implied in the cross section of test-asset returns.

In this way, one can remain agnostic about the set of ‘true’ risk factors (i.e., the controls), and yet obtain

an estimate of λg that is not affected by the omitted-variable problem. Moreover, one can easily account

for the measurement error in the candidate factor.

While GX employ standard PCA to extract the latent pricing factors, one can recur to other methods to

estimate the factors and still exploit in full the benefits of the three-pass method. Recently, LP developed

the RP-PCA estimator. A benefit of this novel method is that the latent factors are estimated such that

they fit both the time series and cross section of expected returns. Conversely, standard PCA neglects the

information in the means of the portfolio returns. We therefore combine the RP-PCA method of LP with

the three-pass method of GX, and this is why we call it the augmented three-pass method.

2.1 (Augmented) Three-Pass Method

Before turning to the three-pass method of GX, we first present the RP-PCA method that we use to extract

the factors from the panel of currency returns and the evaluation criteria employed to shed light on the

optimal currency SDF.

2.1.1 Latent Factors Estimation

To start with, we assume that K factors capture the systematic component of asset returns and the unex-

plained idiosyncratic component subsumes the asset-specific risks, such that

Xnt = Ftψ>n + εnt, n = 1, . . . , N, t = 1, . . . , T, (1)
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where Xnt is the n-th test asset’s time-t excess return, Ft = [F1t, . . . FKt] denotes the time-t 1 ×K vector

of latent factors, ψn is the 1 × K vector of factor loadings for test asset n, and εnt is the asset return’s

idiosyncratic component. In matrix notation, it takes the compact form X = Fψ>+ ε, where X is a T ×N

matrix of returns, F is the T ×K matrix of latent factors, ψ is the N ×K matrix of factor loadings, and

ε is the T × N matrix of residuals. It is then evident that, if factors and residuals are uncorrelated, the

covariance matrix of the returns is given by

Var(X) = ψVar(F)ψ> + Var(ε), (2)

which consists of a systematic part and an idiosyncratic part. Standard PCA exploits the fact that the

factors relate to the largest eigenvalues of Var(X), which can be retrieved from the sample covariance matrix

of excess returns

ΣPCA = 1
T
X>X −X> X, (3)

where X denotes the sample mean of excess returns.

The estimated factor loadings ψ̂ are proportional to the eigenvectors associated with the largest eigen-

values of ΣPCA. The factors F̂t are then obtained by regressing the asset returns on the factor loadings.

Thus, factors identified by PCA minimize the unexplained time-series variation of the returns. Evidently,

however, the information in the means of the returns is not accounted for. LP note that, in the context

of asset pricing, this implies ignoring valuable information, as the role of the means is explicitly given by

Ross’ arbitrage pricing theory (APT).7 Asset pricing factors should capture the information contained both

in the first and second moments of test-asset returns. For this reason, LP propose to apply PCA to a

covariance matrix with overweighted sample mean returns; in essence, RP-PCA is a generalized version of

PCA regularized by a pricing-error penalty term, which is tantamount to applying PCA to the covariance

matrix

ΣRP = 1
T
X>X + ω X

>
X, (4)

7Under the strong form of APT, residual risk has a risk premium of zero, which holds without loss of generality when assets
are portfolios. An asset excess return is then given by its exposures to the factors times the factors’ risk prices. Moreover,
if the factors are excess returns, no-arbitrage implies that their means are the factors’ prices of risk. Hence, the means are
informative about the assets’ risk premia.
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where ω is the penalty term, or RP-weight. As before, the factors are constructed by regressing the returns on

the factor loadings, i.e., F̂ = Xψ̂(ψ̂>ψ̂)−1. However, the loadings ψ̂ are now proportional to the eigenvectors

associated with the largest eigenvalues of the ΣRP matrix. Intuitively, in RP-PCA, the eigenvalues relate

to a generalized notion of “signal strength” of a factor, while in PCA the eigenvalues are equal to the factor

variances, exactly because the information in the portfolio means is neglected. That is, the matrix ΣRP

should converge to

ψ(ΣF + (1 + ω)µ>FµF )ψ> + Var(ε), (5)

where ΣF and µF denote the covariance matrix and the means of F , respectively. Moreover, applying PCA

to ΣRP is equivalent to minimizing jointly the time-series unexplained variation and the cross-sectional

pricing errors

min
ψ,F

1
NT

N∑
i=1

T∑
t=1

(Xnt − Ftψ>n )2

︸ ︷︷ ︸
TS unexplained variation

+ ω
1
N

N∑
i=1

(Xn − Fψ>n )2

︸ ︷︷ ︸
CS pricing error

,
(6)

where F is the vector of factor expected values. From Eqs. (4)-(6), it is clear that RP-PCA with ω = −1

is equivalent to standard PCA as it forgoes the information in the means. Also note that RP-PCA with

ω = 0 corresponds to applying PCA to a correlation matrix instead of a covariance matrix. Conversely,

RP-PCA with ω > 0 can be interpreted as PCA applied to a matrix that “overweights” the information in

the means. That is, RP-PCA combines two moment conditions, pushing up the signal-to-noise ratio and

therefore leading to more efficient estimates of the factors. It selects factors that explain the time series,

but at the same time penalizes factors with low Sharpe ratios. This is because factors that help price the

cross section of asset returns have non-vanishing returns and higher Sharpe ratios. Thus, RP-PCA with

ω > 0 may help detect weak factors if they have high Sharpe ratios, exactly because the weak signal in their

variances is enhanced by the information in their means. Meanwhile, it protects from selecting spurious

factors (i.e., factors with vanishing loadings), as it requires the estimated factors to explain a substantial

amount of time-series variation.

Evaluation Criteria. The spectrum of the estimated eigenvalues is informative about the factors’ “signal

strengths” and, hence, can help determine the optimal SDF. One can establish how many factors are
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relevant, as well as discern strong from weak factors. Statistical tests such as the ones used by LP and

GX are useful in this regard.8 Importantly, a by-product of the LP method is that factors retain a clear

economic interpretation, as factors extracted using RP-PCA are return-based with unrestricted means. In

fact, one can rely on several intuitive metrics to complement the evidence resulting from statistical tests.

In this way, the choice of the optimal SDF is guided by both statistical and economic criteria.

A clear object of interest is the maximal Sharpe ratio from the tangency portfolio of the mean-variance

frontier spanned by the linear combination of the K selected latent factors, F̂ × b̂>MV , where b̂MV = µFΣF
−1

is a 1 × K vector; the b̂MV entries capture the factor weights in the implied SDF, ϕt = 1− (F̂t − µF )b̂>MV .9

Two further diagnostic criteria – the root-mean-square error (RMSα) and the magnitude of the idiosyncratic

variance (σ2
ε ) – are useful to evaluate the model performance, inform the choice of the penalty value ω, and

determine which factors to include in the SDF. Such criteria are centered around the estimation of ordinary

least squares (OLS) time-series regressions

Xnt = αn + F̂tψ
>
n + εnt, n = 1, . . . , N, t = 1, . . . , T, (7)

where the intercept αn captures the magnitude of the asset-specific pricing errors. Put simply, Eq. (7) is

the OLS counterpart of the factor model of Eq. (1), but differs for two main reasons. First, it includes

the intercept, while the factor model imposes no intercept and hence the residuals have means that are

not necessarily zero. Second, the OLS regression (without intercept) and the factor model yield the same

estimates of ψn only when RP-PCA uses ω = 0. This is because the pricing-error term of Eq. (6) drops

out, and hence the two methods minimize the same objective function.10 Nevertheless, LP argue that the

difference turns out to be negligible in the data. Thus, one can use Eq. (7) to compute RMSα =
√
α̂α̂>/N ,

8In order to determine the optimal number of latent factors to include in the SDF, LP use the test of Onatski (2010), whereas
the GX’s estimator is based on a penalty function similar to the one of Bai and Ng (2002). The Onatski (2010) test relies on
the idea that the eigenvalues associated with the systematic factors diverge to infinity, while the eigenvalues associated with
idiosyncratic factors cluster around a single point. Put simply, the eigenvalues of systematic factors should be separated from
those of weak factors.

9If the estimated factors are orthogonal, ΣF is diagonal and b̂MV is a vector with entries b̂MV,k = µF,k/σ
2
F,k, where µF,k

and σ2
F,k denote the k-th factor’s estimated mean and variance. We follow common practice and search for a small number of

factors whose linear combination with constant loadings in the SDF prices assets unconditionally. In a recent paper, Chernov
et al. (2021) depart from this approach with a conditional model where a single factor drives the SDF and its loading varies
over time. Such factor is constructed via a conditional mean-variance efficient portfolio approach.

10RP-PCA with ω = −1 yields the same estimates of Eq. (7) applied to demeaned Xnt and F̂t. LP show that, also for ω > 0,
RP-PCA loadings can be retrieved using OLS regressions. We return to this issue in the next section.
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and σ2
ε = 1

N

∑N
n=1 [V ar(ε̂n)/V ar(Xn)] implied by F̂ . Note that these two statistics should move in opposite

direction as the penalty ω varies; ceteris paribus, for higher values of the penalty, the pricing error should

diminish at the cost of higher variance of the idiosyncratic component. Hence, based on these statistics,

one can evaluate the trade-off, and pin down the optimal value of the RP-weight, ω.

2.1.2 Candidate Factor Price of Risk Estimation

So far, we showed how to efficiently estimate the latent factors, and how to select the factors entering the

optimal SDF. All of this is instrumental to apply the GX three-pass method to obtain accurate estimates

of the candidate factors’ risk premia, which we present next.

1. Test-Asset Exposures to Latent Factors (ψ). The first pass consists of estimating test-asset

risk exposures to latent factors. Because GX use PCA to extract the latent factors, they obtain the

risk exposures through time-series OLS regressions of test-asset excess returns on the latent factors. As

mentioned earlier, this is no longer exact when the factors are extracted using RP-PCA with ω > 0. However,

the exposures ψ implied in the factor model of Eq. (1) can still be recovered using OLS regressions. To do

so, one has to transform the excess return data and the factors in such a way to incorporate the information

of the pricing errors. Specifically, the time-series OLS regressions become

X̃nt = F̃tψ
>
n + εnt, n = 1, . . . , N, t = 1, . . . , T, (8)

where X̃nt = Xnt + ω̃X̄nt, and the vector F̃t contains elements defined as F̃kt = F̂kt + ω̃F̄kt for k = 1, . . . ,K,

with ω̃ =
√
ω + 1− 1. In this way, the RP-PCA risk exposures can be retrieved for any value of ω.

2. Latent Factor Prices of Risk (γ). The second pass delivers the estimates of the prices of risk

of the latent factors. The estimates are obtained by running a cross-sectional regression of average realized

excess returns on the previously estimated exposures of the test assets to the latent factors,

Xn = ψ̂nγ
> + an, n = 1, . . . , N, (9)
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where γ is the 1×K vector of the latent factor prices of risk.11

3. Candidate Factor Price of Risk (λg). The last pass of the GX procedure yields the price of

risk of the candidate factor gt. First, one projects the candidate factor onto the space of the latent pricing

factors, by running a time-series spanning regression of the candidate factor innovation, gιt, on the demeaned

latent factors, F̂ ιt = F̂t − µF , as follows

gιt = F̂ ιt η
> + ut, (10)

where η is the 1 ×K vector collecting the loadings of the candidate factor on the K latent factors. Then,

using the estimated η-exposures, one implements

λ̂g = γ̂η̂>, (11)

ĝt = F̂tη̂
>, (12)

and obtains the price of risk of the candidate factor, λ̂g, and the cleaned return-based candidate factor,

ĝt (i.e., the nontradable factor after the removal of measurement error, ut, and converted into a tradable

return-based factor).

Rotation Invariance of Risk Premia. Before turning to the empirical analysis, it is important to

introduce the rotation-invariance result shown in GX. The main result is that the risk-premium estimate

of a candidate factor is rotation invariant, as its estimate does not change when the model is expressed as

a function of rotated factors, ˆ̂
Ft ≡ FtH

−1, for any full-rank k × k matrix H, instead of the original factors

Ft. In essence, a parameter (or quantity) is rotation invariant if it is identical in the original model or in

any rotated model (Giglio and Xiu, 2021). Specifically, defining ˆ̂γ ≡ γ̂H−1 and ˆ̂η ≡ η̂H>, it holds that

λ̂g = γ̂η̂> = γ̂H−1Hη̂> = ˆ̂γ ˆ̂η>. (13)

Importantly, neither γ nor η by itself is rotation invariant, because ˆ̂γ ≡ γ̂H−1 6= γ̂ and ˆ̂η ≡ η̂H> 6= η̂.

Similarly, the risk exposures of assets to the rotated factors differ from the exposures to the original factors
11Note that the factors extracted using the RP-PCA method are return-based with unrestricted means. Hence, under no-

arbitrage, factor prices of risk equal their means, i.e., γ = µF . However, the second pass is still useful, as it allows us to
determine the uncertainty around the estimates (which will be accounted for in the computation of the asymptotic standard
errors of the candidate factors’ prices of risk) and evaluate the fit of the latent-factor model.
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( ˆ̂
ψn ≡ ψ̂nH

> 6= ψ̂n). Thus, unless one knows the rotation matrix H, not all original parameters can be

recovered. Yet, even without knowing H, any consistent estimator of ˆ̂γ ˆ̂η> will consistently estimate the

candidate factor risk premium, λ̂g.

3 Test Assets and Factors

In this section, we first describe the exchange rate data, and explain how excess returns are computed. We

then present the currency portfolios (test assets), and the nontradable macro-financial factors (candidate

risk factors).

3.1 FX Data and Excess Returns

FX Data. We collect spot exchange rates and one-month forward rates vis-à-vis the U.S. dollar (USD) from

Barclays and Reuters, available via Datastream. We take the perspective of a U.S. investor, and define the

exchange rate as units of USD per unit of foreign currency (FCU), that is, USD/FCU. Hence, an increase

in the exchange rate corresponds to an appreciation of the foreign currency. The empirical analysis is based

on monthly data obtained by sampling end-of-month FX rates from October 1983 to December 2017. Our

sample covers 49 currencies, of which 15 are regarded as developed countries following standard definitions

in prior literature (e.g., Menkhoff et al., 2012a). It is important to note that the sample size is not fixed,

given that it varies over time as data for some currencies are not available from October 1983, or some

currencies cease to exist due to the adoption of the euro. That is, we work with an unbalanced panel of

individual currencies. We provide detailed information on the FX data in the Internet Appendix (Section

II).

FX Excess Returns. Currency excess returns are defined as follows

Xit+1 = Sit+1 − Fit
Sit

, (14)

where, using notation local to this subsection, Fit is the forward exchange rate that matches the spot

exchange rate Sit for currency i (Bekaert and Hodrick, 1993). According to Eq. (14), the excess return

results from buying the foreign currency in the forward market at time t, and selling it in the spot market
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at time t + 1. As a matter of convenience, throughout this paper we refer to the forward premium fpit =
Sit−Fit
Sit

≈ iit − it as either the forward premium or interest rate differential relative to the U.S. dollar, with

iit and it denoting the foreign and U.S. interest rate, respectively. Indeed, under covered interest parity

(CIP), the interest rate differential is equal to the forward premium.12

3.2 Test Assets

A large cross section of test assets is central to the validity of the GX three-pass method (Giglio and Xiu,

2021). Our test assets are currency portfolios rather than individual currencies. By using portfolios, we can

average out idiosyncratic components of currency returns and focus only on their systematic risk (Cochrane,

2005). Moreover, portfolios dynamically include individual currencies as their returns and signals become

available, resulting in a balanced panel of test assets.

We consider currency portfolios associated with widely-used trading strategies. Overall, the baseline

sample consists of N = 46 currency portfolios that stem from nine popular investment strategies: carry

(e.g., Lustig et al., 2011; Menkhoff et al., 2012a), short-term and long-term momentum (e.g., Asness et al.,

2013; Menkhoff et al., 2012b), currency value (e.g., Asness et al., 2013; Kroencke et al., 2014; Menkhoff

et al., 2017), net foreign assets and liabilities in domestic currencies (Della Corte et al., 2016), term spread

(Bekaert et al., 2007; Lustig et al., 2019), long-term yields (Ang and Chen, 2010), and output gap (Colacito

et al., 2020). In what follows, we refer to these strategies as Carry, ST and LT Mom, Value, NFA, LDC,

Term, LYld, and GAP, respectively.

We provide a detailed description of each investment strategy in the Internet Appendix (Section II); here

we note that these strategies differ in the signals used to allocate currencies into portfolios (e.g., interest

rate differentials, past returns, etc.), but the sorting schemes are similar. In fact, all strategies are tradable

and rest on single sorts (with the exception of LDC, which uses double sorts on net foreign assets and the

proportion of foreign currency denomination of liabilities).13 At time t, currencies are allocated to NP
12As is usual in the literature, we compute FX excess returns using forward rates rather than interest rate differentials for two

main reasons. First, marginal investors (such as, e.g., hedge funds and large banks) that are responsible for the determination
of exchange rates trade mostly using forward contracts (e.g., Koijen et al., 2018). Second, for many countries, forward rates are
available for much longer time periods than short-term interest rates. It is reasonable, however, to exclude the months when
CIP is strongly violated; in doing so, we follow Kroencke et al. (2014) and Della Corte et al. (2016), among others (see Section
II, in the Internet Appendix).

13We refer to single sorts when a single trading signal is used to sort currencies into portfolios. Conversely, we refer to double
sorts when two trading signals are sequentially used to sort currencies into portfolios.
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portfolios using the past signal for the selected strategy. Then, for a generic portfolio n, the excess returns

realized between time t and t + 1, Xnt+1, are computed as the equally-weighted average of the individual

currency excess returns allocated to that portfolio. In line with most of the FX literature, we use NP = 5

for single-sorted portfolios. By construction, as we move from portfolio 1 (P1) to portfolio 5 (P5), the

portfolios should contain currencies with increasing riskiness. Hence, if the risk-return trade-off holds, the

spread portfolio (HML) – the return difference between P5 and P1 – should give a positive return because

P5 contains currencies with high risk, whereas P1 includes currencies with low risk.

3.3 Nontradable Candidate Factors

We now turn to the nontradable (or non-return-based) candidate risk factors for which we aim at estimating

the price of risk. These factors feature in the last pass of the GX three-pass method (see Section 2.1.2),

which is implemented separately for each candidate factor. Therefore, the choice of a candidate factor does

not affect the analysis of the other factors or the optimal SDF.

To begin with, we consider a reasonably long list of macro factors. In this way, we shed light on the link

between the macroeconomy and asset returns, which is a central issue in macro finance (Cochrane, 2017).

While the link is clear in theory, it is hard to establish empirically. Currency returns are no exception in this

regard, and the disconnect is possibly even more evident than in other financial markets. In theory, currency

returns and macro fundamentals are tightly linked together (e.g., Hassan, 2013; Gabaix and Maggiori, 2015;

Ready et al., 2017; Berg and Mark, 2018a). In reality, the link between the two is weak (Meese and Rogoff,

1983; Mark, 1995), or highly unstable (Rossi, 2013; Fratzscher et al., 2015). A recent finding, however,

is that macro fundamentals seem to be strongly connected to the cross section of currency returns (e.g.,

Colacito et al., 2020; Dahlquist and Hasseltoft, 2020). That said, macro fundamentals are often poorly

measured and are clearly nontradable factors, so that both sources of bias that we address in this paper are

likely to be sizable.

We also consider another set of nontradable factors that is gaining momentum in the asset pricing liter-

ature, which pertains to financial conditions. The global financial crisis has spurred an extensive literature

on volatility and liquidity risks (e.g., Menkhoff et al., 2012a; Karnaukh et al., 2015), uncertainty shocks

(e.g., Bekaert et al., 2013; Dew-Becker et al., 2017), and the leverage of financial intermediaries (e.g., Adrian
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et al., 2014; He et al., 2017). These factors are also nontradable, and their measurement is often imprecise.

Furthermore, some of these measures are global, while others focus on the U.S. market. Most measures are

specific to equities and bonds, but there is by now overwhelming evidence that financial and uncertainty

shocks can easily propagate across markets. We therefore attempt to capture such complexity by using

multiple popular measures of (il)liquidity, volatility, and uncertainty.

In addition to macro and financial variables, we also extend the analysis to the recently developed

text-based factors, which are obtained by aggregating into an index news coverage about specific sources

of uncertainty. Text-based indicators based on news coverage of policy uncertainty and, more recently, of

equity market volatility are becoming increasingly prominent in the literature (e.g., Baker et al., 2016; Baker

et al., 2019). Their sub-categories are also particularly informative about asset returns (e.g., Giacoletti et al.,

2021). We therefore estimate also the risk premia of many text-based factors. By doing so, we broaden the

measurement of macro-financial risks.

Taken together, the list of nontradable candidate factors consists of a total 133 factors, which we find

useful to group as financial (23), text-based (30), and macro (80). However, the following additional

observations are in order. First, the set of factors is comprehensive but by no means exhaustive, mainly

because some factors are not available at the monthly frequency. Second, the distinction across categories

is largely adopted for convenience, not being exact for some factors, especially for those capturing multiple

sources of risks. In this sense, we do not view these variables as separate and true risk factors (also because

they are measured with error), rather as macro-financial variables that relate to the ‘true’ factors.14 Finally,

as is common in the asset pricing literature (Merton, 1973), we do not use the factors as such but we first

convert them into innovations, capturing the unexpected changes in the factors (in the baseline analysis, we

simply use the residuals from AR(1) processes as, e.g., in Menkhoff et al., 2012a). A brief overview of the

candidate factors and more detailed motivations for selecting them are provided in the Appendix.
14For example, the latent factors of Jurado et al. (2015) are placed in the group of financial factors, but they also contain

macroeconomic information. Similarly, some text-based factors measure uncertainty related to the macroeconomic environment.
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4 Empirical Analysis

In this section, we present the main findings of the empirical analysis. To start with, we assess the cross

section of portfolio currency returns using descriptive statistics (Section 4.1). We then present the RP-

PCA estimates of the latent factors and shed light on the properties of the optimal currency SDF (Section

4.2). Next, we turn to the three-pass estimates of the risk premia of the nontradable candidate risk factors

(Section 4.3). Finally, we present a number of robustness checks and additional analysis on the stability of

the factor structure (Section 4.4).

4.1 Currency Portfolios

Table A3, in the Internet Appendix, presents summary statistics of the currency portfolios, i.e., our test

assets, associated with the nine investment strategies described in Section 3.2. We find that 22 out 46

individual portfolios deliver statistically significant returns. Importantly, all strategies deliver spread HML

portfolios (denominated as CS in Table A3 as these are cross-sectional portfolios) with positive and statistical

significant average returns, with the exception of the LYld HML portfolio. Since HML portfolios are

self-financed long-short strategies, they represent U.S. dollar-neutral strategies. Moreover, for these HML

portfolios the average excess return is the price of risk, given that it has unit exposure by construction.

Therefore, the average return of the HML portfolio is a key statistic to look at. Carry, ST Mom and GAP

HML portfolios yield the highest expected excess returns (7.3, 6.9, and 6.7 percent per annum, respectively),

while LYld and Term HML portfolios display the lowest excess returns (1.9 and 2.8 percent per annum,

respectively).

We then resort to an intentionally simple exercise to visually illustrate the risk-return trade-off inherent

in the currency portfolios. Figure 1, top panel, shows that “low-signal” portfolios (P1, P2) tend to be

mostly placed in the bottom left-hand corner (low risk/ low return), whereas “high-signal” portfolios (P4,

P5) in the top right-hand corner (high risk/high return). In short, with few exceptions, higher returns seem

to compensate for higher risks, which is consistent with the existence of a risk-return trade-off in currency

portfolios. In the bottom panel, we instead present the time series of HML portfolios’ cumulative returns,

which clearly show the higher performance of Carry, ST Mom and GAP investment strategies, but also

that the underlying sources of risk differ. For example, during the global financial crisis ST Mom strongly
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outperforms Carry.

Pair-wise correlations among HML portfolios (Table A4, in the Internet Appendix) are also of interest,

as they provide a first piece of suggestive evidence on the factor structure of the optimal currency SDF.

Above all, Carry appears to be a dominant strategy, as not only it yields the highest returns, but it also

correlates positively with many other strategies. LYld and, to a lower extent, Term portfolios strongly

correlate with Carry (76 and 54 percent, respectively), but on the backdrop of substantially lower returns

than Carry. The global imbalances HML portfolios, LDC and NFA, also appear to be tightly linked to

Carry. Hence, Carry singles out as a pervasive strategy. Moreover, and perhaps not surprisingly given that

the signals of both strategies depend on past returns, the excess returns of ST and LT Mom portfolios are

positively related, but their correlation is not particularly high (around 25 percent), possibly due to mean

reversion in returns. However, in absolute terms, the LT Mom spread portfolio co-moves mostly with the

Value portfolio (around –39 percent). Also, in line with the extant literature (e.g., Koijen et al., 2018), we

find that momentum strategies have low correlation with Carry, suggesting that they may be driven by a

separate risk factor. Similarly, the GAP strategy exhibits a high risk premium, and yet displays particularly

low correlations with respect to the other strategies.

In sum, while some strategies are strongly related, others are weakly or even negatively related, suggest-

ing that multiple sources of risk drive currency portfolio returns. It is, however, ex-ante unclear how many

slope risk factors – other than Carry – are needed to capture the risk-return trade-off in the FX market.

Next, we turn to assess more formally the structure of the optimal latent-factor currency SDF.

4.2 Currency Pricing Kernel

To begin with, we extract the latent factors from the panel of currency portfolio returns using different

values of the RP-weight.15 We contrast the estimates from models using PCA with those from models

using RP-PCA with higher and increasing values of the RP-weights. These models can differ in terms of the

detection of the factors, the factor compositions, and the order of the factors. To highlight differences across
15Both PCA and RP-PCA require a balanced panel of test asset returns. To fill the few missing observations in test asset

returns X (GAP portfolios are available only until January 2016), we use the nuclear-norm penalized regression approach,
recently employed by Giglio et al. (2021b), to which we refer for more details on the procedure. We find that the main empirical
results are robust to the method used to recover X, for example if we replace the missing returns with the sample mean of
returns (which we did in a previous draft of this paper).
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models, we first assess the factor “signal strengths”, also recurring to statistical tests. We then complement

this statistical information with the model diagnostics, based on the three economic evaluation criteria

presented in Section 2.1.1, to better determine the dimension and properties of the SDF. Next, we present

the main results, while the more detailed analysis of the latent factor “signal strengths” and, relatedly, of

the SDF are presented in the Internet Appendix (Section IV). Finally, we try to link the extracted latent

pricing factors to the observable currency strategies.

Latent Factor “Signal Strengths”. As explained in Section 2.1.1, the ability to detect a pricing factor

depends on the factor’s signal-to-noise ratio. In RP-PCA, the “signal strength” of a factor is captured by

the associated eigenvalue of the matrix ( 1
TX

>X + ωX̄>X̄), call it ΣRP . To begin the SDF analysis, it is

therefore useful to inspect the behavior of the largest eigenvalues of ΣRP , both plain and normalized by the

idiosyncratic variance, as the latter more closely relate to the signal-to-noise ratio. At the same time, it is

useful to assess what drives a factor’s overall “signal strength”, by simply inspecting its composition. In

this way, we try to establish whether a factor (i) is strong or weak, and (ii) with high or low Sharpe ratio.

We report this (and additional) evidence in Table A8, and present the main results in what follows.16

The first eigenvalue is large and hence is symptomatic of a systematic, strong factor. On the contrary,

the remaining eigenvalues are substantially smaller, so that the associated factors are consistent with a

weak-factor interpretation (i.e., factors that explain a small set of test assets). This evidence is qualitatively

similar when using either PCA or RP-PCA to estimate the factors. However, by employing the latter

method (and with reasonably high RP-weights), it is evident that factors’ “signal strengths” are enhanced,

factors are better separated from each other, and the information is aggregated in a small number of

factors. In doing so, RP-PCA helps us estimate the factors more efficiently, as documented also by LP for

characteristic-sorted stock portfolio returns.

In particular, we find that RP-PCA enables us to detect weak factors with high Sharpe ratios, which

are missed by standard PCA. The third factor is a clear example in this regard. In fact, the O and GX

tests point to a two-factor SDF when the factors are extracted using PCA, and to a three-factor SDF when
16In the empirical analysis, we limit the focus to the six largest eigenvalues/factors, as the remaining eigenvalues have

negligible “signal strengths”. Also note that, following LP, we normalize the loadings such that the factors are orthogonal with
each other and have different means and variances. Specifically, we adopt the Gram-Schimdt method, which has the benefit of
orthogonalizing the factors sequentially. The models based on the original and orthogonal factors are observationally equivalent.
Factors are orthogonalized mainly to facilitate their economic interpretation, e.g., regarding their distinct contributions to the
currency SDF.
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using RP-PCA (Figure 2 shows the eigenvalues and the results of the tests for different models). This is

exactly because RP-PCA overweights the sample mean returns, and hence enhances the overall “strength”

of the factor, on the backdrop of essentially unchanged time-series “strength”, which neglects the effect of

the factor means. Put simply, the third factor extracted via RP-PCA appears to be a weak factor but with

high Sharpe ratio (or risk premium). These types of factors are particularly hard to identify, and yet have

important asset pricing implications, exactly because of their large risk premia. Thus, their omission is

likely to distort the candidate factor risk-premium estimates.

Using RP-PCA, also the fourth factor qualifies as a weak pricing factor, given that it has a positive and

significant risk premium (see Table A8). To a larger extent, F̂4 behaves qualitatively like F̂3, but its Sharpe

ratio is substantially smaller; in fact it is half of that of the third factor (despite the two having comparable

time-series “strengths”). This suggests that the pricing contribution of F̂4 is not sufficient to increase its

signal-to-noise ratio in a way that F̂4 is selected by the statistical tests.17 The remaining factors have zero

risk premia, and hence are time-series factors.

Therefore, based on the “signal-strength” analysis, the optimal SDF should include at least the first

three pricing factors extracted via RP-PCA. Next, to complement the above evidence, we proceed with the

analysis of the other evaluation criteria used to better inform the choice of the RP-weight. By doing so, we

also try to further characterize the properties of the optimal latent-factor currency SDF, going beyond its

dimension.

Optimal Currency SDF (ϕ(FωK)). The selection of the RP-weight responds to the dual objective of achiev-

ing a model with good pricing performance and high SDF maximal Sharpe ratio, while preventing idiosyn-

cratic variance to increase too much (e.g., Lettau and Pelger, 2020b). Therefore, in theory, there might be a

trade-off such that higher (lower) RP-weights imply lower (higher) pricing errors (e.g., RMSα) at the cost

of higher (lower) idiosyncratic variance (σε). We evaluate the trade-off for a range of RP-weights in Table

1. The results are clearcut: there is virtually no evidence of trade-off in choosing RP-PCA over PCA (in

line with the signal-strength analysis of Table A8).

Specifically, the idiosyncratic variance increases only slightly with the RP-weights, while the reduction

in the pricing errors is substantial (Panel A). However, the marginal gains in terms of pricing performance
17However, consistently with GX, we will show in simulation that these tests tend to underestimate the true number of factors

in finite samples. Hence, the evidence resulting from these tests needs to be taken with caution.
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obtained by using very large RP-weights are small. In fact, pricing-error statistics tend to stabilize for

ω ≥ 20, and we do not see additional benefits in using RP-weights higher than 20. This choice of the

RP-weight is further corroborated by the analysis of the maximal SRs (Panel B), which tend to level off

for ω ≥ 20. Moreover, the SR of the three-factor SDF obtained with ω = 20 is 0.45, while it drops to

0.26 using ω = −1.18 Such a wedge is almost equally due to F̂2 and F̂3 when moving from ω = −1 to

ω = 20. By adding F̂4 to the SDF, the SR further increases to 0.48 using RP-PCA with ω = 20, while is

unchanged using PCA. The SDF-weights of F̂4 display a qualitatively similar pattern to those of F̂3, but

F̂4’s contribution to the maximal SRs is smaller.

By looking at the SDF-weights the distinction between time-series and cross-sectional pricing factors

becomes apparent. The former do not enter the SDF, while the latter take non-zero weights and contribute

to price currency portfolios. Regardless of the RP-weight, two out of the six extracted factors are time-series

factors. However, using RP-PCA instead of PCA, the order of the factors changes. In fact, using PCA the

fourth and sixth factors are time-series factors, whereas with RP-PCA the fourth factor becomes a pricing

factor, so that the fifth and sixth factors are time-series factors.19 Nevertheless, the pricing contribution

of F̂4 appears small compared to that of the other two weak pricing factors (i.e., F̂2 and F̂3), which helps

explain why F̂4 is not selected by the statistical tests.

Taken together, this analysis suggests that the optimal latent-factor currency SDF should consist of

at least three (and potentially four) factors, and an RP-weight of 20 seems a plausible choice. Moreover,

RP-PCA appears to change materially the information spanned by the factors relative to PCA, in a way

that the estimated factors should be more efficiently estimated and closer to the ‘true’ pricing factors,

which complements the evidence uncovered by LP for equity portfolios. We test the robustness of these

results along several dimensions, including the RP-weight, the SDF dimension, and out-of-sample analysis

in Section 4.4. Next, we assign an economic interpretation to the pricing factors.
18Such difference becomes even starker if one compares the respective optimal SDFs; in fact, the SR of ϕ(F1−3) with ω = 20

is roughly three times higher than the SR of ϕ(F1−2) with ω = −1. We find similar evidence for the pricing errors. Thus,
RP-PCA achieves both lower pricing errors and higher SRs than PCA. However, as discussed later, this gain is smaller when
moving out of sample.

19Using RP-PCA, we obtain an SDF that consists only of factors with significant means. This resembles the robust SDF of
Kozak et al. (2020), KNS henceforth. However, KNS extract factors using PCA and then impose sparsity, by dropping factors
with means below a threshold. Moreover, factors’ SDF-weights shrink toward zero relative to the mean-variance weights. Thus,
both the factors and their weights differ from ours, as RP-PCA changes the construction of the factors and relies on the mean-
variance weights (Lettau and Pelger, 2020b). What is common between the two, however, is that both methods “overweight”
the information in the first moments.
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Risk Exposures (ψ) and Factors Interpretation. Thus far, we extracted the latent factors and de-

termined the structure of the currency SDF. Hence, we are ready to implement the three-pass method of

GX. However, note that the estimates of the risk exposures and of the latent factors’ prices of risk – the

first-two steps of the GX method – are already subsumed into the RP-PCA factor estimation. On the one

hand, the risk exposures, i.e., the currency portfolios’ loadings on the latent factors, are implicit in Eq. (8).

On the other hand, the point estimates of the latent factors’ prices of risk are simply given by the factors’

mean returns. This differs from GX as in their case factors are demeaned, and hence their risk prices are

inherently model dependent and need to be estimated using the second pass of the FMB procedure. Next,

we assess the portfolios’ risk exposures and factor-by-factor explained variations, and in doing so relate the

factors to the investment strategies.20

To begin with, we find that portfolios’ exposures to the first factor, F̂1t, are positive and roughly equal

across portfolios (not reported). This evidence is consistent with a level, strong factor interpretation. In

short, the first factor resembles the “Dollar” factor (e.g., Verdelhan, 2018). Figure 3 presents the exposures

(left panel) and explained variations (right panel) of the HML portfolios of the nine investment strategies to

the other estimated orthogonalized factors. To present the main findings, we focus on the HML portfolios

as they are arguably more interesting than individual portfolios. Moreover, in this way, we can visualize

the evidence for all strategies in a clear and concise manner.21

The second latent factor, F̂2t, retains a clear interpretation as it mostly relates to “Carry”. In fact,

the Carry spread portfolio displays a strong positive exposure to F̂2t, and the associated R2 is roughly 70

percent. Moreover, Carry portfolios’ exposures to this factor increase monotonically, as we move from P1

to P5. All other HML portfolios are, to some extent, positively exposed to F̂2t. In terms of R2s, F̂2t mostly

explains LYld, Term, LDC, and NFA spread portfolios, while it is substantially less relevant for momentum,
20As explained before, we center the empirical analysis around the orthogonalized latent factors. By doing this, we can also

easily determine the distinct contribution of each factor in explaining portfolio returns. Moreover, while we established that
the optimal SDF consists of three factors, we perform the analysis using all six latent factors (i.e., K = 6). In this way, we can
also establish which investment strategies mostly drive the factors left out of the optimal SDF.

21Given that the HML portfolios are not included in the sample of test assets, their risk exposures are derived ex-post from
the corner portfolio exposures of the nine investment strategies. Meanwhile, we evaluate the six factors’ individual contributions
to the nine HML portfolios’ explained variations using Eq. (7). Specifically, we estimate 9 × 6 OLS time-series regressions
(i.e. six regressions for each of the nine HML portfolios), as we add factors one by one; hence, we consider SDFs of increasing
dimension. In the Internet Appendix, Figures A1 and A2 present, respectively, the individual portfolios exposures (ψ̂n) and
explained variations (R2

n) by latent factor. We omit to plot portfolios’ exposures and explained variations associated with the
first factor, as it becomes easier to visually detect the exposures and marginal contributions of the other factors.
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value, and GAP strategies.

Conversely, F̂3t is tightly linked to momentum investment strategies, and especially with ST Mom. In

fact, ST Mom portfolios’ loadings on F̂3t increase from large negative (P1) to positive (P5) values, and the

pattern across portfolios is almost monotonic. Similarly, LT Mom corner portfolios load with opposite signs

on F̂3t. The GAP spread portfolio is also positively exposed to F̂3t. Notably, GAP portfolios’ exposures

to F̂3t strongly resemble those of LT Mom portfolios. Hence, we uncover a novel relation between price

momentum strategies and a macro strategy such as GAP.22

We can therefore conclude that the optimal currency SDF consists of at least a “Dollar” factor, a “Carry”

factor, and a “Momentum” factor. Interestingly, while all strategies’ spread portfolios are positively exposed

to the first two factors, most strategies are negatively exposed to the “Momentum” factor. Thus, in line

with Lustig et al. (2011) and Verdelhan (2018), we find that the currency SDF includes the “Dollar” and

“Carry” factors. However, we show that an additional “Momentum” factor should also feature in the SDF.

In this sense, our evidence more closely echoes that in Chernov et al. (2021), albeit uncovered using a

different methodology and currency universe. Next, we turn to analyze the remaining factors.

Of particular interest is F̂4t, given that it also displays a positive risk premium, and its inclusion in the

SDF increases somewhat the maximal SR and reduces the pricing errors. Moreover, it has an intuitively

clear interpretation of “long Value short (long-term) Momentum” factor, or simply “Value” factor. In fact,

it presents a close nexus with the Value spread portfolio. P1 and P5 Value portfolios display negative and

positive loadings on F̂4t, respectively. The loadings of the middle portfolios reveal a monotonically increasing

pattern. Meanwhile, it is also apparent the strong association between F̂4t and the LT Mom spread portfolio.

However, LT Mom portfolios display monotonic but decreasing exposures to F̂4t. Therefore, F̂4t could partly

be responsible for the negative correlation between (long-term) momentum and value strategies documented

in Table A4 and by Asness et al. (2013) for many other asset classes.23

Latent Factor Prices of Risk (γ). As a first cross-validation exercise, we check that the model-free

estimates of the latent factors’ prices of risk (i.e., the factor means) match those obtained using the second-
22This differs, to some extent, from the weak association between price and economic momentum strategies (Dahlquist and

Hasseltoft, 2020). At the same time, the remaining spread portfolios are mostly exposed negatively to F̂3t (LYld and NFA, in
particular).

23The F̂5t and F̂6t risk exposures, albeit relevant for some specific portfolios, display no clear patterns. Thus, it is hard to
assign a precise interpretation. This is not surprising exactly because they are time-series factors.
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pass of the GX method, i.e., the FMB estimates. We find that the two point estimates are equal (i.e.,

µ̂F = γ̂), which is reassuring as it shows that the no-arbitrage assumption is preserved (e.g., Cochrane,

2005). Specifically, for the selected SDF with ω = 20, the means (or prices of risk) of the pricing factors are

roughly µ̂F,1= 18.7, µ̂F,2= 11.3, and µ̂F,3= 9.2 percent per annum. Based on Newey-West standard errors,

µ̂F,1 is statistically significant at the five percent level, while the remaining two at the one percent level (see

Table A8). The estimates of the prices of risk of the latent factors are not particularly informative per se,

but they are a crucial input in the estimation of the risk premia of the nontradable factors, λgs. To obtain

a robust estimate of λg, it is important that the latent-factor model does a good job in pricing the test

assets. Only if this is the case, one can argue that the price of risk estimates of the candidate factors are

not affected by omitted-variable and measurement-error problems.

Test Assets’ Pricing Errors. The superior pricing performance of the RP-PCA model with ω = 20

relative to the PCA model already emerges in Table 1. To better appreciate the differences between these

two estimation methods, Figure 4 plots realized versus model-implied average portfolios’ excess returns. If

a model prices perfectly the cross section of portfolios’ returns, all data points lie on the 45 degree line.

We find that the pricing performance of the RP-PCA model based on the optimal three-factor SDF is very

accurate: the pricing errors are indeed small, and there is no tendency for the model to systematically

misprice portfolio returns. By inspecting the two-factor SDF evidence, the gain from adding an extra factor

clearly emerges. This reiterates the importance of including the “Momentum” latent factor to the currency

SDF, in addition to the “Dollar” and “Carry” latent factors. However, for a factor model to reflect the

‘true’ SDF, all cross-sectional pricing errors should be zero on average (or should have zero alphas).

A natural way to proceed would be to perform standard tests of the null hypothesis that the alphas

are jointly zero. However, these types of tests – such as for example the Gibbons-Ross-Shanken (GRS) test

– are based on the assumption that N is constant and T → ∞, while the RP-PCA estimator is derived

under the assumption that N , T → ∞. This implies that the covariance matrix no longer converges to

the population matrix, and the tests are biased even in large samples (e.g., see Lettau and Pelger, 2020b).

While some papers propose remedies to obtain consistent estimates of the covariance matrix (see Giglio

et al., 2021a for a detailed review), and hence address some of the drawbacks of the GRS test, we opt for

a simple multiple-testing approach. Our reasoning is as follows: the RP-PCA estimator assumes a factor
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model with zero alpha (or a zero-beta rate), so that each asset should have zero average pricing errors in

Eq. (1), and as a result the model would span the entire asset space. Hence, we perform N = 46 tests of the

null hypothesis H0: ε̄n = 0 for n = 1, . . . , N , and assess how many assets have significant average pricing

errors at the 5% significance level, as we vary the dimension of the SDF. The results are clear-cut. Using a

two-factor model we reject the null hypothesis in 14 cases (e.g., including the ST Mom corner portfolios),

while only one test asset (Value-P5) has a statistically significant average pricing error using the three-factor

model. With the four-factor model, none of the assets has significant average pricing errors. In short, a

four-factor model ensures that the average pricing errors are zero for all test assets, although we would

argue that the three-factor model likely achieves the same outcome.24

Finally, the comparison between left and right panels of Figure 4 highlights the lower pricing performance

of the PCA models. This is evident if one compares models’ with SDFs of equal size and, even more, if

one contrasts the evidence for the respective optimal SDFs (i.e., two- and three-factor SDFs for PCA and

RP-PCA, respectively). Overall, this analysis validates the use of ϕ(F1−3) based on RP-PCA to determine

the prices of risk of the candidate factors, to which we turn next.

4.3 Candidate Factor Risk Premia

Spanning Regressions. The last pass of the GX procedure consists of projecting each of the candidate

nontradable factors onto the space spanned by the estimated latent factors. We do this by estimating the

following regressions

gιjt = ajk + F̂1:ktη
> + ujkt, j = 1, . . . , J, k = 1, . . . ,K, t = 1, . . . , T, (15)

where gιjt is the AR(1) innovation of the selected j-th nontradable factor. We again perform the regression

analysis by expanding the set of latent factors, by adding one factor at a time, F̂1:kt, to single out their

marginal contributions in terms of R2s. We therefore run a total of J ×K time-series regressions. GX show

that the R2s help quantify the measurement errors in the nontradable factors. Specifically, a low (high) R2

24Recalling that the three-factor model only produces one significant average pricing error (with a p-value of 0.035) out of 46
assets, this can clearly arise just by chance (false discovery). For example, using a Bonferroni correction, none of the p-values
is smaller than the Bonferroni corrected p-value (5%/N = 0.0011), although this is known to be a conservative approach (e.g.,
Giglio et al., 2021b).
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implies a big (small) measurement error.25

Explained Variation (R2). Figure 5 shows the R2s associated with each of the three latent pricing

factors, grouped by type of candidate factor (we present the evidence using all six latent factors in Figure

A3 in the Internet Appendix). Within each group, candidate factors are sorted by the total R2s. We find

that the measurement-error problem is pervasive, as the R2s are generally low. At the same time, some

distinct patterns across types of candidate factors emerge. A few financial factors display R2s that exceed

10 percent; these factors mostly relate to financial and liquidity conditions, volatilities, and intermediaries’

leverage. For most of these factors, the overall R2s are driven by all three factors, albeit mainly by the

“Carry” factor. There are of course a few exceptions as is clearly the case for the global financial condition

index. (Its R2 is above 35 percent, and is mostly driven by F̂1, although the absolute contribution of F̂2 is

also large.)

In comparison with financial factors, the R2s of text-based factors are generally lower. Moreover, the

“Carry” factor is by far the most relevant factor, given that for many factors (especially for those with

higher R2s) it accounts for almost the entire R2s. The U.S. EMV factors’ R2s tend to be higher than those

associated with the U.S. EPU indices, with the exception of the global EPU index. Finally, turning to

macro factors, they present much lower R2s, at most in the range of 1-2 percent. The overall picture of the

drivers is more mixed. In fact, for a number of macro factors, the “Dollar” and “Momentum” latent factors

are the main determinants of the R2s.

Factor Exposures (η). Before inspecting the estimates of the η-exposures, we note that all latent

pricing factors are procyclical factors, as they command positive risk premia. In essence, procyclical factors

rise in good states of the world, while dropping in bad states. It follows that a candidate factor with a

positive (negative) η-exposure to a specific risk factor is procyclical (countercyclical) with respect to that

source of risk. Thus, the η-exposures are economically meaningful objects. However, it is important to note

that a candidate factor can present exposures of opposite signs to the individual pricing factors. Therefore,

only the risk premium of the candidate factor will reveal whether the factor is either procyclical (positive
25Eq. (15) is the empirical counterpart to Eq. (10). It differs as we include the intercept and do not use the factors in

deviation from their means. In this way, the R2s are more meaningful, and yet the η-exposure estimates are unchanged. While
the difference is negligible, when we compute the standard errors of the candidate factors’ prices of risk using the formula in
GX, we implement Eq. (10). Also note that, after having computed the factors’ AR(1) innovations, we then standardize them
such that the resulting factors have also unit variances, which helps compare the estimates across candidate factors.
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risk premium), countercyclical (negative risk premium), or acyclical (zero risk premium) with respect to

the state of the world.

Table 2 reports the estimates of the η-exposures of the factors. In the table, to help summarize the

evidence, we focus on the candidate factors with significant prices of risk, based on the optimal SDF (we

provide the evidence for all candidate factors in the Internet Appendix, Table A9). To start with, we note

that financial factors tend to have exposures of the same sign to the “Dollar” and “Carry” factors (the latter

are generally more precisely estimated). The signs of the η2 estimates are consistent with the usual sources

of risk inherent in currency carry strategies (e.g., liquidity and volatility risks) previously documented by the

literature; however some specific risk factors are novel (e.g., otic, move). Interestingly, the exposures to the

“Momentum” factor generally take opposite sign, but a smaller number of these exposures are statistically

significant. Put differently, this evidence suggests that carry and momentum strategies respond to some of

the same financial risk factors, but in opposite directions.26 Turning to the text-based factors, the evidence

is even more clearcut: none of the factors is exposed to the “Dollar” factor, while all factors are negatively

exposed to “Carry”. These factors’ exposures to “Momentum” again take opposite sign with respect to

“Carry”, but are much smaller in absolute size, and are statistically significant only in a few cases (see

Table A9).

Overall, we uncover a tight nexus between FX and other markets that is mainly channeled through the

“Carry” factor, lending support to the argument of Koijen et al. (2018, p. 198) that “. . . [carry] could be

a unifying concept that ties together many return predictors disjointly scattered across the literature from

many asset classes.” Finally, as expected, macro factors display only few significant η-exposures.

Return-Based Factors (Fη>). To complement the above analysis, we visually inspect some examples

of return-based factors. A return-based candidate factor is the original factor cleaned from measurement

error, and converted into a return factor using the η-exposures, being a linear combination of the latent

factors (F̂ η̂>). In practice, the original nontradable factor becomes tradable by investing in the underlying

currency portfolios.

Figure 6 shows selected candidate factors, transformed into return-based factors using SDFs of different

dimension. In this way, we can appreciate how the return-based factors’ evolutions and levels change as the
26Meanwhile, we observe that only few candidate factors present significant η-exposures to the other three factors, which

nevertheless are excluded from the optimal SDF.
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“Momentum” factor is added to the SDF. Top panels present two examples of factors (gepu and gvol) that

are exposed significantly to the “Carry” factor, but not to “Momentum”. Conversely, bottom panels refer

to factors (icap and gliq) that are exposed significantly to both “Carry” and “Momentum” factors (Table

A9), but with opposite and economically large estimates. It is evident that, for icap and gliq, by moving

from the two-factor to the three-factor SDF the factor mean returns drop significantly in absolute terms,

so that their risk premia eventually vanish. The in-depth analysis of the factors’ risk premia is presented

next.

Risk Premia. In what follows, we present the last piece of evidence resulting from the third pass of GX.

That is, we report the estimates of the risk premia of the nontradable candidate factors, free from both

the omitted-variable and measurement-error problems. As explained in Section 2 (and shown in Section

5 in simulation), one can also use the standard FMB two-pass procedure to obtain such estimates but,

crucially, only if all relevant control factors are included in the SDF, and factors are measured without

noise. The evidence reported so far clearly shows that the measurement-error problem is material. The

omitted-variable problem is also likely to be important, and can therefore add to the measurement-error

problem. To shed light on the severity of both problems, we first estimate factor risk premia by means of

the standard FMB two-pass method.

FMB Two-Pass Method. We rely on univariate SDFs, which consist of a constant and the candidate

factor at hand. Hence, for each candidate factor gjt, we specify the SDF as ϕt = 1− gιjtbj . We intentionally

omit from ϕt other potentially relevant risk factors, ft, that could enter the SDF along with the candidate

factor, gt. In this way, the omitted-variable bias can manifest in its full strength. We find that over 90 out

of the 133 candidate factors present estimates of the prices of risk that are statistically significant at least at

the 10 percent level (of which more than half are the significant macro factors). Thus, the FMB estimates

seem to point to a very large number of significant factors, i.e., a “factor zoo”, for FX returns.

GX Three-Pass Method. Table 3 presents the factor risk-premium estimates obtained using the aug-

mented three-pass method implemented with baseline RP-weight, ω = 20. Along with the risk-premium

estimates (λg), and the associated standard errors (se), the table reports the candidate factors’ Sharpe ratios

(SR), to better evaluate their economic relevance. It also presents the p-value for the Wald test that the

candidate factor is weak (pval), where the null hypothesis is that the factor is weak, i.e., η = 0. We refer to
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Giglio and Xiu (2021) for details on the computation of risk-premium standard errors and the weak-factor

test p-value. A full analysis of the weak-factor problem is carried out later in Section 6.

Before turning to the individual factor estimates, we note that the three-pass absolute risk-premium

estimates are substantially lower than the FMB ones. In Table 3, this finding holds to a large extent

regardless of the specific SDF considered. Too high estimates of the prices of risk are likely to be caused

especially by the measurement-error problem. In fact, when a factor is measured with noise, an attenuation

bias characterizes the estimates of the portfolios’ risk exposures to that factor in the first pass of FMB. This

bias in turn leads to inflated prices of risk estimates in the second pass (e.g., Adrian et al., 2014). A close

look at the table suggests that the problem seems to be less relevant for financial than for text-based and

macro factors.

Based on the optimal SDF, ϕ(F1−3), we find that 42 out of the 133 candidate factors have statistically

significant risk premia, which is a much shorter list than that uncovered using FMB. Among these, we find

that the financial factors with significant risk premia are 11 out of 23. The global volatility factor of Menkhoff

et al. (2012a) singles out, as its risk premium is large and precisely estimated. The systematic FX liquidity

measure of Karnaukh et al. (2015) is also priced, while the global liquidity measure of Menkhoff et al.

(2012a) is not. Moreover, a number of factors relating to liquidity (noise and psliq) and volatility (move,

vxo, and eqrv) conditions in the U.S. bond and equity markets turn out to have statistically significant risk

premia. These factors highlight the tight link between FX returns and other markets. Interestingly, the

quantity-based TIC flow measure (otic), proxying for foreign central banks’ demand for US Treasuries, is

positive and significant. Thus, it is a procyclical factor, possibly suggesting that foreign central banks tend

to build up their reserves in good states of the world. Global financial conditions (gfc) also seem to matter

for FX returns.

Turning to the text-based factors, 14 out of 30 are priced factors. In comparison with financial factors,

the number of significant text-based factors drops even more substantially relative to FMB. The global

EPU index of Baker et al. (2016) stands out as its risk premium is the highest (in absolute terms) and the

most precisely estimated. Conversely, the U.S. EPU indices are not priced. At the same time, several EMV

indicators display statistically significant negative risk premia. Some of the category-specific EMV trackers

are even more precisely estimated than the overall index; namely, those relating to the macroeconomy and
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monetary policy (i.e., emv mout, emv mqnt, and emv mp).

To conclude the list of factors, we find that only a few macro factors are (weakly) priced in the cross

section of currency returns; specifically, 17 out of 80 macro factors, stemming from six distinct macro factors

measured at different frequencies. In particular, the world unemployment growth rate specified in differences

versus the U.S. (unew/us) displays a negative risk premium, at many frequencies. The world industrial

production factor also presents a statistically significant negative risk premium, especially when specified in

differences versus the U.S. (ipw/us) at the quarterly frequency. The risk premium of world inflation (cpiw)

is also negative. Consumption growth risk is negative and weakly significant (cus). However, unlike the

other types of factors, several of the signs of the macro risk premia seem not to align with theoretical priors

(e.g., Lustig and Verdelhan, 2007; Zviadadze, 2017).27

The absolute magnitude of macro risk premia is lower, on average, than that of text-based and financial

factors with significant risk premia. Conversely, macro factors’ SRs tend to be higher, especially those

associated with unemployment. However, it is also evident that most of the macro factors are weak factors,

according to the GX test (pval).

4.4 Robustness and Stability Analysis

To complete the baseline analysis, we perform a number of robustness checks, which are presented in detail

in the Internet Appendix (Section V.1). The main results can be summarized as follows. First, we show that

selecting the optimal SDF is key to obtain precise estimates of nontradable factors currency risk premia.

In particular, the omission of relevant pricing factors (i.e., F̂3) is far more harmful than the addition of less

relevant ones (i.e., F̂4). Second, the choice among reasonably high values of the RP-weight leads to small

differences in the risk-premium estimates. Third, by including the HML portfolios to the panel of currency

portfolios, some of the estimated latent factors better explain some of the high risk-premium currency

strategies (e.g., GAP), but this information does not affect much the structure of the SDF, so that the

method essentially selects the same relevant candidate risk factors as in the baseline results.

We then assess the stability of the SDF in both out-of-sample and in-sample time-varying settings, and

provide some time-varying candidate factor risk-premium estimates (Section V.2). The in-sample results
27For example, considering the prospective of the U.S. investor, consumption growth risk is high in good states of the world

and low in bad states. As a result, it should command a positive premium, while it turns out to be negative.
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are largely confirmed out of sample. However, the performance of RP-PCA deteriorates out of sample, while

PCA displays a much higher degree of stability. Therefore, there seems to be still a sizable gain in choosing

RP-PCA over PCA, but this gain shrinks out of sample. Moreover, the out-of-sample evidence suggests

more clearly a model with three factors, as the contribution of the fourth factor to the maximal Sharpe

ratio is essentially nil. The factor structure appears rather stable over time, as indicated for example by the

fact that the GX and O tests consistently point to a three-factor model throughout our recursive analysis

(based on an initial window of ten years). Nevertheless, the candidate factors’ risk-premium estimates do

not show significant degrees of time variation, as long as the estimation window is sufficiently long, and the

SDF includes at least the first three latent factors. Therefore, the unconditional three-pass model, if well

specified, provides a satisfactory description of dynamically rebalanced FX portfolio returns.

5 Simulation Analysis

In this section, we study the finite-sample performance of the three-pass inference using Monte Carlo

simulations. We also assess how the augmented three-pass estimator performs and compares in simulation

with the two-pass estimator. Importantly, we design the simulations to capture the key features of FX

returns. By doing so, we essentially tackle two key questions. First, is the three-pass method reliable in

finite samples, with N and T equal to the dimension of our FX portfolio returns? Second, are the omitted-

variable and measurement-error problems relevant for pricing currency portfolio returns, and hence is the

method desirable for pricing currency risks?

Next we briefly describe the simulation exercise, and summarize the main findings. We present the

fully-fledged simulation analysis in the Internet Appendix (Section VI).

Simulation Method. We set up the simulation exercise following closely Giglio and Xiu (2021), with the

only relevant methodological difference due to the use of RP-PCA to extract the latent factors that drive

the data generating process (DGP). However, we tailor the calibration to the specific features of the FX

market. This is important because, although GX show a good performance of the three-pass estimator in

simulation also for combinations of N and T that resemble the one used in our study, it is not obvious

that the estimator performs the same in our case. The factor structures driving equity and FX portfolio
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returns may well differ, and this can in turn weigh on the estimator performance.28 Specifically, in the

simulations we consider a four-factor DGP consisting of the de-noised Dollar, Carry, ST Mom, and Value

tradable factors, which most closely approximate the strong latent factor (F̂1) and the three weak latent

factors with significant risk premia (F̂2, F̂3, and F̂4) documented in the empirical analysis. In essence, this

DGP can be interpreted as a reduced-form model for FX returns. To remove the noise from the observed

tradable factors, we use the three-pass estimator with four latent factors, extracted using RP-PCA with

ω = 20. These four de-noised factors should span the entire SDF (as we know from Section 4.2 that four

latent factors do so and generate zero average pricing errors for all 46 assets), and hence the simulated asset

returns should mirror the properties of the observed ones. This is crucial to recover the true risk premia

via the three-pass estimator.

Next, as in GX, we assume that we may not observe all four factors but only noisy versions of them, plus a

potentially spurious candidate nontradable factor. In this way, both the omitted-variable and measurement-

error problems can manifest entirely. To begin with, we calibrate the candidate factor to U.S. industrial

production (ipus) similarly to GX, which according to our three-pass estimates qualifies as a spurious factor

also for FX returns. However, we then repeat the analysis replacing ipus with either gvol or icap (the global

volatility of Menkhoff et al., 2012a, and the intermediaries’ capital ratio of He et al., 2017, respectively).

These two financial factors are of particular interest as they exemplify non-spurious factors whose risk

premia estimates are affected to different extents by the dimension of the SDF considered (as is evident

from Section 4.3, Tables 2, 3 and A9). Taken together, these three candidate factors capture the properties

of the nontradable factors considered in the empirical analysis.

Finally, to evaluate the performance of the three-pass estimator, we estimate the risk premia of the noisy

tradable and nontradable factors by applying the three-pass method to the simulated data. We use not

only SDFs of expanding dimensions, but also with different RP-weights (this latter analysis is not in GX, as

they are concerned only with the case of PCA). However, to be clear, the ultimate goal of this simulation
28In fact, the cross section of FX test assets is relatively small, and the underlying data are driven by fewer factors, compared

to the case of equities, studied for example by GX. At least until recently, the benchmark model for FX returns has been the
two-factor model of Lustig et al. (2011), consisting of a Dollar and a Carry factor. Our analysis, however, suggests that with a
reasonably large N (at least much larger than the small cross sections typically used so far in the FX literature), a two-factor
SDF is likely to omit relevant sources of FX risk, and that at least three and potentially four latent factors are required to
achieve full spanning of the entire SDF and robust estimates of risk premia. Therefore, in larger cross sections, not only the
measurement-error problem, but also the omitted-variable problem is likely to be relevant for FX returns.
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exercise is not a comparison of the RP-PCA and PCA three-pass estimators. Rather, we are interested in

assessing the performance of the augmented three-pass and two-pass estimators in pricing currency returns,

i.e., when the DGP and the associated parameters driving the simulations match the properties of the FX

portfolio returns studied in the empirical analysis. In this way, we can assess the finite-sample performance

of the three-pass estimator and hence its reliability, but also shed light on the relevance of the issues of

omitted factors and measurement error in the factors driving FX returns.

Simulation Results. The simulation analysis uncovers a number of important insights that lend support

to the validity of our empirical analysis. The main results can be summarized as follows. To begin with,

regarding the calibration (Table A14), we find that using the three-pass estimator applied to models includ-

ing four factors, extracted with baseline ω = 20, we obtain risk-premium estimates that are not statistically

different from the factor averages. At the same time, the estimates are rather stable when the fifth and

sixth factors are included into the SDF, consistent with full spanning of the entire SDF. Moreover, applying

the three-pass estimator to gvol, icap, and ipus to recover their true premia, it clearly emerges that these

factors display substantially different behaviors and premia.

Simulation Accuracy and Factor Structure Recovery. Turning to the simulations, we first verify

the accuracy of the simulated asset returns, to ensure that the returns generated from the four-factor

reduced-form model closely match the average returns, variances, and Sharpe ratios of the observed returns,

as well as the cross-sectional standard deviation of observed average returns (Figure A11). This is an

important check to ensure the reduced-form SDF is calibrated to generate artificial data that capture

adequately the behavior of FX portfolio returns and spans the entire space of asset returns. We then show

that, despite the relatively small sample size N , we can to a large extent recover in simulation the true

factor structure of the return data (Tables A15 and A16). In fact, the analysis of the generalized correlations

and Sharpe ratios point to an accurate recovery of the factor structure. At the same time, the simulations

confirm the tendency to underestimate the true number of factors in finite samples on the basis of the

statistical tests used in this paper, which is consistent with the evidence previously documented by GX. We

find that this problem is attenuated, albeit not eliminated, by estimating the factors via RP-PCA, as the

fourth latent pricing factor remains hard to detect. While an exact recovery of the factor structure is in itself

important, the ultimate goal remains the ability of the three-pass estimator to recover the risk-premium
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estimates of the candidate factors in finite samples.

Three-Pass Estimator. We then turn to the estimation of the candidate factor risk premia using the

three-pass method, which establishes two important results. First, the augmented three-pass estimator

recovers the true tradable and nontradable factor risk premia in simulation (Table A17). Second, the GX

central-limit result holds, which can be seen by the fact that the histograms of the bias in risk-premium

estimates standardized by the asymptotic standard error match the standard normal distribution (Figures

A12–A18). These results show that the augmented three-pass estimator is highly reliable also in finite

samples that match the properties of our FX portfolio returns. Moreover, we note that the recovery of the

true risk premia shows the rotation-invariance result – a general result shown by GX that is at the core of

the three-pass estimator (see Section 2.1.2) – in our setting. This is because the asset-return DGP is driven

by the de-noised tradable factors, but the risk premia are estimated via the three-pass method and, hence,

as linear combinations of the latent factor risk premia. Furthermore, we find that for most factors we can

recover the true risk premia even using parsimonious factor models (especially for higher RP-weights), but

for some factors it is beneficial to use models that include more latent factors. Using five-factor models

(thus an additional factor than in the true model), we can verify the central-limit results for all candidate

factors. Thus, our simulation results are in line with those of GX and, notably, arise in a slightly different

setting that matches the properties of FX portfolio returns. As a result, they lend additional support to

the reliability of the three-pass estimator also in finite samples that match our data.

Two-Pass Estimator. The two-pass estimator analysis on simulated data shows that the omitted-

variable problem can be material, leading to distorted risk-premium estimates (Table A18, and Figures

A19-A21). The two-pass estimator recovers the true premia only if the SDF is correctly specified. In

some cases, even if none of the relevant factors are omitted from the SDF, and yet some of the factors are

measured with noise, we cannot retrieve the true risk premia of all factors. Therefore, both the omitted-

variable and measurement-error problems manifest clearly in simulation, making the use of the three-pass

estimator desirable for the estimation of currency investment-strategy risk premia.

Overall, the simulation results demonstrate the good performance of the three-pass estimator also in a

currency setting. Moreover, they lend support to the argument made in Section 2: that is, omitting relevant

pricing factors from the currency SDF, and/or measuring the factors with noise, can severely distort the
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two-pass risk-premium estimates. Put simply, the three-pass estimator appears to be both reliable and

desirable for modeling FX portfolio returns, and hence represents a valuable method to unveil the sources

of the risk-return trade-off in currency investment strategies.

6 Weak Candidate Factor Analysis

The three-pass procedure of GX tackles both the omitted-variable and measurement-error problems in the

estimation of factor risk premia. However, the method as such – regardless of whether factors are extracted

via PCA or RP-PCA – is not designed to explicitly address the issue of weak candidate factors. The weak-

factor problem manifests if only a subset of the test assets is exposed to the candidate factor, and this can

in turn disrupt the inference on the candidate factor’s risk premium. Importantly, the strength of a factor is

not an inherent property of the factor, as it also depends on the cross section of assets used in the analysis

(Giglio et al., 2021c). Hence, a factor is not strong or weak in absolute terms, but relative to the cross

section of test assets used by the researcher.

It also follows that a factor is more likely to be weak in large cross sections of test assets. At the same

time, large cross sections are a prerequisite for the three-pass estimator to effectively address the omitted-

variable problem, as the extracted latent factors and hence the SDF should span all relevant sources of

risk. While the cross section of FX portfolios is small relative to, for example, equities, the problem of

weak factors can still manifest to different degrees. For instance, it might weigh on the inference on macro

factor risk premia, and thus can potentially help explain the disconnect between macro factors and currency

portfolio returns, which emerges from our analysis. These considerations may also affect the risk-premium

estimates of some financial and text-based factors, if some of these factors are weak. The previous analysis

on the η-exposures shows, for example, that a few candidate factors have significant exposures only to a

subset of the SDF, i.e., not to all pricing factors.

In light of these considerations, in what follows we assess the robustness of the candidate factors risk-

premium estimates using the supervised principal component analysis (SPCA) recently proposed by Giglio

et al. (2021c), GXZ henceforth. This novel method is designed to explicitly tackle the omitted-variable and

measurement-error problems also accounting for the possibility that the candidate factor of interest is weak.
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SPCA Estimator. Intuitively, the SPCA procedure delivers robust estimates of a weak factor’s risk

premium because it shrinks and adapts the assets’ cross section using the information contained in the

factor. By doing so, the factor can turn into a stronger factor with respect to the new, tailored cross section

of assets, making the inference on the factor’s risk premium more precise. Put simply, by using the factor-

by-factor SPCA estimator, the SDF used to price a candidate factor is pinned down by the factor itself,

through supervised selections of the relevant test assets. As a consequence, unlike the original three-pass

method, the SPCA estimator does not hinge necessarily on a unique SDF common to all candidate factors,

but potentially on several SDFs. This suggests that SPCA is not particularly useful to shed light on the

properties of the currency SDF (the first goal of this study), but can be a useful tool to estimate the risk

premia of the candidate factors (the second goal of the study), in the presence of weak factors.

The SPCA estimator relies on the two tuning parameters q and k, which depend on the candidate factor

of interest. The former parameter determines how many test assets we use for factor extraction at each

iteration, while the latter governs the number of iterations or, equivalently, the number of extracted latent

factors. Both parameters are assumed to be known by the researcher, but GXZ show that they can be jointly

determined in advance by repeatingM times a K-fold cross-validation exercise. For a given candidate factor,

the exercise essentially consists of constructing a grid of out-of-sample R2s for different combinations of q

and k.29 Notably, the R2 denotes the fraction of the factor’s variance explained out-of-sample by the return

of the hedging portfolio, whereby the portfolio weights are constructed for a given combination of q and k.

We then select the pair {q, k} that yields the highest cross-validation out-of-sample R2 for the candidate

factor under consideration.

Before turning to the empirical results, two observations are in order. First, if the number of selected test

assets qN equals the overall number of test assets N (i.e., there is no asset selection), then the SPCA factor

risk-premium estimates are identical to the standard three-pass estimates (i.e., RP-PCA with ω = −1).

Therefore, for these estimates to be free from omitted-variable bias, the usual argument applies that the

SDF needs to include enough latent factors to fully span the assets’ space. Second, in the above sketch of the

SPCA algorithm, the analysis is carried out for one candidate factor at a time, so that the asset selection is
29Specifically, for each m-repetition, we average over the grids obtained for the K possible permutations of training and

testing periods. We repeat this procedure M times, and construct the final grid of out-of-sample R2s by averaging over the M
cross-validation grids. We refer to Section VII, in the Internet Appendix, for a more detailed description of the SPCA estimator
and for a comprehensive analysis of the estimation results.
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only driven by the factor at hand. By performing the SPCA estimation factor by factor, the risk-premium

estimates are consistent and, importantly, we can determine which assets are relevant for which factors.

However, factor risk premia can also be estimated via SPCA using more candidate factors simultaneously.

In such joint estimation, the selection of the assets is driven simultaneously by a set that includes multiple

(potentially all) candidate factors. Specifically, assets are sorted by the maximum correlation with any

of the candidate factors in the set of factors considered. While both the one-by-one and the joint factor

SPCA estimators are consistent, the joint estimation is required to conduct inference on the risk-premium

estimates (see Giglio et al., 2021c). Intuitively, this is because, for the central-limit-theorem assumptions to

hold, the candidate factors are required to have exposures to the entire SDF, which is a far more stringent

requirement to be satisfied than is needed for consistency. Next, we turn first to present the risk-premium

estimates obtained using SPCA, and then shed light on the identities of the most relevant assets for selected

candidate factors.

SPCA Results. While the main focus of our analysis pertains to the estimation of nontradable factor risk

premia, it is convenient to look first at the case of the tradable factors (i.e., the Dollar factor, and the nine

HML factors associated with the currency investment strategies). This is because, for the tradable factors,

we can benchmark the SPCA estimates to their sample averages, or model-free risk-premium estimates, and

hence we can assess the performance of the SPCA estimator. The main results are displayed in Table A19,

and can be summarized as follows. First, the factor-by-factor analysis (Panel A) shows that SPCA delivers

risk-premium estimates that are close to the model-free premia for all tradable factors. For the HML factors,

such close proximity of the two types of estimates is favored by the asset selection (qN = 10), coupled with

SDFs including a sufficient number of latent factors (k ≈ 8). Second, the joint analysis (Panel B) reveals

that, using a ten-factor model, we can recover the model-free estimates of the risk premia for all tradable

factors, and there is no substantial gain in using models including more latent factors. Overall, these findings

suggest that SPCA is able to recover the factor averages, and a ten-factor model is a reasonable choice to

carry out the risk-premium inference.

Table A20 presents the SPCA risk-premium estimates for the nontradable factors. In the first columns,

the table shows the results of the cross-validation exercise. To start with, we use this evidence to distinguish

between factors with positive and negative out-of-sample R2s. We only report the estimation results for
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factors with positive R2s, as a negative R2 suggests that we cannot hedge that risk factor, and hence its

risk-premium estimate is not informative (this is one reason why some factors appear in Table 3 but not in

Table A20). Thus, the cross-validation exercise allows us to further filter out factors that cannot be hedged

out of sample by the currency assets. This criterion can be seen as an additional way to further discern

relevant candidate factors from non-relevant ones. This means that, while SPCA gives us the best chance

to detect candidate factors with a non-zero risk premium by allowing for weak factors, it can also reduce

the number of relevant factors due to this additional constraint.

While we present the detailed results in Section VII.2.1 in the Internet Appendix, here we note the

following. Above all, the SPCA evidence echoes that uncovered earlier using the three-pass estimator,

suggesting essentially no relationship between the macro factors and FX portfolios. But, importantly, we

can now rule out that the disconnect is imputable to the fact that macro factors are weak factors in the

cross section of FX portfolio returns; in fact, we find no evidence of asset selection, and the R2s are mostly

negative, especially as the models include an increasing number of latent factors, k. On the contrary,

many financial and text-based factors display positive R2s, and a few factors also display asset selection.

However, for almost all candidate factors, the cross-validation exercise points to SDFs including a small

number of factors (with k being typically less than three), regardless of whether there is asset selection or

not. Therefore, we need to turn to the joint estimation to carry out the risk-premium inference. In doing

so, we find that not all factors with positive cross-validation out-of-sample R2s have significant risk premia

(right columns of Table A20, Joint). This leaves us with a relatively small set of relevant nontradable

factors, whose risk-premium estimates are largely consistent with our three-pass baseline estimates.30

Asset Selection. Another clear benefit of using SPCA is the asset selection, which provides valuable

information by zooming into the identities of the selected assets or, in case of no selection, of the most

correlated assets with the candidate factor of interest. Indeed, by doing this, we can establish a link

among investment strategies (Table A21 connects tradable factors to the portfolios), and between the

macro-financial risks and the investment strategies (Tables A22-A23 link relevant nontradable factors to

the portfolios). To start with, we note that the procedure works particularly well. For the tradable factors,
30Specifically, the financial factors with significant premia are: otic, icap, gfc, gvol, psliq, move, vxo, and eqrv. Then, among

the text-based factors, gepu and gepu ppp, the emv tracker and some of its subcategories (i.e., emv mout, emv inf, emv com,
emv ir, and emv mp) are significant. Only the factor ipw/us(q), which measures the difference between world and U.S. quarterly
growth rates in industrial production, is significant among the macro factors.
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the results in Table A21 show that SPCA mostly relies on the information contained in the strategy corner

portfolios to price the associated HML factor. Moreover, there is a close association between Carry and

the ‘usual suspects’ (essentially the same strategies exposed to F̂2 in the three-pass analysis), while Carry

is weakly related to Mom (both ST and LT), Value, and GAP HML factors; hence these strategies largely

reflect distinct sources of risk. The assets selected by SPCA make sense economically also for the nontradable

factors. For example, otic (a measure of foreign central banks’ accumulation of U.S. Treasury securities)

mostly correlates with global imbalances strategies (e.g., NFA-P5), and ipw/us appears to be tightly linked

to the high-risk GAP portfolio.

The SPCA procedure also highlights some relevant nontradable factors for ST Mom, Value, and GAP

strategies. This is a useful finding, as it is notoriously hard to connect these strategies with observed

measures of macro-financial risks.31 However, a larger number of nontradable factors relate to Carry, and

hence to carry-related strategies. These absolute correlations provide a first means to detect the most

relevant factors.

Summing up, we find that the nontradable factor risk-premium estimates are largely robust to the

estimation method used. In fact, the estimates obtained with SPCA are consistent with our baseline three-

pass estimates. Above all, this additional analysis confirms the disconnect between macro factors and

currency portfolios. We can now also exclude that the disconnect is imputable to a weak-factor problem.

Moreover, the cross-validation exercise allows us to further filter out factors that cannot be hedged out

of sample by the currency assets, shrinking further the list of relevant candidate factors.32 Finally, the

asset selection (which is at the core of the SPCA estimator) proves to be a valuable tool to draw a better

connection between nontradable factors and investment strategies, as well as among investment strategies.
31For example, focusing on the high-risk portfolios, vxo and icap seem to capture relevant sources of risk for Value, while

gepu and eqrv emerge as important factors for ST Mom (see Figure A25 in the Internet Appendix).
32We have seen how, starting from 133 factors, the number of statistically significant risk premia reduces from over 90 using

the FMB procedure to less than 50 using the three pass-method. This is due to allowing for omitted-variable and measurement-
error biases. Using SPCA, where we further require a positive cross-validation out-of-sample R2, the number of significant
risk premia further drops to 17, which is only 13% of the initial list of 133 factors. It is conceivable that allowing also for
multiple-hypothesis testing bias would further reduce this number. The role of this kind of bias in the context of the three-pass
procedure and SPCA requires further study, along the lines of Harvey et al. (2016) and Giglio et al. (2021b), which we leave to
future research.
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7 Concluding Remarks

In this paper, we revisit the macro-financial sources of the risk-return trade-off inherent in currency invest-

ment strategies through the lenses of the three-pass method of Giglio and Xiu (2021), which we combine

with the Risk-Premium PCA method of Lettau and Pelger (2020a,b). This approach allows us to shed light

on the optimal currency SDF and to provide estimates of the risk premia of a large number of nontradable

factors, while allowing for both omitted-variable and measurement-error biases.

We find that, using RP-PCA to extract the latent factors, the optimal currency pricing kernel includes at

least three latent factors: a strong U.S. “Dollar” level factor, and two weak, high Sharpe ratio “Carry” and

“Momentum” slope factors. We show that this pricing kernel delivers a reasonably high maximal Sharpe

ratio and low pricing errors, while the explained systematic variation of the portfolios is comparable to

PCA. At the same time, using standard PCA, the “Momentum” factor would be omitted from the pricing

kernel, due to its low time-series “signal strength”. Using RP-PCA, there is only feeble evidence in favor of

a fourth weak pricing factor, which relates to “Value”. However, a fourth factor can hardly be recovered in

an out-of-sample setting.

Based on this optimal pricing kernel, we then show that a large portion of our long list of nontradable

factors is due to noise. This helps explain why the standard two-pass FMB method can deliver inflated

estimates of nontradable factor prices of risk. In particular, we find that this problem is pervasive for macro

factors, while it is more contained for some financial and text-based factors. Moreover, we document that

“Carry” is by far the most relevant factor for financial and text-based factors. However, the omission of the

“Momentum” factor can lead to distorted risk-premium estimates. In fact, many financial factors display

significant exposures to both the “Carry” and “Momentum” factors, but of opposite signs.

Overall, we find that a small fraction of nontradable – mostly financial and text-based – factors are

indeed priced in currency returns. Some of the nontradable factors previously uncovered by the literature

turn out to be less or even not relevant, while other factors (i.e., which were not previously related to

currency returns) appear to be relevant, disclosing a tight link between FX and other markets, mainly

channeled through the “Carry” factor. In particular, the results highlight the relevance of several volatility

(e.g., the Global FX volatility factor of Menkhoff et al., 2012a) and uncertainty (e.g., the Global EPU

index of Baker et al., 2016) measures, and of some liquidity indicators. Conversely, the results confirm a
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substantial disconnect between currency returns and macro factors, especially as both sources of bias are

accounted for. Such disconnect manifests even if we use estimators that account for the possibility that

macro factors are weak factors in the FX cross section.

Taken together, the evidence uncovered contributes to our understanding of the risk-return trade-offs

inherent in currency investment strategy returns. Moreover, our results highlight the empirical relevance

of achieving robust risk-premium estimates, which takes central stage in the current asset pricing research

agenda. In particular, we make some progress in taming the FX “factor zoo” which, albeit in its infancy

compared to other markets, is rapidly expanding. Finally, our finding that the optimal currency SDF com-

prises at least three factors with different strengths and risk premia could guide future theoretical research

in international macro-finance with the ultimate objective of deriving currency models that rationalize such

properties from first principles.
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A Appendix: Nontradable Candidate Factors

Next, we provide a brief overview of the candidate factors and motivations for considering them. We present

the detailed list and description of the factors in the Internet Appendix (Section III, Tables A5-A7).

Financial Factors. This category includes a wide range of financial factors that either represent key

risks specific to the FX market or are notoriously relevant across asset classes. To start with, we focus

on FX risk factors that feature in the FX literature, such as the global FX volatility and liquidity factors

of Menkhoff et al. (2012a), and the systematic FX liquidity measure of Karnaukh et al. (2015). We then

revisit the role of global risk factors that were already related to currency returns; for example, we consider

the TED spread, a measure of funding liquidity risk (e.g., Brunnermeier et al., 2009); the VIX index, i.e.,

the so called “fear gauge”, an indicator of global risk aversion (e.g., Ranaldo and Söderlind, 2010)33; the

S&P500 monthly realized volatility; and the financial intermediaries’ capital ratio, capturing intermediaries’

prominent role in determining prices, given that they act as marginal investors in many asset classes (e.g.,

Adrian et al., 2014; Gabaix and Maggiori, 2015; He et al., 2017).34

Along with these factors, we consider other factors that notoriously drive risk premia of many asset

classes but that – to our knowledge – have received little attention in the FX context, despite they are

likely to be highly relevant also for FX returns. These factors include the liquidity measure of Pastor and

Stambaugh (2003), a proxy for liquidity risk in the equity home market of the U.S. investor; the noise

measure developed by Hu et al. (2013), a broad measure of liquidity conditions in the U.S. Treasury bond

market that relates to the availability of arbitrage capital; the Merrill Lynch Option Volatility Estimate

(MOVE) Index, a “barometer” of the U.S. Treasury market conditions, often referred to as “the VIX for

Bonds”; Treasury International Capital data on official flows into U.S. Treasuries, a quantity-based factor,

capturing foreign central banks’ inelastic demand for Treasuries, which can affect Treasuries yields (e.g.,

Krishnamurthy and Vissing-Jorgensen, 2012) and currency returns (Gourinchas et al., 2020; Greenwood

et al., 2020); the spread between BAA and AAA rated bond yields, a measure of credit risk in the U.S.

corporate bond market, which helps price both the cross section of bond and equity returns (Fama and

French, 1993); the Libor-OIS and the OIS-TBill spreads, the two components of the TED spread that
33As is usual in the literature (e.g., Koijen et al., 2018), we use the implied volatility of S&P100, i.e., VXO, as its sample

starts earlier than VIX, and the two measures are strongly related. (The results are similar using VIX.)
34In the empirical analysis, we use the measure of He et al. (2017) as it is available at a monthly frequency.
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are informative about tensions in the U.S. interbank market and flight to liquidity, respectively (Caballero

et al., 2008); the realized volatility of crude oil prices; the global financial cycle factor of Miranda-Agrippino

and Rey (2020), a broad-wide measure of global financial conditions; and the three latent macro/financial

factors constructed by Jurado et al. (2015). Evidently, albeit the list is by no means exhaustive, it is long

and diverse. Therefore, taken together, these factors should capture multiple sources of financial risks that

pertain to a wide range of asset classes.

Macro Factors. This category consists of macroeconomic factors that serve as proxies for U.S. and world

business cycle risks. Given that no macroeconomic factor alone is sufficient to fully capture the economic

environment of a country, we take an agnostic approach and explore many widely used macroeconomic

factors.35 In fact, while there is a general consensus on how to measure inflation, this is less the case for

real activity and consumption risk.36 At the same time, the empirical analysis is conducted at a monthly

frequency, which restricts somewhat the set of macro variables available.

Specifically, for the U.S., we consider the industrial production index, the Chicago Fed National Activity

Index (CFNAI), the consumer price index, personal consumption expenditures, non-farm payrolls, and the

unemployment rate. These macro variables are regarded as potential financial market movers and, for this

reason, featured over the years in the asset pricing literature. Thus, they should capture adequately the

macro risks in the home country of the representative investor. For most of these variables, however, there

is no agreement on the frequency of their measurement. We do not take a stance and measure the variables

as monthly, quarterly and yearly growth rates. For these frequencies, we also employ exponential moving

averages. In this way, we reduce the likelihood that a macro factor is not selected as pricing factor due to

its measurement.37

While U.S. data are also informative about global macroeconomic disturbances (Zviadadze, 2017), given
35Anecdotal evidence suggests that traders tend to look at simple indicators, rather than at economic indices. Moreover, our

method is implemented on each indicator in isolation. Hence, we do not aggregate or extract common factors from these macro
factors, rather use them one by one.

36In theory, consumption growth risk is arguably the most relevant macro fundamental for asset prices. However, measuring
consumption growth risk is not trivial, as its definition varies with the types of agents and goods considered. For example,
Malloy et al. (2009), Gonzalez-Urteaga and Rubio (2016), and Giglio and Xiu (2021) opt to use an aggregate measure of U.S.
consumption growth risk, which has also the pros of being available at a monthly frequency.

37Regardless of the choice of the specific variable, measures of economic activity often require the estimation of unobserved
equilibrium objects (like the natural rate of employment or potential output), which are notoriously hard to quantify, and are
inherently model and hence also sample dependent. For this reason, we opt to use growth rates that are not contaminated by
judgment and/or estimation error, being readily available to the investors.

45

Electronic copy available at: https://ssrn.com/abstract=3796290



the prominent role of the U.S. economy in the world financial system and trade (Maggiori, 2017), we also

consider a range of foreign countries’ macroeconomic data. Due to data limitations, we focus on a subset

of the U.S. macroeconomic variables (i.e., the industrial production index, the consumer price index, and

the unemployment rate). We measure foreign countries’ macro indicators as before. However, we face the

additional task of aggregating individual country’ macro indicators into a global indicator. To do this,

we follow common practice and compute GDP-weighted averages of country indicators. In the empirical

analysis, we use these global indicators in levels, but also in differences relative the U.S., consistent with

the fact that simple portfolios are not dollar-neutral investment strategies. We also construct measures of

macro risk that capture the cross-sectional dispersion in the state of the business cycle across countries. We

do so by taking each month the cross-sectional standard deviation of the individual country indicators.38

Text-Based Factors. This category comprises factors that are obtained by aggregating into an index news

coverage about specific sources of uncertainty. Therefore, they are clearly nontradable factors. The U.S.

Economic Policy Uncertainty (EPU) Index developed by Baker et al. (2016), which quantifies newspaper

coverage of U.S. policy-related economic uncertainty, is arguably one of the most well-known text-based

indicator. (Another widely used indicator of economic uncertainty is the index of Jurado et al., 2015.)

Policy uncertainty is perceived by the investors as a highly undiversifiable source of risk, and should therefore

command a negative risk premium (e.g., Pastor and Veronesi, 2013). That is, uncertainty-averse investors

should demand extra compensation to hold assets with negative uncertainty betas, whereas they should be

willing to pay high prices for assets with positive uncertainty betas (Bali et al., 2017). Relatedly, the U.S.

EPU index turns out to help explain the 25 size and momentum Fama-French portfolios (Brogaard and

Detzel, 2015). Hence, by now, there is compelling evidence that U.S. EPU is a risk factor for equities.

More recently, sub-indices of the U.S. EPU index based on news data and measuring different sources

of policy uncertainty (e.g., fiscal, monetary, etc.) became available. More fundamentally, EPU indices have

been developed for a wider set of countries and aggregated into a global version. This in turn paves the way
38It is important to note that we do not consider macro data in real time, for two main reasons. First, real-time data are not

available for most of the foreign countries over sufficiently long time periods. Second, our objective is to explain macro factors
with the currency (latent) factors, and not the other way around. Thus, the use of real time data is arguably less relevant.
Finally, we intentionally omit measures of stochastic variance of macroeconomic variables – the silent feature of macroeconomic
data (e.g., Zviadadze, 2017) – as also these objects are model dependent. However, some of the text-based measures, presented
next, capture macroeconomic uncertainty/risk of different sources, and hence more closely relate to the second moments of
macroeconomic variables.
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to assess the relation between EPU indices and currency returns, which so far have been mostly related to

equity returns. A notable exception is Berg and Mark (2018b) that document a link between global EPU

and Carry excess returns. Mueller et al. (2017) examine the link between exchange rates and monetary

policy uncertainty, both theoretically and empirically; in one of their empirical specifications, they use the

EPU index.

Moreover, the same approach – based on the search and counting of selected terms from newspapers

– has been used to construct a newspaper-based U.S. equity market volatility (EMV). This tracker and

its sub-categories provide novel insights about the determinants of equity market volatility (Baker et al.,

2019). Thus, we conjecture that EMV indices are also likely to be relevant factors for many assets, including

currency returns. Therefore, we consider a battery of text-based factors, which essentially consist of EPU

and EMV indices, and their sub-categories.
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Table 1: Latent Factor Pricing Diagnostics

The table presents model diagnostics of the first two steps of the asset pricing procedure of Giglio and Xiu (2021)
applied to currency portfolios excess returns, where the pricing factors are latent and are estimated using the RP-PCA
method of Lettau and Pelger (2020a,b). We report diagnostics for RP-PCA implemented without “overweight” on
the means (ω = −1), i.e., standard PCA, and with increasing values of the RP-weight (ω = 10, 20 and 50). We
consider SDFs, ϕ(F1−k), including an increasing number of latent factors, k = 1, 2, . . . , 6. Tab A.I First pass, Panel
A: Two-pass Statistics, shows the average idiosyncratic variance, σ2

ε = 1
N

∑N
n=1 [V ar(ε̂n)/V ar(Xn)], and the average

root-mean-square pricing errors, RMSα =
√
α̂α̂>/N , obtained by estimating Xnt = αn + F̂tψ

>
n + εnt, for n = 1..., N

test assets, and t = 1..., T . Tab A.II Second pass presents the R-squared values (R2(%)), and the mean absolute
errors (MAE) of the cross-sectional regression, Xn = ψ̂nγ

> + an, for n = 1, . . . , N , where γ is the 1 × K vector of
latent factors’ prices of risk. Tab B.I Components, Panel B: Sharpe Ratios, presents the maximal Sharpe ratio (SR)
from the tangency portfolio of the mean-variance frontier spanned by the linear combination of the K selected latent
factors, F̂ × b̂>MV , where b̂MV is a 1 × K vector with entries b̂MV,k = µF,k/σ

2
F,k, with µF,k and σ2

F,k denoting the
k-th factor’s mean and variance. ∆SR denotes the difference in SRs between SDFs with k and k − 1 factors. The
b̂MV,k entry represents the k-th factor’s weight in the SDF, ϕt = 1 − (F̂t − µF )b̂>MV . The test assets consist of the
portfolios from the nine investment strategies (N = 46) – see Section II in the Internet Appendix – for the period
11/1983-12/2017 at monthly frequency (T = 410).

Panel A: Two-pass Statistics Panel B: Sharpe Ratios
A.I First pass A.II Second pass B.I Components

ω = −1 σ2
ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 23.41 1.73 0.17 1.38 F1 0.10 – 0.05 17.38
ϕ(F1−2) 19.04 1.59 16.48 1.22 F2 0.14 0.05 0.25 4.63
ϕ(F1−3) 17.07 1.30 44.94 0.94 F3 0.26 0.12 0.75 6.25
ϕ(F1−4) 15.46 1.30 44.96 0.94 F4 0.26 0.00 0.03 0.21
ϕ(F1−5) 14.12 0.91 72.06 0.73 F5 0.37 0.11 1.10 6.26
ϕ(F1−6) 12.92 0.90 72.37 0.71 F6 0.37 0.00 0.14 0.71
ω = 10 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 23.42 1.73 29.02 1.24 F1 0.10 – 0.06 18.12
ϕ(F1−2) 19.44 1.53 77.94 0.59 F2 0.28 0.18 0.70 10.02
ϕ(F1−3) 17.31 0.89 97.22 0.22 F3 0.44 0.15 1.13 9.70
ϕ(F1−4) 15.79 0.71 98.49 0.17 F4 0.46 0.03 0.63 4.05
ϕ(F1−5) 14.19 0.70 98.54 0.16 F5 0.47 0.00 0.13 0.89
ϕ(F1−6) 12.99 0.70 98.55 0.16 F6 0.47 0.00 0.05 0.28
ω = 20 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 23.43 1.74 59.88 1.14 F1 0.10 – 0.06 18.65
ϕ(F1−2) 19.94 1.47 94.58 0.29 F2 0.36 0.25 1.02 11.29
ϕ(F1−3) 17.36 0.84 99.16 0.12 F3 0.45 0.10 0.87 9.17
ϕ(F1−4) 15.81 0.68 99.53 0.09 F4 0.48 0.02 0.57 3.71
ϕ(F1−5) 14.21 0.68 99.53 0.09 F5 0.48 0.00 0.07 0.51
ϕ(F1−6) 13.01 0.68 99.53 0.09 F6 0.48 0.00 0.05 0.27
ω = 50 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 23.51 1.76 90.70 0.87 F1 0.11 – 0.06 19.67
ϕ(F1−2) 20.36 1.37 99.26 0.11 F2 0.40 0.29 1.25 11.85
ϕ(F1−3) 17.40 0.80 99.85 0.05 F3 0.47 0.06 0.67 8.29
ϕ(F1−4) 15.83 0.67 99.91 0.04 F4 0.48 0.02 0.52 3.46
ϕ(F1−5) 14.23 0.66 99.91 0.04 F5 0.48 0.00 0.06 0.38
ϕ(F1−6) 13.02 0.66 99.91 0.04 F6 0.48 0.00 0.05 0.26
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Table 2: Exposures of Nontradable Factors to Latent Factors

The table presents the nontradable candidate factors’ exposures to the latent factors (ηFk
) and the explained variations

(R2
F1−k

) obtained from the spanning regression of Eq. (15), for SDFs including an increasing number of factors,
k = 1, . . . ,K. We report the candidate factor exposures to the first six extracted, orthogonalized latent factors (i.e.,
K = 6). The factors are extracted by applying RP-PCA with baseline weight (i.e., ω = 20) to the N = 46 portfolios
obtained from the nine investment strategies. Panels A, B, and C show the estimates for the financial, text-based, and
macro factors, respectively. We present the estimates only for the candidate factors with statistically significant risk
premia (λ̂g) according to the three-pass model with optimal number of factors, i.e. ϕ(F1−3), reported later in Table
3. When a macro factor’s risk premium is significant at multiple frequencies, we present only the most representative
one (i.e., the frequency at which the factor’s risk premium is most precisely estimated). We report all candidate
factors’ exposures in Table A9, in the Internet Appendix. ∗∗∗,∗∗,∗ denote significance, respectively, at the 1-, 5- and
10-percent levels, based on Newey-West standard errors. See nontradable factor descriptions in Tables A5-A7, in the
Internet Appendix.

PANEL A: Financial Factors
A.I: Risk Exposures A.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

otic 0.73∗∗ 5.73∗∗∗ -0.35 -1.42 2.26 7.47∗∗ 1.17 3.67 3.68 3.77 4.01 5.99
noise -1.36∗ -11.34∗∗∗ 11.34∗∗ 8.06∗ -0.62 -0.41 4.99 10.98 17.33 20.05 20.07 20.07
sliq -1.29∗∗ -10.48∗∗∗ 5.28 7.79∗ -0.90 -6.67∗ 5.81 11.47 13.40 16.21 16.23 17.60
gfc 3.13∗∗∗ 11.71∗∗∗ -7.49∗∗∗ -2.96 8.80∗∗∗ 3.13 21.83 32.33 36.43 36.83 40.49 40.84
gvol -1.07∗∗ -9.95∗∗∗ 2.99 7.80∗∗ -2.07 -8.34∗∗∗ 2.55 10.13 10.79 13.54 13.74 16.21
psliq 0.03 8.00∗∗ -0.85 -0.88 2.42 -0.84 0.00 4.91 4.96 5.00 5.27 5.30
ted -0.45 -6.82∗ -0.44 0.38 0.72 0.27 0.47 3.94 3.95 3.96 3.98 3.98
lib ois -1.48∗ -14.14∗ 3.61 1.30 6.90 4.52 6.39 16.00 16.97 17.09 18.03 18.35
move -0.98∗∗ -10.89∗∗∗ 7.81∗∗∗ 0.12 -0.25 -1.94 2.78 8.33 11.75 11.75 11.75 11.86
vxo -1.60∗∗∗ -15.19∗∗∗ 10.32∗∗∗ 1.85 -6.91∗∗∗ -1.35 6.47 19.96 26.4 26.55 28.5 28.56
eqrv -0.65 -11.72∗∗ 1.46 3.11 -2.83 0.80 0.93 11.45 11.6 12.04 12.42 12.44

PANEL B: Text-Based Factors
B.I: Risk Exposures B.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

gepu 0.00 -11.18∗∗∗ 3.38 3.12 -3.68 -3.52 1.12 7.36 7.64 7.99 8.26 8.56
gepu ppp 0.13 -12.01∗∗∗ 3.82 2.81 -3.79 -2.97 0.89 7.82 8.17 8.45 8.75 8.97
emv ov -0.49 -9.13∗∗ 2.88 1.87 -1.51 0.31 0.48 6.73 7.35 7.51 7.61 7.61
emv mout -0.38 -9.09∗∗ 2.19 2.74 -0.31 1.32 0.29 6.40 6.73 7.07 7.07 7.14
emv mqnt -0.26 -7.85∗∗ 1.35 2.55 -1.12 1.09 0.14 4.78 4.92 5.21 5.27 5.31
emv inf -0.28 -7.93∗∗ 2.92 0.09 -0.98 0.29 0.14 4.85 5.45 5.45 5.50 5.50
emv com -0.55 -8.96∗∗ 3.64 1.21 -1.67 0.39 0.59 6.60 7.56 7.63 7.75 7.76
emv ir -0.23 -7.97∗∗ 0.89 1.32 -1.56 1.60 0.11 4.96 5.03 5.11 5.22 5.31
emv fc -0.72 -6.25∗ 2.52 2.78 2.96 -2.17 1.06 3.80 4.16 4.50 4.90 5.06
emv fp -0.32 -7.32∗∗ 1.52 1.15 -1.58 0.34 0.21 4.29 4.48 4.54 4.65 4.65
emv tx -0.34 -7.72∗∗ 2.09 2.10 -0.68 0.61 0.23 4.68 4.99 5.19 5.21 5.22
emv mp -0.59 -8.69∗∗∗ 2.80 2.88 0.22 1.18 0.70 6.22 6.74 7.11 7.11 7.16
emv reg -0.20 -8.56∗∗ 1.84 2.19 1.49 0.19 0.07 5.42 5.63 5.84 5.93 5.93
emv freg -0.49 -7.54∗ 1.32 2.18 1.18 2.37 0.47 4.60 4.70 4.91 4.96 5.16

PANEL C: Macro Factors
C.I: Risk Exposures C.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

cus(y) -0.69 -2.24 -1.54 -0.92 -0.08 1.49 1.06 1.45 1.62 1.66 1.66 1.74
ipw(q) 0.23 -2.60 -1.80 0.53 0.95 1.87 0.12 0.63 0.87 0.88 0.92 1.05
ipw/us(q) -0.15 -3.69∗∗ -1.40 1.39 -0.88 1.99 0.05 1.09 1.24 1.32 1.36 1.50
cpiw(q) 0.10 -1.25 -4.07∗∗∗ 0.51 -0.17 -2.67 0.02 0.14 1.35 1.36 1.36 1.61
cpiw/us(ey) -0.36 -1.77 -2.58 -1.97 2.08 -2.59 0.28 0.52 1.01 1.18 1.39 1.63
unew/us(y) -0.27 -1.99 -3.66∗∗ -2.53 -0.64 1.37 0.16 0.47 1.46 1.75 1.77 1.83
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Table 3: Risk Premia of Nontradable Factors

The table presents the risk-premium estimates of selected nontradable factors (gt). Panel FMB presents the risk-
premium point estimates (λg) and Shanken standard errors (se) from the standard two-pass procedure, including the
constant and the candidate factor. The remaining panels report the estimates from the augmented three-pass models
of different dimensions. That is, ϕ(F1−k) denotes the SDF including up to the k-th latent factor, whereby the factors
are extracted from the panel of currency portfolio returns using the RP-PCA method with baseline weight, i.e., ω = 20.
The risk-premium estimates (λg) are reported along with the asymptotic standard errors (se) of Giglio and Xiu (2021);
∗∗∗,∗∗,∗ denote significance, respectively, at the 1-, 5- and 10-percent levels. For each factor and a given SDF, we also
report the spanning R2s (R2) resulting from projecting the factor onto the k latent factors entering the SDF; the
Sharpe ratios (SR) associated with the projected factor, i.e., the return-based counterpart to the original nontradable
factor; and the p-value (pval) of the test of GX that the g-factor is weak. In Panels A, B and C, we present financial
(FIN), text-based (TXT), and macro (MAC) candidate g-factors with significant risk-premium estimates according
to at least one of the SDF reported. When a macro factor is significant for multiple frequencies, we present the
frequency at which the factor is most precisely estimated using ϕ(F1−3). Factors are expressed as innovations, using
the residuals from AR(1) processes, and are then standardized. The test assets consist of the portfolios from the nine
investment strategies (N = 46). The sample period varies with the factor at hand, according to data availability over
the 11/1983-12/2017 period. See nontradable factor descriptions in Tables A5-A7, in the Internet Appendix.

PANEL A: FMB ϕ(F1−2) ϕ(F1−3) ϕ(F1−4)
FIN λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

otic 8.36∗∗∗ (2.87) 0.78∗∗∗ (0.27) 3.67 0.34 0.00 0.75∗∗ (0.32) 3.68 0.32 0.00 0.70∗∗ (0.33) 3.77 0.30 0.01
icap 3.41∗∗ (1.56) 1.20∗∗∗ (0.34) 7.93 0.35 0.00 0.61 (0.39) 10.91 0.15 0.00 0.76∗ (0.43) 11.60 0.19 0.00
noise -3.95∗∗∗ (1.33) -1.41∗∗∗ (0.43) 11.27 0.32 0.00 -0.83∗∗ (0.35) 16.33 0.09 0.01 -0.52 (0.41) 19.51 0.03 0.01
sliq -3.56∗∗ (1.46) -1.33∗∗∗ (0.38) 10.33 0.31 0.00 -0.91∗∗ (0.39) 13.13 0.15 0.01 -0.48 (0.51) 17.65 0.07 0.00
gfc 2.39∗∗ (1.09) 1.91∗∗∗ (0.45) 32.33 0.28 0.00 1.22∗∗ (0.52) 36.43 0.17 0.00 1.11∗ (0.56) 36.83 0.15 0.00
gliq -4.28 (3.25) -0.44∗∗ (0.19) 1.17 0.34 0.03 -0.11 (0.23) 2.10 0.07 0.01 -0.11 (0.24) 2.10 0.06 0.01
gvol -4.19∗∗ (1.57) -1.32∗∗∗ (0.32) 10.13 0.35 0.00 -1.05∗∗∗ (0.30) 10.79 0.27 0.00 -0.76∗∗ (0.36) 13.54 0.17 0.00
psliq 7.64∗∗∗ (2.58) 0.91∗∗ (0.36) 4.91 0.34 0.04 0.83∗ (0.43) 4.96 0.31 0.06 0.80∗ (0.45) 5.00 0.30 0.10
corp -2.03 (1.57) -0.87∗∗ (0.41) 7.86 0.24 0.13 -0.10 (0.32) 14.60 0.02 0.10 -0.05 (0.34) 14.73 0.03 0.11
ted -12.27∗∗∗ (3.49) -0.89∗∗ (0.43) 3.98 0.35 0.14 -0.97∗∗ (0.43) 4.05 0.39 0.21 -0.97∗∗ (0.42) 4.05 0.39 0.33
lib ois -4.71∗∗ (1.86) -1.88∗ (0.99) 14.32 0.33 0.09 -1.55∗∗ (0.76) 15.23 0.24 0.12 -1.47∗ (0.78) 15.31 0.23 0.16
move -5.13∗∗∗ (1.88) -1.35∗∗∗ (0.46) 7.75 0.34 0.02 -0.81∗∗ (0.38) 11.85 0.12 0.00 -0.75∗∗ (0.37) 11.96 0.11 0.00
vxo -4.36∗∗∗ (1.24) -2.04∗∗∗ (0.60) 20.22 0.34 0.00 -1.36∗∗ (0.65) 26.98 0.14 0.00 -1.18∗ (0.64) 27.98 0.11 0.00
eqrv -5.74∗∗∗ (1.82) -1.44∗∗ (0.63) 11.45 0.36 0.06 -1.31∗ (0.71) 11.60 0.32 0.13 -1.19∗ (0.70) 12.04 0.29 0.21

PANEL B: FMB ϕ(F1−2) ϕ(F1−3) ϕ(F1−4)
TXT λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

gepu -8.12∗∗∗ (2.67) -1.52∗∗∗ (0.43) 7.93 0.35 0.00 -1.41∗∗∗ (0.48) 8.02 0.32 0.00 -1.18∗∗ (0.52) 8.61 0.28 0.00
gepu ppp -8.25∗∗∗ (2.65) -1.58∗∗∗ (0.44) 8.35 0.36 0.00 -1.46∗∗∗ (0.48) 8.45 0.32 0.00 -1.25∗∗ (0.53) 8.96 0.28 0.00
epu all -5.18∗∗ (2.32) -0.67∗ (0.35) 2.89 0.33 0.09 -0.34 (0.40) 3.92 0.13 0.05 -0.18 (0.39) 4.93 0.05 0.01
epu mp -7.62∗∗∗ (2.65) -0.70∗∗ (0.33) 3.91 0.30 0.06 -0.59 (0.40) 4.02 0.25 0.07 -0.47 (0.39) 4.62 0.18 0.05
fsi tx -4.06∗ (2.27) -0.71∗ (0.38) 2.70 0.35 0.16 -0.27 (0.31) 4.44 0.10 0.07 -0.17 (0.30) 4.80 0.06 0.13
gpr a 5.07∗ (2.59) 0.42∗∗ (0.19) 1.41 0.29 0.08 0.32 (0.21) 1.48 0.22 0.14 0.17 (0.20) 2.19 0.10 0.13
emv ov -6.79∗∗∗ (2.30) -1.15∗∗ (0.46) 6.90 0.36 0.05 -0.91∗ (0.45) 7.44 0.26 0.09 -0.84∗ (0.44) 7.67 0.23 0.15
emv mout -7.25∗∗∗ (2.37) -1.11∗∗ (0.45) 6.55 0.35 0.05 -0.95∗∗ (0.43) 6.80 0.29 0.11 -0.86∗∗ (0.42) 7.17 0.25 0.18
emv mqnt -7.77∗∗∗ (2.59) -0.95∗∗ (0.40) 4.85 0.35 0.06 -0.84∗∗ (0.38) 4.97 0.30 0.13 -0.75∗ (0.38) 5.32 0.25 0.21
emv inf -7.62∗∗∗ (2.73) -0.97∗∗∗ (0.35) 4.99 0.35 0.02 -0.72∗ (0.40) 5.52 0.24 0.02 -0.71∗ (0.39) 5.52 0.24 0.04
emv com -6.37∗∗∗ (2.24) -1.15∗∗ (0.45) 6.82 0.36 0.04 -0.84∗ (0.47) 7.68 0.23 0.05 -0.79∗ (0.46) 7.79 0.21 0.07
emv ir -9.09∗∗∗ (2.94) -0.97∗∗ (0.44) 5.03 0.35 0.06 -0.90∗ (0.51) 5.07 0.32 0.10 -0.83 (0.51) 5.23 0.29 0.16
emv fc -7.57∗∗∗ (2.73) -0.86 (0.54) 3.86 0.34 0.17 -0.68∗ (0.35) 4.13 0.25 0.28 -0.62∗ (0.31) 4.30 0.22 0.42
emv fx -5.15∗∗ (2.19) -0.71∗∗ (0.29) 2.81 0.35 0.04 -0.42 (0.30) 3.54 0.17 0.02 -0.52 (0.31) 3.96 0.21 0.02
emv fp -8.41∗∗∗ (2.93) -0.91∗∗ (0.40) 4.38 0.35 0.08 -0.78∗ (0.40) 4.55 0.29 0.17 -0.73∗ (0.40) 4.66 0.26 0.27
emv tx -7.42∗∗∗ (2.63) -0.96∗∗ (0.43) 4.82 0.35 0.10 -0.79∗ (0.43) 5.07 0.28 0.18 -0.72∗ (0.43) 5.29 0.24 0.29
emv gov -15.41∗∗∗ (5.72) -0.49∗ (0.28) 1.50 0.33 0.23 -0.53 (0.32) 1.52 0.36 0.40 -0.56∗ (0.33) 1.56 0.38 0.43
emv mp -7.18∗∗∗ (2.41) -1.12∗∗∗ (0.38) 6.41 0.35 0.01 -0.91∗∗ (0.35) 6.80 0.27 0.04 -0.82∗∗ (0.34) 7.15 0.23 0.06
emv reg -8.27∗∗∗ (2.74) -1.01∗ (0.51) 5.56 0.35 0.11 -0.89∗ (0.47) 5.67 0.30 0.20 -0.83∗ (0.46) 5.85 0.27 0.31
emv freg -9.00∗∗∗ (2.96) -0.96∗ (0.51) 4.70 0.35 0.20 -0.88∗ (0.48) 4.75 0.32 0.35 -0.81∗ (0.46) 4.95 0.29 0.45
emv tp -7.47∗∗ (3.34) -0.70∗∗ (0.31) 2.54 0.36 0.07 -0.40 (0.37) 3.38 0.16 0.02 -0.43 (0.38) 3.41 0.17 0.05

PANEL C: FMB ϕ(F1−2) ϕ(F1−3) ϕ(F1−4)
MAC λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

cus(y) -13.49∗∗∗ (4.14) -0.38 (0.25) 1.45 0.26 0.12 -0.52∗ (0.29) 1.62 0.34 0.15 -0.56∗ (0.28) 1.66 0.36 0.25
ipw(q) -6.27∗∗∗ (1.96) -0.25 (0.22) 0.63 0.26 0.32 -0.42∗ (0.24) 0.87 0.37 0.25 -0.40 (0.26) 0.88 0.35 0.37
ipw/us(q) -7.34∗∗∗ (2.19) -0.44∗∗ (0.21) 1.09 0.35 0.10 -0.57∗∗ (0.26) 1.24 0.43 0.14 -0.52∗ (0.29) 1.32 0.38 0.19
cpiw(q) -7.92∗∗∗ (2.92) -0.12 (0.21) 0.14 0.27 0.73 -0.50∗ (0.28) 1.35 0.36 0.04 -0.48∗ (0.28) 1.36 0.34 0.08
cpiw/us(ey) -9.60∗∗∗ (2.78) -0.27 (0.23) 0.52 0.31 0.45 -0.50∗ (0.28) 1.01 0.42 0.25 -0.58∗ (0.30) 1.18 0.44 0.24
unew/us(y) -16.91∗∗∗ (4.95) -0.27 (0.21) 0.47 0.34 0.37 -0.61∗∗ (0.24) 1.46 0.42 0.06 -0.70∗∗∗ (0.25) 1.75 0.45 0.06

57

Electronic copy available at: https://ssrn.com/abstract=3796290



Figure 1: Currency Investment Strategies
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Panel B: HML Portfolios
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In Panel A, Risk-Return Trade-Off, the figure shows plain portfolio average excess returns (X(%), in percent annu-
alized) and standard deviations (σX(%), in percent annualized), proxying for risk. In Panel B, HML Portfolios, the
figure plots the cumulative monthly returns of HML portfolios in percent. We consider nine investment strategies:
carry (Carry), short-term momentum (Mom (ST)), long-term momentum (Mom (LT)), net foreign assets (NFA),
liabilities in domestic currency (LDC), value (Value), term spreads (Term), long-term bond yields (LYld), and output
gap (GAP). See Internet Appendix (Section II) for a detailed description of the strategies. The sample spans the
11/1983-12/2017 period at monthly frequency (T = 410).
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Figure 2: Largest Normalized Eigenvalues
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The figure shows the largest normalized eigenvalues of the matrix Σ(ω)
RP = 1

TX
>X +ωX

>
X, for different values of the

RP-weight (ω). The T × N matrix X collects currency portfolio excess returns from the nine investment strategies
(i.e., N = 46), and X denote their sample averages. The eigenvalues are normalized by the average idiosyncratic
variance (σ̄2

ε ) and hence relate more closely to factors’ signal-to-noise ratios, being informative about factors’ “signal
strengths”. Specifically, σ̄2

ε = 1
N

∑N
n=1 σ

2
ε,n, where σ2

ε,n are the variances of the residuals obtained by estimating N
time-series regressions, Xnt = αn + F̂

(ω)
t ψ>n + εnt, n = 1..., N test assets, t = 1..., T months, where F̂ (ω)

t stacks the
latent factors associated with the six largest eigenvalues of matrix Σ(ω)

RP , and thus vary with the RP-weight. Panel
A, Levels, reports the normalized eigenvalues, ν̃k(ω) = νk(ω)/σ2

ε (ω). Panel B, Differences, presents the difference of
consecutive normalized eigenvalues, ν̃k(ω) − ν̃k+1(ω), for k = 2, . . . , 5. Panel C, Ratios, shows the eigenvalues scaled
by the corresponding PCA (ω = −1) eigenvalues, ν̃k(ω)/ν̃k(ω = −1). In the legend, for a given RP-weight we present
the optimal number of latent factors entering the SDF according to the Onatski (2010), O(#), and Giglio and Xiu
(2021), GX(#), tests. The GX test is implemented with medium overfitting penalty value 0.5.
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Figure 3: HML Portfolio Risk Exposures to Latent Factors
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The figure shows HML portfolio loadings on the six estimated latent factors (Risk Exposures; left chart) and the
associated R2s obtained by regressing the HML portfolio returns on the latent factors (Explained Variation; right
chart). The test assets’ sample consists of the portfolios associated with the nine investment strategies (N = 46),
thus HML portfolios are excluded from the estimation of latent factors (see Section II in the Internet Appendix for
a description of the investment strategies). Hence, we infer HML portfolio loadings ex-post from the corner portfolio
loadings of the associated strategy, as the difference between P5/6 (high) and P1 (low) loadings, obtained by means of
RP-PCA with baseline penalty value, i.e., ω = 20. We obtain the HML portfolios’ explained variations by estimating
9×6 OLS time-series regressions of the type of Eq. (7), i.e. Xnt = αn+ F̂tψ>n +εnt, for n = 1, . . . , N , and t = 1, . . . , T .
For a given HML portfolio, we run a total of 6 regressions as we include factors one by one. In this way, we can
determine the marginal R2 contributions of each factor. The numbers above the bars refer to F̂1t’s contributions. We
present the N ×K individual portfolio risk exposures and R2s in Figures A1 and A2, in the Internet Appendix. The
sample spans the 11/1983-12/2017 period at monthly frequency (T = 410).
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Figure 4: Observed vs Model-Implied Portfolio Excess Returns
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The figure shows the realized average excess returns (Observed X) and the estimated, model-implied expected excess
returns (Model X) of the 46 currency portfolios (test assets) associated with the nine currency investment strategies,
described in Section II in the Internet Appendix. For a given portfolio n, the model-implied expected excess returns
are the fitted values from the second pass of the GX method. That is, the fitted return is given by ψ̂nkγ̂

>
k where

ψ̂nk is the 1 × k vector of the n-th portfolio’s risk exposures and γ̂k is the 1 × k vector of the prices of risk of the
latent factors. Left panels show the evidence for the factors extracted using PCA (i.e., RP-PCA with ω = −1), while
right panels using RP-PCA with ω = 20 (i.e., the selected RP-weight). Top panels present the estimates for k = 2,
while bottom panels for k = 3. Recall that ϕ(F (1 − 2)) is the optimal SDF for ω = −1, whereas ϕ(F (1 − 3)) for
ω = 20. Excess returns are expressed in percent per annum (p.a). The sample period runs from 11/1983 to 12/2017
at monthly frequency (T = 410).
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Figure 5: Nontradable Factor Explained Variations by Latent Pricing Factors
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The figure shows nontradable candidate factor explained variation by latent factors. Factors are extracted by means
of RP-PCA with baseline RP-weight ω = 20 applied to the panel of N = 46 currency portfolios associated with the
nine investment strategies. We limit the evidence to the first three extracted factors, given that the optimal SDF is
ϕ(F1−k) with k = 3 (Figure A3 in the Internet Appendix uses k = 6). Panels A, B, and C present the evidence for
financial, text-based and macro candidate factors, respectively. In each panel, candidate factors are sorted by the
spanning R2s associated with the k-factor SDF (to help visualize the results, we only display the 30 macro factors
with the highest R2s). Bars quantify the latent factor contribution to the overall R2. Green (red) bar edges denote
(not) significant risk premia, at the 10 percent level, according to the selected SDF; we consider SDFs of expanding
dimension, thus k ranges from 1 to 3. Factors are expressed as innovations, using the residuals from AR(1) processes,
and are then standardized. The sample period varies with the factor at hand, according to data availability over the
11/1983-12/2017 period (T = 410). See factor descriptions in Tables A5-A7, in the Internet Appendix.
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Figure 6: Return-Based Candidate Factors

86 89 92 95 98 01 04 07 10 13 16

Time

-50

-40

-30

-20

-10

0

10

C
u
m
.
 
R
e
t
.
 
(
p
.
a
.
)

Factor A: gepu

86 89 92 95 98 01 04 07 10 13 16

Time

-50

-40

-30

-20

-10

0

10

C
u
m
.
 
R
e
t
.
 
(
p
.
a
.
)

Factor B: gvol
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Factor C: icap
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Factor D: gliq

The figure shows selected return-based candidate factors. Factor A is the global economic policy uncertainty index
(gepu), Factor B is the global FX volatility factor (gvol), Factor C is the financial intermediaries’ capital ratio factor
(icap), and Factor D is the global FX liquidity factor (gliq). For each candidate factor, we present three versions
of return-based factors, by expanding the dimension of the SDF, i.e., ϕ(F (1 − k)) with k = 1, 2, 3. Specifically, for
ϕ(F (1− k)), the return-based factor is given by F̂1:ktη̂

>, where the latent factors are extracted using RP-PCA with
ω = 20 and the exposures are obtained by estimating the spanning regressions of Eq. (15); hence, the underlying
exposures are those displayed in the first three columns of Table 2 (for icap and gliq, see Table A9 in the Internet
Appendix, as their premia estimates are not statistically significant using the three-factor model). The spanning
regression sample period can vary with the factor at hand, according to data availability over the 11/1983-12/2017
period. See factor descriptions in Tables A5-A7, in the Internet Appendix.
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I The Two-Pass Estimator

A linear SDF is given by
ϕt = ξ[1− (ft − E[ft])b>], (I.1)

where ξ is the intercept, ft is a 1 × K vector of generic risk factors at time t, E[ft] is the vector of factor
means, and b is the vector collecting the loadings of the SDF on the risk factors. Specifically, the loading bk
denotes the marginal contribution of the k-th factor to the SDF, conditional on the other factors. Then, let
us denote the excess return on asset n at time t by Xnt, for n = 1, . . . , N test assets. Under no-arbitrage,
risk-adjusted excess returns have a price of zero and satisfy the standard Euler pricing equation

E(ϕtXnt) = 0. (I.2)

By combining Eqs. (I.1) and (I.2), and using some simple algebra, one can decompose expected excess
returns as follows

E[X] = cov(Xt, ft)b>. (I.3)

The linear SDF implies the following beta-pricing representation

E[X] = cov(Xt, ft)Σ−1
f︸ ︷︷ ︸

β

Σfb>︸ ︷︷ ︸
λ>

, (I.4)

whereby expected excess returns depend on the 1 ×K vector of risk prices (λ), and the N ×K matrix of
risk quantities (β). Thus, the n-th asset excess return is given by E[Xn] = βnλ

>. It is apparent that risk
exposures are asset specific, while the prices of risk are common to all assets. That is, the price of risk of the
k-th risk factor (λk) denotes the compensation required by the investor for a unit exposure to that factor.

It is common practice to estimate asset-specific risk exposures (βn) and the prices of risk (λ) using the
two-pass procedure of FMB. The first pass delivers estimates of the risk exposures, whereas the second
pass of the prices of risk. Specifically, the first pass consists of running N OLS time-series regressions of
test-asset excess returns on the vector of risk factors

Xnt = αn + ftβ
>
n + εnt, n = 1, . . . , N, t = 1, . . . T, (I.5)

where the intercept αn denotes the n-th asset risk-adjusted excess return. Then, the second pass is a cross-
sectional regression of the test assets’ expected returns on the previously estimated betas β̂n, including or
not a constant. Empirically, it is standard to proxy expected returns, E[Xn], with the average realized
excess returns, Xn = 1

T

∑T
t=1Xnt, so that the second-pass cross-sectional regression is given by

Xn = β̂nλ
> + an, n = 1, . . . , N, (I.6)

i
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where an is the n-th asset’s pricing error, λ is the 1 × K vector of prices of risk, and β̂nλ̂
> is the n-th

asset’s model-implied risk premium, or excess return. The estimates of the prices of risk are given by
λ̂ = Xβ̂(β̂>β̂)−1, where β̂ is the matrix collecting the assets estimated risk exposures, and X is the vector
of assets’ average realized excess returns. Note that it might be useful to include a constant in Eq. (I.6),
Xn = c + β̂nλ

> + an, to capture the common mispricing in test-asset expected excess returns (e.g., see
Burnside, 2011).

II FX Data and Investment Strategies

FX Data. Table A1 reports the Datastream mnemonics for spot and forward exchange rates for the 49
currencies used in this paper.

49 USD/FCU Currencies (1983-2017). Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia,
Cyprus, Czech Republic, Denmark, Egypt, euro area, Finland, France, Germany, Greece, Hong Kong,
Hungary, Iceland, India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands,
New Zealand, Norway, Philippines, Poland, Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia,
South Africa, South Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine, the United Kingdom,
and Turkey.

15 FCU/GBP Currencies (1978-1983). To construct the signals needed to form the portfolios for some
trading strategies, we complement our data with spot exchange rates and one-month forward rates quoted
against the British Pound over the period from January 1976 to October 1983, which are also provided by
Datastream. We use triangular no-arbitrage relations to retrieve exchange and forward rate quotes against
the U.S. dollar (i.e., by using FCU/GBP and USD/GBP, one obtains USD/FCU). By doing this, we obtain
longer time series for spot and forward rates data for a number of developed countries. The 15 FCU/GBP
currencies are: Austria, Belgium, Canada, Denmark, France, Germany, Ireland, Italy, Japan, Netherlands,
Norway, Portugal, Spain, Sweden, and Switzerland.

CIP Deviations. We follow Kroencke et al. (2014) and Della Corte et al. (2016), among others, and
leave out the indicated countries for the following periods: Egypt (01/01/2011 – 30/08/2013; 03/10/2016
– 28/02/2017); Indonesia (01/12/1997 – 31/07/1998; 01/02/2001 – 31/05/2005); Malaysia (01/05/1998 –
30/06/2005); Russia (01/12/2008 – 30/01/2009; 03/11/2014 – 27/02/2015); South Africa (01/08/1985 –
30/08/1985; 01/01/2002 – 31/05/2005); Turkey (01/11/2000 – 30/11/2001); and, Ukraine (03/11/2014 –
31/12/2017).

FX Investment Strategies. Next, we describe the currency investment strategies that deliver the port-
folios (i.e., test assets) under investigation in our empirical analysis. Table A2 provides information on
strategy names, signals, and data sources. Table A3 presents the summary statistics of the currency invest-
ment strategy portfolios.

1. Carry. At the end of each month t, currencies are allocated to five portfolios according to their forward
discounts (Sit − Fit)/Sit, where Sit and Fit are the spot and forward exchange rate mid-quotes for foreign
currency i, respectively (Lustig et al., 2011; Menkhoff et al., 2012a). While portfolio 1 (P1) collects the
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currencies with the lowest forward discounts, portfolio 5 (P5) collects currencies with the highest forward
discounts. Therefore, P1 (P5) contains the currencies with the lowest (highest) interest rate differential
relative to the United States, assuming that CIP holds. Portfolios are rebalanced monthly and the sample
runs from November 1983 to December 2017. Data are from from Barclays Bank International (BBI),
Reuters and WM/Reuters accessed via Datastream.

2. Short-Term Momentum. At the end of each month t, we form portfolios based on excess returns realized
over the previous m months, i.e., the formation period (e.g., Asness et al., 2013; Menkhoff et al., 2012b).
In Short-Term Momentum, for each foreign currency i, the sorting variable (signal) is the previous month
currency excess return, Xt. While P1 contains the currencies with the lowest short-term excess returns,
that is the loser currencies over the short period, P5 contains the currencies with the highest short-term
excess returns, that is the winner currencies over the short period. Portfolios are rebalanced monthly and
the sample runs from November 1983 to December 2017. Data are from from Barclays Bank International
(BBI), Reuters and WM/Reuters accessed via Datastream.

3. Long-Term Momentum. The Long-Term Momentum strategy is based on a longer formation period
than Short-Term Momentum (e.g., Asness et al., 2013; Menkhoff et al., 2012b). In particular, the signal
is the cumulative excess return over the past 12 months, Xt−12:t. Hence, P1 contains the currencies with
the lowest long-term excess returns, that is the loser currencies over the long period, whereas P5 contains
the currencies with the highest long-term excess returns, that is the winner currencies over the long period.
Portfolios are rebalanced monthly and the sample runs from November 1983 to December 2017. Data are
from from Barclays Bank International (BBI), Reuters and WM/Reuters accessed via Datastream.

4. Currency Value. At the end of each month t, currencies are allocated to portfolios based on the
lagged five-year real exchange rate return (e.g., Asness et al., 2013; Kroencke et al., 2014; Menkhoff et al.,
2017), thus exploiting deviations from the relative purchasing power parity (PPP). P1 contains over-valued
currencies, i.e., those with the highest lagged real exchange rate return, and P5 contains under-valued
currencies, i.e., those with the lowest lagged real exchange rate return. In line with the literature, and
differently from the other strategies, value portfolios are rebalanced every three months. The sample runs
from November 1983 to December 2017. Real exchange rates are calculated by using Consumer Price Index
data from IMF International Financial Statistics (the source of Taiwan’s CPI data is the National Statistics).

5. Net Foreign Assets. Following Della Corte et al. (2016), at the end of each month t, currencies are
allocated into portfolios according to the ratio between the foreign country’s net foreign assets (NFA) and
the country’s gross domestic product (GDP), both denominated in U.S. dollar, multiplied by (-1). Hence,
P1 includes creditor currencies, i.e., those with the highest NFA to GDP ratios, whereas P5 includes debtor
currencies, i.e., those with the lowest NFA to GDP ratios. Portfolios are rebalanced monthly and the sample
runs from November 1983 to December 2017. We thank Gian Maria Milesi-Ferretti to kindly share with us
the updated version of the data on foreign assets and liabilities and GDP used in Lane and Milesi-Ferretti
(2004), and Lane and Milesi-Ferretti (2007).

6. Liabilities in Domestic Currencies. Following Della Corte et al. (2016), we sort currencies into
portfolios according to the proportion of liabilities denominated in domestic currency (LDC). At the begin-
ning of each month t, we first allocate currencies to two portfolios according to the foreign country’s lagged
NFA to GDP ratio. Then, we further split each of these two portfolios into three sub-portfolios according

iii

Electronic copy available at: https://ssrn.com/abstract=3796290



to the country’s liabilities denominated in domestic currency (LDC). The 2× 3 double-sorted portfolios are
denoted by LL, LM, LH, HL, HM, and HH, where the first letter denotes the relative level of the NFA
ratio, and the second letter that of LDC. As a result, we obtain 6 double-sorted LDC portfolios. P1 con-
tains the safest currencies, i.e., those with high NFA positions coupled with a large share of their liabilities
denominated in domestic currency (HH), and P6 contains the riskiest currencies, i.e., those with low NFA
positions coupled with a low share of their liabilities denominated in domestic currency (LL). Portfolios are
rebalanced monthly and the sample runs from November 1983 to December 2017. Data on LDC, also used
in Benetrix et al. (2015), are available on Philip Lane’s website.

7. Long-Term Yields. At the end of each month t, we sort currencies into portfolios according to the
foreign country’s 10-year interest rate differential relative to that of the United States (i10yr − iUS10yr), so
that P1 includes countries with the lowest interest rates, and P5 those with the highest interest rates (e.g.,
Ang and Chen, 2010; Della Corte et al., 2016). Sorting on long-term interest rates allows us to capture
departures from uncovered interest rate parity at the longer end of the term structure of interest rates. The
portfolios are rebalanced monthly and the sample runs from November 1983 to December 2017. Data on
long-term interest rates are from the OECD Monthly Monetary and Financial Statistics.

8. Term Spread. At the end of each month t, we sort currencies into portfolios according to the foreign
country’s term spread, defined as long- minus short-term rates, measured with the 10-year and 3-month
rates (i10yr − i3mo), respectively (Bekaert et al., 2007; Lustig et al., 2019). We allocate to P1 countries
with the highest term spread, and conversely to P5 countries with the lowest term spread. The portfolios
are rebalanced every six months and the sample runs from November 1983 to December 2017. Data on
long-term and short-term interest rates are from the OECD Monthly Monetary and Financial Statistics.

9. Output Gap. Following Colacito et al. (2020), at each month t, we sort currencies on difference between
each foreign country’s output gap and the US output gap, i.e., GAPt − GAPUSt . We allocate to P1 the
currencies with the lowest output gap relative to the U.S. (low output gap currencies) whereas we place
in P5 the currencies with the highest output gap relative to the U.S. (high output gap currencies). The
portfolios are rebalanced every month and the sample runs from November 1983 to January 2016. Output
gaps are calculated by using industrial production data from the Organisation for Economic Co-operation
and Development’s (OECD’s) Original Release Data and Revisions Database. Output gaps are estimated
using the Hodrick-Prescott filter to extract a cyclical component from the data. We thank Colacito et al.
(2020) for providing the portfolio returns; given that the returns are available only until January 2016, we
fill the few missing observations using the nuclear-norm penalized regression approach recently employed
by Giglio et al. (2021b).
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Table A1: FX Spot and Forward Rates: Data Sources

This table reports in the first column the countries analyzed in the empirical analysis. The second column reports
Datastream (DS) mnemonics of the exchange rates data used for each country. Daily spot and forward exchange rates
are mainly sourced from Barclays Bank International (BBI), Reuters and WM/Reuters accessed via Datastream.

Country Spot Forward

Australia BBAUDSP BBAUD1F
Austria AUSTSC$, AUSTSCH USATS1F, AUSTS1F
Belgium BELGLU$, BELGLUX USBEF1F, BELXF1F
Brazil BRACRU$ USBRL1F
Bulgaria BULGLV$ USBGN1F
Canada BBCADSP, CNDOLLR BBCAD1F, CNDOL1F
Croatia CROATK$ USHRK1F
Cyprus CYPRUS$ USCYP1F
Czech Rep CZECHC$ USCZK1F
Denmark BBDKKSP, DANISHK BBDKK1F, DANIS1F
Egypt EGYPTN$ USEGP1F
Euro BBEURSP BBEUR1F
Finland FINMAR$ USFIM1F
France BBFRFSP, FRENFRA BBFRF1F, FRENF1F
Germany BBDEMSP, DMARKER BBDEM1F, DMARK1F
Greece GREDRA$ USGRD1F
Hong Kong BBHKDSP BBHKD1F
Hungary HUNFOR$ USHUF1F
Iceland ICEKRO$ USISK1F
India INDRUP$ USINR1F
Indonesia INDORU$ USIDR1F
Ireland BBIEPSP, IPUNTER BBIEP1F, IPUNT1F
Israel ISRSHE$ USILS1F
Italy BBITLSP, ITALIRE BBITL1F, ITALY1F
Japan BBJPYSP, JAPAYEN BBJPY1F, JAPYN1F
Kuwait KUWADI$ USKWD1F
Malaysia MALADL$ USMYR1F
Mexico MEXPES$ USMXN1F
Netherlands BBNLGSP, GUILDER BBNLG1F, GUILD1F
New Zealand BBNZDSP BBNZD1F
Norway BBNOKSP, NORKRON BBNOK1F, NORKN1F
Philippines PHILPE$ USPHP1F
Poland POLZLO$ USPLN1F
Portugal PORTES$, PORTESC USPTE1F, PORTS1F
Russia CISRUB$ USRUB1F
Saudi Arabia SAUDRI$ USSAR1F
Singapore BBSGDSP BBSGD1F
Slovakia SLOVKO$ USSKK1F
Slovenia SLOVTO$ USSIT1F
South Africa BBZARSP BBZAR1F
South Korea KORSWO$ USKRW1F
Spain SPANPE$, SPANPES USESP1F, SPANP1F
Sweden BBSEKSP, SWEKRON BBSEK1F, SWEDK1F
Switzerland BBCHFSP, SWISSFR BBCHF1F, SWISF1F
Taiwan TAIWDO$ USTWD1F
Thailand THABAH$ USTHB1F
Turkey TURKLI$ USTRY1F
United Kingdom BBGBPSP BBGBP1F
Ukraine UKRAHY$ USUAH1F
United States USDOLLR USDOL1F
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Table A2: FX Investment Strategies: Data Sources
The table provides information about the data used for the construction of the nine currency investment strategies
analyzed in the paper. First column (Strategy) reports the currency strategy’s name, and its short name we use in
the paper (SN: xxx). Second column (Signal) specifies the trading signal used by the strategy, while third column
(Source) reports the sources of the data used for the construction of the signals.

Strategy Signal Source
1. Carry
SN: Carry

(St − Ft)/St Authors’ calculation based on spot and for-
ward exchange rate quotes (midquote) from Bar-
clays Bank International (BBI), Reuters and
WM/Reuters accessed via Datastream.

2. Short-term
Momentum
SN: ST Mom

Xt Authors’ calculation based on spot and for-
ward exchange rate quotes (midquote) from Bar-
clays Bank International (BBI), Reuters and
WM/Reuters accessed via Datastream.

3. Long-term
Momentum
SN: LT Mom

Xt−12:t Authors’ calculation based on spot and for-
ward exchange rate quotes (midquote) from Bar-
clays Bank International (BBI), Reuters and
WM/Reuters accessed via Datastream.

4. Currency
Value
SN: Value

5yr Rel. PPP Level
Dev.

Real exchange rates are calculated by using Con-
sumer Price Index data from IMF International
Financial Statistics. Only for Taiwan CPI data
come from National Statistics.

5. Net Foreign
Assets
SN: NFA

−NFA/GDP Data are kindly provided to us by G.M. Fer-
retti, also available on IMF website as BOP/IIP
Statistics. We use the latest data available to
fill the missing observations for the latest years.

6. Liabilities Do-
mestic Currency
SN: LDC

−NFA/GDP; LDC LDC data are available on Philip Lane’s website,
http://www.philiplane.org/. We use the latest
data available to fill the missing observations for
the latest years.

7. Long-term Yields
SN: LYld

i10yr − iUS10yr For the 10-year rates, we use the Long-term in-
terest rates available on OECD Monthly Mone-
tary and Financial Statistics.

8. Term Spread
SN: Term

−(i10yr − ik3mo) For the 10-year (3-month) rates, we use the Long
(Short)-term interest rates available on OECD
Monthly Monetary and Financial Statistics.

9. Output GAP
SN: GAP

GAPt −GAPUSt We thank Colacito et al. (2020) for providing us
with currency portfolios sorted on the difference
between each country’s output gap and the US
output gap. Output gap is defined as the log-
arithm of the difference between actual output
and potential output.

vi

Electronic copy available at: https://ssrn.com/abstract=3796290



Table A3: FX Investement Strategies: Summary Statistics

The table presents the summary statistics of the nine currency investment strategies, i.e., plain portfolios (P), HML
cross-sectional (CS) and EW time series (TS) factors. We report the following excess-return statistics for the selected
portfolios: mean return in p.p.a. (mean), mean p-value (pval), median (med.), standard deviation in p.p.a. (st.dev.),
skewness (skew), kurtosis (kurt), Sharpe ratio annualized (SR), first-order autocorrelation coefficient (AC(1)), and
number of observations (obs.).

Carry Short-Term Momentum
P1 P2 P3 P4 P5 CS TS P1 P2 P3 P4 P5 CS TS

mean -0.80 0.74 2.85 3.87 6.46 7.26 3.68 mean -1.04 1.44 2.43 3.77 5.89 6.93 2.60
pval 0.57 0.56 0.06 0.01 0.00 0.00 0.00 pval 0.52 0.34 0.12 0.01 0.00 0.00 0.03
med. -1.40 1.41 2.59 4.63 8.55 9.32 4.84 med. -0.09 3.41 3.65 3.92 5.34 5.99 3.20
st.dev. 7.84 7.09 8.01 8.23 9.38 8.39 7.09 st.dev. 9.10 8.18 8.26 8.01 8.11 9.00 7.13
skew 0.27 -0.11 -0.15 -0.42 -0.33 -0.81 -0.41 skew -0.48 -0.50 -0.40 0.15 0.23 0.28 0.07
kurt 4.18 4.03 4.16 4.54 4.82 5.04 4.08 kurt 5.72 6.51 5.59 4.11 3.95 5.26 3.79
SR -0.10 0.10 0.36 0.47 0.69 0.86 0.52 SR -0.11 0.18 0.29 0.47 0.73 0.77 0.37
AC(1) 0.01 0.05 0.10 0.06 0.14 0.13 0.08 AC(1) 0.01 0.05 0.11 0.04 0.07 -0.03 0.05
obs 410 410 410 410 410 410 410 obs 410 410 410 410 410 410 410

Long-Term Momentum Value
P1 P2 P3 P4 P5 CS TS P1 P2 P3 P4 P5 CS TS

mean 0.61 1.85 2.18 3.53 4.84 4.24 2.63 mean 0.65 3.58 1.41 2.77 3.99 3.33 -1.96
pval 0.68 0.19 0.15 0.02 0.00 0.00 0.04 pval 0.69 0.02 0.39 0.08 0.01 0.01 0.16
med. 1.23 2.98 1.19 3.92 6.21 6.12 3.57 med. 1.16 4.77 1.96 2.56 3.91 2.98 -3.31
st.dev. 8.63 7.92 8.28 8.49 8.06 8.95 7.13 st.dev. 8.78 8.28 9.03 8.81 8.18 7.47 7.59
skew 0.27 0.17 -0.05 -0.24 -0.68 -0.53 -0.29 skew -0.41 -0.41 -0.14 0.03 0.24 0.11 0.42
kurt 5.45 4.47 4.28 4.42 6.40 4.10 3.94 kurt 4.87 4.39 4.25 4.16 4.03 3.95 3.98
SR 0.07 0.23 0.26 0.42 0.60 0.47 0.37 SR 0.07 0.43 0.16 0.31 0.49 0.45 -0.26
AC(1) 0.04 0.02 0.05 0.10 0.09 -0.05 0.08 AC(1) 0.11 0.10 0.03 0.04 -0.01 0.05 0.07
obs 410 410 410 410 410 410 410 obs 410 410 410 410 410 410 410

Net Foreign Assets Liabilities in Domestic Currency
P1 P2 P3 P4 P5 CS TS P1 P2 P3 P4 P5 P6 CS

mean 0.67 2.06 2.91 3.92 3.67 3.00 1.32 mean 1.04 2.28 2.04 2.19 4.10 5.16 4.12
pval 0.45 0.19 0.06 0.01 0.04 0.03 0.32 pval 0.45 0.18 0.10 0.13 0.01 0.01 0.00
med. 0.20 1.83 3.00 6.04 5.44 4.77 1.53 med. 1.70 2.32 2.35 4.29 4.30 6.98 5.67
st.dev. 5.02 8.65 8.34 7.82 9.94 7.63 7.16 st.dev. 7.57 9.40 7.15 7.69 8.82 9.87 6.61
skew 0.30 0.03 -0.21 -0.62 -0.30 -0.35 -0.06 skew 0.06 -0.02 -0.20 -0.25 -0.49 -0.36 -0.52
kurt 4.74 3.83 4.01 4.77 5.14 4.88 3.82 kurt 4.19 3.91 3.71 4.55 6.19 4.57 6.09
SR 0.13 0.24 0.35 0.50 0.37 0.39 0.18 SR 0.14 0.24 0.28 0.29 0.46 0.52 0.62
AC(1) 0.01 0.06 0.07 0.16 0.05 0.07 0.08 AC(1) 0.06 0.07 0.02 0.10 0.04 0.12 0.15
obs 410 410 410 410 410 410 410 obs 410 410 410 410 410 410 410

Term Spread Long-Term Yields
P1 P2 P3 P4 P5 CS TS P1 P2 P3 P4 P5 CS TS

mean 0.93 1.52 1.88 3.44 3.74 2.82 -0.58 mean 0.36 1.62 2.71 3.98 2.23 1.87 3.32
pval 0.57 0.37 0.32 0.03 0.06 0.08 0.65 pval 0.84 0.36 0.08 0.02 0.24 0.25 0.01
med. 1.71 2.40 3.96 3.51 4.79 5.64 -0.33 med. -0.16 1.64 1.68 5.83 3.25 4.47 4.26
st.dev. 9.12 9.69 10.23 9.04 10.76 9.06 7.17 st.dev. 9.64 9.85 8.66 9.65 10.55 9.24 7.11
skew -0.08 0.05 -0.48 -0.07 -0.75 -1.01 -0.21 skew 0.17 -0.09 -0.30 -0.47 -0.63 -0.91 -0.23
kurt 4.09 3.77 4.91 4.15 6.61 6.74 3.78 kurt 3.30 3.92 5.08 4.58 7.00 6.37 3.96
SR 0.10 0.16 0.18 0.38 0.35 0.31 -0.08 SR 0.04 0.16 0.31 0.41 0.21 0.20 0.47
AC(1) 0.04 0.04 0.08 0.02 0.08 0.03 0.05 AC(1) 0.05 0.06 0.04 0.03 0.08 0.01 0.08
obs 410 410 410 410 410 410 410 obs 410 410 410 410 410 410 410

Output Gap
P1 P2 P3 P4 P5 CS TS

mean -0.25 0.96 2.77 4.00 6.41 6.66 –
pval 0.89 0.58 0.15 0.02 0.00 0.00 –
med. 1.16 2.12 3.15 4.76 7.15 5.28 –
st.dev. 10.18 9.09 10.12 9.32 9.05 8.14 –
skew -0.06 -0.47 -0.28 -0.27 -0.28 0.01 –
kurt 4.49 4.72 4.75 4.39 3.97 4.32 –
SR -0.02 0.11 0.27 0.43 0.71 0.82 –
AC(1) 0.03 0.08 0.08 -0.01 0.07 -0.03 –
obs 387 387 387 387 387 387 –
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Table A4: Correlations of HML Portfolios

The table presents the correlation matrix of the HML spread portfolios of the nine currency investment strategies
described in Section II.

Carry ST Mom LT Mom Value NFA LDC Term LYld GAP
Carry 1 –0.10 0.04 0.08 0.47 0.55 0.54 0.76 0.00
ST Mom –0.10 1 0.25 –0.05 –0.15 –0.19 –0.09 –0.17 0.13
LT Mom 0.04 0.25 1 –0.39 –0.08 –0.02 0.04 –0.06 0.14
Value 0.08 –0.05 –0.39 1 0.11 –0.02 –0.11 0.14 0.09
NFA 0.47 –0.15 –0.08 0.11 1 0.60 0.25 0.49 –0.06
LDC 0.55 –0.19 –0.02 –0.02 0.60 1 0.31 0.40 –0.01
Term 0.54 –0.09 0.04 –0.11 0.25 0.31 1 0.49 –0.08
LYld 0.76 –0.17 –0.06 0.14 0.49 0.40 0.49 1 0.01
GAP 0.00 0.13 0.14 0.09 –0.06 –0.01 –0.08 0.01 1
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III Nontradable Candidate Risk Factors

Table A5: Financial Factors
This table reports in the first and second columns, respectively, financial factors’ names (Name) and short descriptions
of the factors and the sources of the data used for the construction of the factors (Description). Finally, the third
(Start) and fourth (End) columns show the period in which the factors are available. In the empirical analysis, we use
innovations of the factors, i.e. residuals from AR(1) processes, instead of the raw factors.

Name Description Start End
move
vxo

Merrill Lynch Option Volatility Estimate Index (move), and CBOE S&P
100 Volatility Index (vxo).
Source: https://fred.stlouisfed.org/, and Bloomberg

03/1989
11/1986

12/2017
12/2017

MF1
MF2
MF3

First three principal components extracted from a large dataset of macro
and financial time series.
Source: Updated Macro Factors in Bond Risk Premia database available
on Sidney Ludvigson’s website

11/1983 12/2017

gvol
gliq

Global FX volatility (gvol) and liquidity (gliq) factors, constructed as in
Menkhoff et al. (2012a).
Source: Authors’ calculations based on daily exchange rate quotes from
Barclays Bank International (BBI), Reuters and WM/Reuters via Datas-
tream

10/1983 12/2017

psliq Pastor and Stambaugh equity liquidity factor (Pastor and Stambaugh,
2003).
Source: Lubos Pastor’s website

11/1983 12/2017

sliq Systematic, low frequency, FX (il)liquidity factor (Karnaukh et al., 2015).
Source: Angelo Ranaldo’s website

02/1991 12/2017

ted TED spread.
Source: https://fred.stlouisfed.org/

02/1986 12/2017

noise Market-wide liquidity measure based on the connection between the
amount of arbitrage capital in the market and observed price deviations
(noise) in U.S. Treasury bonds (Hu et al., 2013).
Source: Jun Pan’s website

02/1987 12/2016

icap Intermediary capital risk factor based on the equity capital ratio of fi-
nancial intermediaries (He et al., 2017).
Source: Zhiguo He’s website

11/1983 12/2017

oilvolr
oilvole

Realized volatilities based on squared daily returns (oilvolr) and residuals
(oilvolr) of a AR(1) process fitted to WTI oil price.
Source: https://fred.stlouisfed.org/

11/1983 12/2017

gcf Global financial cycle factor extracted from a dynamic factor model for
a large and heterogeneous panel of risky asset prices traded around the
globe (Miranda-Agrippino and Rey, 2020).
Source: S. Miranda-Agrippino’s website

11/1983 12/2017

otic
ptic

Official (otic) and Private (ptic) net inventories in U.S. Treasuries from
the Treasury International Capital (TIC) System, standardized over
rolling 3-year standard deviation.
Source: https://www.treasury.gov

11/1983 12/2017

corp spread between BAA and AAA rated bond yields.
Source: https://fred.stlouisfed.org/

01/1986 12/2017

lib-ois
ois-tbill

Libor-OIS spread and OIS-TBill spread based on Libor, TBill, OIS data.
Source: https://fred.stlouisfed.org/

12/2001 12/2017

eqrv S&P500 monthly realized volatility. Authors’ calculations using daily
S&P500 closing prices.
Source: Datastream

11/1983 12/2017
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Table A6: Macro Factors

This table reports in the first and second columns, respectively, macroeconomic factors’ names (Name) and short
descriptions of the factors and the sources of the data used for the construction of the factors (Description). The third
(Start) and fourth (End) columns show the period in which the factors are available. Each factor in the list is used
in the paper for different time-formation periods. To start with, (m) is the benchmark time-formation period and
indicates either a month-on-month log growth rate (for the factors from ipus to cpiw/us), or the end-of-month value
(for the factors from ipstd to cpistdw). Then, we measure the variables at other frequencies using their three-month
simple moving averages (q); 12-month simple moving averages (y); three-month exponential moving averages (eq); and
12-month exponential moving averages (ey). In the empirical analysis, we use innovations of the factors, i.e. residuals
from AR(1) processes, instead of the raw factors.

Name Description Start End
ipus Log growth rate in U.S. industrial production index.

Source: https://fred.stlouisfed.org/
11/1983 12/2017

cpius Log growth rate in U.S. consumer price index.
Source: https://fred.stlouisfed.org/

11/1983 12/2017

nfpyr Log growth rate in U.S. non-farm payroll.
Source: https://fred.stlouisfed.org/

11/1983 12/2017

cfnai U.S. Chicago Fed national activity index.
Source: https://fred.stlouisfed.org/

11/1983 12/2017

uneus Log growth rate in U.S. harmonized unemployment rate (total).
Source: https://fred.stlouisfed.org/

11/1983 12/2017

cus Log growth rate in U.S. aggregate real per capita consumption expendi-
tures on nondurable goods and services.
Source: https://fred.stlouisfed.org/

11/1983 12/2017

ipw Cross-country GDP-weighted average of log growth rates in industrial
production.
Source: https://stats.oecd.org/

11/1983 12/2017

ipw/us Cross-country GDP-weighted average of log growth rates in industrial
production minus log growth rate in U.S. industrial production.
Source: https://stats.oecd.org/

11/1983 12/2017

cpiw Cross-country GDP-weighted average of log growth rates in consumer
price index.
Source: https://stats.oecd.org/

11/1983 12/2017

cpiw/us Cross-country GDP-weighted average of log growth rates in consumer
price index minus log growth rate in U.S. consumer price index.
Source: https://stats.oecd.org/

11/1983 12/2017

unew Cross-country GDP-weighted average of unemployment rate log growth
rates.
Source: https://stats.oecd.org/

11/1983 12/2017

unew/us Cross-country GDP-weighted average of log growth rates in unemploy-
ment rate minus log growth rate in U.S. unemployment rate.
Source: https://stats.oecd.org/

11/1983 12/2017

ipstd Cross-country standard deviation of log growth rates in industrial pro-
duction.
Source: https://stats.oecd.org/

11/1983 12/2017

ipstdw Cross-country standard deviation of GDP-weighted log growth rates in
industrial production.
Source: https://stats.oecd.org/

11/1983 12/2017

cpistd Cross-country standard deviation of log growth rates in consumer price
index.
Source: https://stats.oecd.org/

11/1983 12/2017

cpistdw Cross-country standard deviation of GDP-weighted log growth rates in
consumer price index.
Source: https://stats.oecd.org/

11/1983 12/2017
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Table A7: Text-Based Factors

This table reports in the first column (Name) text-based factors’ names. The second column (Description) reports
short descriptions of the risk factors and the sources of the data used for the construction of the factors. Finally, the
third (Start) and fourth (End) columns report the period in which the factors are available. In the empirical analysis,
we use innovations of the factors, i.e. residuals from AR(1) processes, instead of the raw factors.

Name Description Start End
gepu
gepu_ppp

Monthly indexes of Global Economic Policy Uncertainty computed as
a GDP-weighted (gepu) average or as a PPP-adjusted GDP-weighted
(gepu_ppp) average of national EPU indexes for 21 countries.
Source: https://www.policyuncertainty.com

01/1997
01/1997

12/2017
12/2017

fsi_tx newspaper-based Financial Stress Indicator for the U.S.
Source: https://www.policyuncertainty.com

11/1983 12/2016

emv_ov
emv_mout
emv_mqnt
emv_inf
emv_com
emv_ir
emv_fc
emv_fx
emv_fp
emv_tx
emv_gov
emv_mp
emv_reg
emv_freg
emv_tp

Newspaper-based Equity Market Volatility (EMV) trackers that move
with the CBOE Volatility Index (VIX) and with the realized volatility
of returns on the S&P 500. In addition to the Overall EMV Tracker
(emv_ov), other category-specific EMV trackers are also considered,
e.g., Macroeconomic News and Outlook (emv_mout), Macro - Broad
Quantity Indicators (emv_mqnt), Macro - Inflation Indicator (emv_inf),
Commodity Markets (emv_com), Macro - Interest Rates (emv_ir),
Financial Crises (emv_fc), Exchange Rates (emv_fx), Fiscal Policy
(emv_fp), Taxes (emv_tx), Government Spending, Deficits, and Debt
(emv_gov), Monetary Policy(emv_mp), Regulation (emv_reg), Finan-
cial Regulation (emv_freg), Trade Policy (emv_tp).

Source: https://www.policyuncertainty.com

01/1985 12/2017

epu_all
epu_mp
epu_fp
epu_tx
epu_gov
epu_hc
epu_ns
epu_ep
epu_reg
epu_freg
epu_tr
epu_cc

Indexes of U.S. economic policy uncertainty that hinge upon newspa-
per coverage frequency. In addition to the general Economic Policy
Uncertainty index (epu_all), 11 categorical sub-indexes are also con-
sidered, e.g., Monetary policy (epu_mp), Fiscal Policy (epu_fp), Taxes
(epu_tx), Government spending (epu_gov), Health care (epu_hc),
National security (epu_ns), Entitlement programs (epu_ep), Regulation
(epu_reg), Financial Regulation (epu_reg), Trade policy (epu_tr),
Sovereign debt, currency crises (epu_cc).

Source: https://www.policyuncertainty.com

01/1985 12/2017
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IV Additional Baseline Analysis

In what follows, we provide a more detailed description of the results regarding the latent-factor signal
strengths and the associated SDFs.

Latent Factor “Signal Strengths”. Table A8 presents the “signal-strength” analysis focusing on the
six largest eigenvalues and the associated factors, as we find that the remaining eigenvalues have negligible
“signal strengths”. First, we consider the case of PCA, i.e., RP-PCA without overweights on the means
(ω = −1). The first eigenvalue of ΣRP (3.22) is symptomatic of a systematic, strong factor, given that
it is large and substantially higher than the rest of the estimated eigenvalues. The second eigenvalue
is substantially lower than the first (0.18), indicating that the associated factor is “less strong”, being
relevant for fewer assets. However, the second factor also stands out as its eigenvalue is well separated from
the subsequent eigenvalues. In fact, the remaining eigenvalues are smaller in magnitude and roughly of
comparable levels with each other. The same pattern in eigenvalues is evident when implementing RP-PCA
with ω = 0 (not reported), i.e., PCA applied to the correlation matrix. In contrast, for models with ω > 0,
the third factor becomes more clearly separated from the remaining factors. With ω = 10, the value of the
third eigenvalue (0.14) is twice as large as that of the fourth eigenvalue (0.07).

At the same time, higher values of the RP-weight also enhance the “signal strengths” of the first two
factors.39 These patterns are more evident for higher values of the RP-weight; all of this can be easily
visualized in Figure 2. Relatedly, the sum of the first two eigenvalues extracted using RP-PCA (with ω > 5)
exceeds the sum of the first six eigenvalues estimated via PCA. In short, using RP-PCA, the factor “signal
strengths” are enhanced. In this way, relevant factors that are not detected by PCA are instead identified
by RP-PCA, as is the case of the third factor. To corroborate this interpretation, we apply the statistical
tests of Onatski (2010) and Giglio and Xiu (2021) – O and GX tests, respectively – to the same ΣRP matrix.
Consistently, both tests detect two factors using PCA, and three factors using RP-PCA (see legend of Figure
2). Thus, we can conclude that the third factor is weak, but presumably with high SR, being therefore
relevant for pricing the cross section of test assets.

To shed light on this conjecture, we assess what drives a factor’s overall “signal strength”, by simply
inspecting its composition. Thus, we try to establish whether a factor (i) is strong or weak, and (ii) with
high or low Sharpe ratio. To do this, we contrast the eigenvalues of ΣF

RP = ψ(ΣF + (1 + ω)µ>FµF )ψ> with
those of ΣF

PCA = ψΣFψ
>.40 The two types of eigenvalues capture, respectively, the overall and time-series

“strength” of the associated factor. The time-series “strength” is informative about whether a factor is
weak or strong. Instead, a comparison of the two types of eigenvalues is revealing about the factor pricing
relevance, and hence about whether it is a low or high SR factor. Weak factors are factors that explain a
small set of test assets, so that these factors should have low variance, i.e., low time-series “signal strength”.
Meanwhile, if the overall strength exceeds the time-series “strength”, the factor is likely to also have high
average returns (i.e., risk premia). Thus, intuitively, factors with low time-series strength and high overall
strength denote weak factors with high Sharpe ratios.

Table A8 shows that factors’ time-series strengths are unchanged as the RP-weight increases. Hence, for
39For this reason, the absolute difference between F̂2 and F̂3 is essentially the same for ω = -1 and 10 (i.e., 0.18). But, for

higher RP-weights, F̂2 and F̂3 become increasingly separated (e.g., the difference is 0.32 for ω = 20).
40Recall from Section 2.1.1 that ΣRP should converge to ΣF

RP .
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RP-PCA with ω > 0, the improvement in the factors’ overall strength is entirely due to the risk-premium
component. For higher values of the RP-weight, relevant factors are better separated from the remaining
factors, but also between themselves (see Panel A.III Difference). Recall that, in RP-PCA, factor orderings
in terms of variances and “signal strengths” may not coincide, exactly because of the effect of the means.
However, for ω = 20, we find that factors ordered first tend to have not only higher variances but also
higher means. This is not the case using RP-PCA with low weights (e.g., ω = 5). Moreover, for ω = 20,
leaving aside the first factor (which is strong but with relatively low Sharpe ratio), weaker factors also
display descending Sharpe ratios.41 Of particular interest are the second and third factors which, as we
suspected, are weak factors with high Sharpe ratios (0.34 and 0.28, respectively; see Panel B, Table A8).
The fourth factor is also weak with a positive and significant risk premium, and hence potentially represents
an additional pricing factor, but its Sharpe ratio is half that of the third factor. The remaining factors have
zero risk premia, and hence are time-series factors.

Thus far, we documented that RP-PCA with reasonably high RP-weights increases factor “signal
strengths” and aggregates the information in a small number of factors. In doing so, it helps us esti-
mate factors more efficiently, as documented also by LP for equities. Moreover, RP-PCA detects weak
factors with high Sharpe ratios, which are missed by the standard PCA (the third latent factor is a clear
example in this regard). These factors are particularly hard to identify, and yet have important asset pricing
implications, exactly because of their large risk premia. In our context, their omission is likely to distort
the candidate factor risk-premium estimates.

Optimal Currency SDF (ϕ(FωK)). Table 1 in the main text evaluates the trade-off for different RP-weights
(ω = -1, 10, 20, 50). We consider SDFs of increasing dimension, including up to six latent factors associated
with the six largest eigenvalues of matrix ΣRP . In doing so, we also obtain useful clear indications on the
optimal factor SDF.

To start with, we note that average idiosyncratic variance, σε, increases with the RP-weight. The
increase is, however, negligible for the optimal three-factor SDF, and is somewhat more pronounced for the
two-factor SDF. In fact, as ω varies from -1 to 50, σε increases from 17.07 percent to 17.40 using ϕ(F1−3),
and from 19.04 percent to 20.36 using ϕ(F1−2). As expected, RMSα moves inversely with the RP-weight;
what is instead striking are the large economic gains in terms of pricing accuracy. For example, based on
ϕ(F1−3), RMSα is around 1.30 with ω = −1, while it drops to 0.80 with ω = 50. The cross-sectional R2 and
MAE reveal a similar pattern of the model’s pricing performance. For example, the ϕ(F1−3)’s R2 increases
from 45 percent with ω = −1 to slightly less than 100 percent with ω = 50. This evidence, taken together,
shows that in practice there is no trade-off in selecting high RP-weights in our data, which is consistent
with the earlier evidence of Table A8, showing stable time-series signal strengths across RP-weights.

Note that RMSα is lower using ϕ(F1−3) with ω ≥ 20 than using ϕ(F1−6) with ω = −1. Based on the R2

and MAE criteria, we find similar evidence also for lower but positive values of the RP-weight. Thus, the
RP-PCA method, implemented with a reasonably high RP-weight, achieves lower pricing errors than PCA
also for more parsimonious SDFs. Moreover, it is also apparent that, based on ϕ(F1−3), the marginal gains
in terms of pricing performance obtained by using large RP-weights are small. In essence, pricing-error
statistics tend to stabilize for ω ≥ 20, and we do not see additional benefits in using RP-weights higher
than 20. The pricing contribution of F̂4 is, however, more evident for intermediate RP-weights than high

41Note that the results documented using ω = 20 are basically unchanged for ω = 30, 40, 50.
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weights. Hence, the optimal FX pricing kernel consists of (at least) the three RP-PCA factors, extracted
using ω = 20.

To complete the analysis, we inspect the maximal SRs (Panel B, Table 1). To start with, we compare
the SRs implied by the optimal SDFs of RP-PCA and PCA. We find that the SR of ϕ(F1−3) with ω = 20
is roughly three times higher than the SR of ϕ(F1−2) with ω = −1 (0.45 vs. 0.14). However, even for
SDFs of equal dimension, the SR of RP-PCA is substantially higher than that of PCA (0.45 vs. 0.26).
Such a wedge is almost equally due to F̂2 and F̂3, as both factors’ means and SDF-weights (b̂MV ) increase,
albeit to different extents, when moving from ω = −1 to ω = 20. While F̂2’s SDF-weights and means
increase monotonically with the RP-weight, those of F̂3 display an hump-shaped pattern. Also note that,
for ω ≥ 20, the SRs of the three-factor SDFs display only marginal increases. Moreover, by adding F̂4 to
the SDF, the SR further increases to 0.48 using RP-PCA with ω = 20, while it is unchanged using PCA.
The SDF-weights of F̂4 display a qualitatively similar pattern to those of F̂3, but F̂4’s contribution to the
maximal SR is substantially smaller. Using four-factor SDFs, we appreciate no significance difference in the
SRs of the SDFs with ω = 20 and ω = 50.

Overall, we can conclude that the optimal latent-factor currency SDF should include at least the first
three factors and that an RP-weight of 20 seems a plausible choice.
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Table A8: Latent Factor Signal Strengths

The table presents latent factors’ signal strengths and statistics, whereby factors are estimated via RP-PCA using
different RP-weights. Specifically, the factors are obtained from regressing the portfolio returns on the factor loadings.
The factor loadings are proportional to the eigenvectors associated with the K = 6 largest eigenvalues of the matrix
ΣRP = 1

TX
>X+ωX̄>X̄, whereX is the T×N matrix of currency portfolio excess returns, and ω is the RP-weight (see

Section 2.1.1). In Panel A: Eigenvalues, A.I Plain, we present the K largest eigenvalues (νK) associated with matrices,
ΣFPCA = ψΣFψ> and ΣFRP = ψ(ΣF +(1+ω)µ>FµF )ψ>, where ψ and ΣF are the loadings (or betas) and the annualized
K-factor variance matrix, respectively; we also report the K largest eigenvalues of the annualized ΣRP matrix. In
A.II Normalized, eigenvalues are normalized by a constant (ν̃k(ω) = νk(ω)/σ̄2

ε (ω)), and hence more directly relate
to the factor signal-to-noise ratios; specifically, σ̄2

ε = 1
N

∑N
n=1 σ

2
ε,n, where σ2

ε,n is the annualized variance of the n-th
portfolio’s residual (i.e., the idiosyncratic variance), obtained by estimating Xnt = αn + F̂tψ

>
n + εnt, for t = 1..., T ,

where F̂t collects the six latent factors. In A.III Difference, we present the differences of consecutive normalized
eigenvalues. In Panel B: Factors, B.I Statistics, we report orthogonalized factor Sharpe ratios (SR), the rank of the
factor means (Rnk), and the annualized factor means (µF ), which are starred with ∗∗∗,∗∗,∗ denoting significance at
the 1-, 5- and 10-percent levels, respectively, based on Newey-West standard errors with optimal lag-length selection.
We carry out the analysis using RP-PCA with selected RP-weights. RP-PCA with ω = −1, and 0 correspond to
standard PCA applied to the covariance and correlation matrices, respectively. With ω > 0, RP-PCA “overweights”
the factor means. The test assets consist of the currency portfolios from the nine investment strategies (N = 46), for
the period 11/1983-12/2017 at monthly frequency (T = 410).

Panel A: Eigenvalues Panel B: Factors
A.I Plain A.II Normalized A.III Difference B.I Statistics

ω = −1 ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP SR Rnk µF

ν1 3.26 3.26 3.22 5.86 5.86 5.79 5.53 5.53 5.46 F1 0.10 1 0.17∗
ν2 0.19 0.19 0.18 0.33 0.33 0.33 0.18 0.18 0.18 F2 0.11 4 0.05∗∗
ν3 0.08 0.08 0.08 0.15 0.15 0.15 0.03 0.03 0.03 F3 0.22 3 0.06∗∗∗
ν4 0.07 0.07 0.07 0.12 0.12 0.12 0.02 0.02 0.02 F4 0.01 6 0.00
ν5 0.06 0.06 0.06 0.10 0.10 0.10 0.01 0.01 0.01 F5 0.26 2 0.06∗∗∗
ν6 0.05 0.05 0.05 0.09 0.09 0.09 – – – F6 0.03 5 0.01

ω = 5 ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP SR Rnk µF
ν1 3.26 3.44 3.40 5.84 6.18 6.10 5.51 5.80 5.73 F1 0.10 1 0.18∗
ν2 0.19 0.21 0.21 0.33 0.37 0.37 0.18 0.16 0.16 F2 0.19 3 0.08∗∗∗
ν3 0.08 0.12 0.12 0.15 0.22 0.22 0.03 0.09 0.09 F3 0.35 2 0.10∗∗∗
ν4 0.07 0.07 0.07 0.12 0.12 0.12 0.03 0.00 0.00 F4 0.11 5 0.03∗∗
ν5 0.05 0.07 0.07 0.10 0.12 0.12 0.00 0.03 0.03 F5 0.15 4 0.04∗∗∗
ν6 0.05 0.05 0.05 0.09 0.09 0.09 – – – F6 0.01 6 0.00

ω = 10 ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP SR Rnk µF
ν1 3.26 3.60 3.56 5.83 6.46 6.38 5.50 6.02 5.94 F1 0.10 1 0.18∗
ν2 0.19 0.24 0.24 0.33 0.43 0.44 0.19 0.18 0.18 F2 0.26 2 0.10∗∗∗
ν3 0.08 0.14 0.14 0.15 0.25 0.25 0.02 0.13 0.13 F3 0.33 3 0.10∗∗∗
ν4 0.07 0.07 0.07 0.12 0.12 0.13 0.03 0.00 0.01 F4 0.16 4 0.04∗∗∗
ν5 0.05 0.07 0.07 0.09 0.12 0.12 0.00 0.03 0.03 F5 0.03 5 0.01
ν6 0.05 0.05 0.05 0.09 0.09 0.09 – – – F6 0.01 6 0.00

ω = 20 ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP ΣF
PCA ΣF

RP ΣRP SR Rnk µF
ν1 3.26 3.94 3.89 5.83 7.05 6.97 5.50 6.47 6.37 F1 0.10 1 0.19∗∗
ν2 0.19 0.33 0.33 0.33 0.59 0.59 0.19 0.31 0.32 F2 0.34 2 0.11∗∗∗
ν3 0.08 0.15 0.15 0.15 0.28 0.28 0.02 0.15 0.15 F3 0.28 3 0.09∗∗∗
ν4 0.07 0.07 0.07 0.12 0.13 0.13 0.03 0.00 0.01 F4 0.15 4 0.04∗∗∗
ν5 0.05 0.07 0.07 0.09 0.12 0.12 0.00 0.03 0.03 F5 0.02 5 0.01
ν6 0.05 0.05 0.05 0.09 0.09 0.09 – – – F6 0.01 6 0.00

xv

Electronic copy available at: https://ssrn.com/abstract=3796290



Figure A1: Portfolio Risk Exposures to Latent Factors
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The figure shows portfolio loadings on the six estimated latent factors from the panel of currency portfolios excess
returns by means of RP-PCA with baseline RP-weight, i.e., ω = 20. The RP-PCA loadings are also given by the
regression coefficients using transformed data, that is, by incorporating the cross-sectional error (Lettau and Pelger,
2020a,b). Specifically, define ω̃nt =

√
ω + 1 − 1, X̃nt = Xnt + ω̃X̄nt and F̃kt = F̂kt + ω̃F̄kt. Then, for any value

of ω, RP-PCA loadings are given by the coefficients (ψ̃n) from the OLS time-series regressions, X̃nt = F̃tψ̃
>
n + ẽnt,

n = 1, . . . , N , t = 1, . . . , T . The test assets’ sample consists of the portfolios associated with the nine investment
strategies (N = 46). The sample spans the 11/1983-12/2017 period at monthly frequency (T = 410).
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Figure A2: Portfolio Explained Variations by Latent Factors
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The figure shows the R2s obtained by regressing currency portfolios’ excess returns (Xnt) on the estimated orthog-
onalized latent factors (F̂t = [F̂1t, . . . , F̂Kt], with K = 6). Factors are estimated from the panel of test asset excess
returns by means of RP-PCA with baseline RP-weight (i.e., ω = 20). The estimated factors are then orthogonalized,
to facilitate their economic interpretation. We estimate N ×K OLS time-series regressions, Xnt = αn+ F̂1:ktψ

>
n +ent,

n = 1, . . . , N , t = 1, . . . , T , k = 1, . . . ,K, with F̂1:kt = [F̂1t, . . . , F̂kt]. In this way, for each portfolio, we show factors’
contributions to the overall R2

n, omitting that of F̂1t, to better visualize the evidence of the remaining factors. We
report the overall R2

ns, which include all K factors, above the bars. The test assets’ sample consists of the portfolio
excess returns associated with the nine investment strategies (N = 46). The sample spans the 11/1983–12/2017 period
at monthly frequency (T = 410).
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Figure A3: Nontradable Factor’s Explained Variations by the Six Latent Factors
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Panel B: Text-Based Factors
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Panel C: Macro Factors     
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The figure shows nontradable candidate factor explained variations by the six latent factors. Factors are extracted
by means of RP-PCA with baseline RP-weight (i.e., ω = 20) applied to the panel of N = 46 currency portfolios
associated with the nine investment strategies. Panels A, B, and C present the evidence for financial, text-based
and macro candidate factors, respectively. In each panel, factors are sorted by the R2s associated with the six-factor
model (to help visualize the results, we only display the 30 macro factors with the highest R2s). Green (red) K-th bar
edges denote (not) significant risk premia, at the 10 percent level, based on the model including the selected number
of latent factors. The test assets’ sample consists of the portfolios associated with the nine investment strategies
(N = 46). Factors are expressed as innovations, using the residuals from AR(1) processes, and are then standardized.
The sample period varies with the factor at hand, according to data availability over the 11/1983-12/2017 period
(T = 410). See factor descriptions in Tables A5-A7.
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Table A9: Exposures of All Nontradable Factors to the Latent Factors

The table presents the nontradable candidate risk factors’ exposures to the latent factors (ηFk
) and the explained

variations (R2
F1−k

) obtained from the spanning regression of Eq. (15), for models including an increasing number of
factors, k = 1, . . . ,K. We report the nontradable factor exposures to the first six extracted, orthogonalized latent
factors (i.e., K = 6). The factors are extracted by applying RP-PCA with baseline weight (i.e., ω = 20) to the N = 46
portfolios obtained from the nine investment strategies. Panels A, B, and C show the estimates for the financial,
text-based, and macro factors, respectively. To contain the space, we do not report macro factors measured using
exponential moving averages. ∗∗∗,∗∗,∗ denote significance, respectively, at the 1-, 5- and 10-percent levels, based on
Newey-West standard errors.

PANEL A: Financial Factors
A.I: Risk Exposures A.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

otic 0.73∗∗ 5.73∗∗∗ -0.35 -1.42 2.26 7.47∗∗ 1.17 3.67 3.68 3.77 4.01 5.99
otic2 0.65∗ 4.87∗∗∗ -0.42 -2.10 2.80 8.78∗∗∗ 0.95 2.76 2.77 2.97 3.34 6.07
ptic -0.44 -0.17 -1.16 -0.73 1.31 -1.81 0.43 0.43 0.53 0.55 0.63 0.75
ptic2 -0.37 -1.39 -1.15 -1.23 0.83 0.19 0.31 0.46 0.56 0.62 0.66 0.66
icap 0.69∗ 9.46∗∗∗ -6.38∗∗∗ 3.89 6.72∗∗∗ 3.80 1.06 7.93 10.91 11.60 13.73 14.25
mf1 0.19 -1.42 3.58∗∗ 1.25 -1.81 0.63 0.08 0.23 1.17 1.24 1.40 1.41
mf2 -1.16∗∗ -0.82 2.54 -2.38 1.51 -1.26 3.02 3.07 3.54 3.80 3.90 3.96
mf3 1.22∗∗ 1.07 -5.16∗∗ 0.25 1.35 2.45 3.34 3.42 5.37 5.37 5.46 5.67
noise -1.36∗ -11.34∗∗∗ 11.34∗∗ 8.06∗ -0.62 -0.41 4.99 10.98 17.33 20.05 20.07 20.07
sliq -1.29∗∗ -10.48∗∗∗ 5.28 7.79∗ -0.90 -6.67∗ 5.81 11.47 13.40 16.21 16.23 17.60
oilvole -0.09 -5.50 0.97 -0.93 3.63 0.42 0.02 2.33 2.40 2.44 3.06 3.07
oilvolr 0.47 -2.78∗∗ 3.20 -1.35 -0.49 1.65 0.48 1.07 1.82 1.90 1.92 2.01
gfc 3.13∗∗∗ 11.71∗∗∗ -7.49∗∗∗ -2.96 8.80∗∗∗ 3.13 21.83 32.33 36.43 36.83 40.49 40.84
gliq -0.41 -3.23∗∗ 3.57∗∗ 0.13 -2.60 -3.37 0.37 1.17 2.10 2.10 2.42 2.83
gvol -1.07∗∗ -9.95∗∗∗ 2.99 7.80∗∗ -2.07 -8.34∗∗∗ 2.55 10.13 10.79 13.54 13.74 16.21
psliq 0.03 8.00∗∗ -0.85 -0.88 2.42 -0.84 0.00 4.91 4.96 5.00 5.27 5.30
corp -1.82∗∗ -5.16∗∗ 11.02∗∗ 2.43 1.67 0.95 6.35 7.60 14.97 15.22 15.32 15.35
ted -0.45 -6.82∗ -0.44 0.38 0.72 0.27 0.47 3.94 3.95 3.96 3.98 3.98
lib ois -1.48∗ -14.14∗ 3.61 1.30 6.90 4.52 6.39 16.00 16.97 17.09 18.03 18.35
ois lib -0.31 -7.43 2.17 -0.33 4.81 13.68∗∗ 0.15 1.93 2.10 2.11 2.65 5.63
move -0.98∗∗ -10.89∗∗∗ 7.81∗∗∗ 0.12 -0.25 -1.94 2.78 8.33 11.75 11.75 11.75 11.86
vxo -1.60∗∗∗ -15.19∗∗∗ 10.32∗∗∗ 1.85 -6.91∗∗∗ -1.35 6.47 19.96 26.40 26.55 28.50 28.56
eqrv -0.65 -11.72∗∗ 1.46 3.11 -2.83 0.80 0.93 11.45 11.60 12.04 12.42 12.44

PANEL B: Text-Based Factors
B.I: Risk Exposures B.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

gepu 0.00 -11.18∗∗∗ 3.38 3.12 -3.68 -3.52 1.12 7.36 7.64 7.99 8.26 8.56
gepu ppp 0.13 -12.01∗∗∗ 3.82 2.81 -3.79 -2.97 0.89 7.82 8.17 8.45 8.75 8.97
fsi tx -0.45 -5.40∗ 4.66∗∗ 2.29 -2.78 1.93 0.46 2.77 4.42 4.67 5.04 5.17
epu all 0.12 -6.09∗∗ 2.74 4.06∗∗ -4.95∗ -0.46 0.02 2.93 3.62 4.38 5.42 5.43
epu mp 0.35 -7.05∗∗ 0.94 3.62∗ -1.25 3.25 0.25 3.95 4.02 4.62 4.70 5.08
epu fp 0.14 -3.61 3.16 2.23 -3.25 3.74 0.05 1.01 1.78 2.01 2.51 3.01
epu tx 0.04 -3.43 3.09 2.68 -3.09 3.32 0.00 0.87 1.60 1.94 2.39 2.78
epu gov 0.54 -2.83 2.58 1.55 -2.10 2.71 0.66 1.24 1.74 1.85 2.07 2.33
epu hc -0.26 -1.69 -0.85 0.70 -2.32 0.62 0.17 0.42 0.45 0.48 0.71 0.73
epu ns 0.12 -1.64 3.80∗∗ 0.62 -3.84 -3.99∗ 0.03 0.26 1.45 1.47 2.04 2.61
epu ep 0.12 -1.32 -0.83 0.42 -3.41 0.26 0.02 0.19 0.21 0.22 0.73 0.73
epu reg 0.03 -4.79∗ 0.67 3.38 -1.02 -3.78 0.00 1.78 1.83 2.34 2.37 2.87
epu freg 0.24 -5.51 0.87 0.59 1.40 -3.05 0.14 2.40 2.44 2.46 2.56 2.89
epu tr -0.44 -2.80 -2.38 1.22 -0.33 -5.09∗∗ 0.50 1.18 1.53 1.59 1.59 2.51
epu cc 0.22 -3.46∗∗ -0.35 0.88 -1.30 -3.33 0.09 1.07 1.07 1.11 1.16 1.56
emv ov -0.49 -9.13∗∗ 2.88 1.87 -1.51 0.31 0.48 6.73 7.35 7.51 7.61 7.61
emv mout -0.38 -9.09∗∗ 2.19 2.74 -0.31 1.32 0.29 6.40 6.73 7.07 7.07 7.14
emv mqnt -0.26 -7.85∗∗ 1.35 2.55 -1.12 1.09 0.14 4.78 4.92 5.21 5.27 5.31
emv inf -0.28 -7.93∗∗ 2.92 0.09 -0.98 0.29 0.14 4.85 5.45 5.45 5.50 5.50
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emv com -0.55 -8.96∗∗ 3.64 1.21 -1.67 0.39 0.59 6.60 7.56 7.63 7.75 7.76
emv ir -0.23 -7.97∗∗ 0.89 1.32 -1.56 1.60 0.11 4.96 5.03 5.11 5.22 5.31
emv fc -0.72 -6.25∗ 2.52 2.78 2.96 -2.17 1.06 3.80 4.16 4.50 4.90 5.06
emv fx -0.13 -5.90∗∗ 3.25∗∗ -3.04 0.00 -8.69∗∗∗ 0.02 2.73 3.50 3.92 3.93 6.60
emv fp -0.32 -7.32∗∗ 1.52 1.15 -1.58 0.34 0.21 4.29 4.48 4.54 4.65 4.65
emv tx -0.34 -7.72∗∗ 2.09 2.10 -0.68 0.61 0.23 4.68 4.99 5.19 5.21 5.22
emv gov 0.06 -4.32∗ -0.68 -1.57 -1.69 1.33 0.01 1.51 1.53 1.64 1.77 1.83
emv mp -0.59 -8.69∗∗∗ 2.80 2.88 0.22 1.18 0.70 6.22 6.74 7.11 7.11 7.16
emv reg -0.20 -8.56∗∗ 1.84 2.19 1.49 0.19 0.07 5.42 5.63 5.84 5.93 5.93
emv freg -0.49 -7.54∗ 1.32 2.18 1.18 2.37 0.47 4.60 4.70 4.91 4.96 5.16
emv tp -0.34 -5.56∗∗ 3.79∗ -0.81 0.25 -0.77 0.18 2.42 3.38 3.41 3.42 3.44

PANEL C: Macro Factors
C.I: Risk Exposures C.II: Explained Variation

ηF1 ηF2 ηF3 ηF4 ηF5 ηF6 R2
F1 R2

F1−2 R2
F1−3 R2

F1−4 R2
F1−5 R2

F1−6

ipus(m) -0.33 1.98 0.70 -1.82 1.44 0.63 0.24 0.54 0.58 0.73 0.82 0.84
ipus(q) 0.52 1.29 -0.91 -1.13 5.86∗ -0.51 0.60 0.73 0.79 0.85 2.47 2.48
ipus(y) 0.22 2.27 0.14 -0.18 -0.88 -1.52 0.11 0.51 0.51 0.51 0.55 0.63
cpius(m) 0.18 0.56 -2.67 -1.23 3.80 0.91 0.08 0.10 0.62 0.69 1.37 1.40
cpius(q) 0.38 0.55 -3.12∗ -3.35 3.84 -1.10 0.33 0.35 1.07 1.59 2.30 2.34
cpius(y) 0.33 1.10 -3.60∗ -3.53 0.24 -0.23 0.24 0.34 1.30 1.87 1.88 1.88
nfpyr(m) 0.25 -0.10 -0.51 1.01 -1.24 0.76 0.16 0.16 0.18 0.23 0.30 0.33
nfpyr(q) 0.78∗∗ 1.36 -0.45 0.83 1.84 0.57 1.34 1.49 1.50 1.53 1.69 1.70
nfpyr(y) 0.60 0.57 -0.85 -0.13 -1.72 -0.07 0.83 0.86 0.91 0.91 1.05 1.05
cfnai(m) -0.07 0.87 -2.30 -1.90 1.52 1.10 0.01 0.07 0.46 0.62 0.73 0.77
cfnai(q) 0.46 2.44 -1.83 -1.18 5.78∗ 0.56 0.46 0.92 1.17 1.23 2.80 2.81
cfnai(y) 0.53 1.08 -1.73 -1.36 -1.40 0.07 0.64 0.73 0.95 1.04 1.13 1.13
uneus(m) -0.09 0.08 -2.59 3.24 -0.90 -0.79 0.02 0.02 0.51 0.98 1.02 1.04
uneus(q) -0.09 -1.00 0.59 1.38 -3.17 0.67 0.02 0.10 0.12 0.21 0.68 0.70
uneus(y) -0.01 0.58 -4.13∗∗ 1.54 0.84 0.30 0.00 0.03 1.28 1.39 1.42 1.43
cus(m) -0.94∗∗ -0.23 -0.69 -2.12 1.11 -0.68 1.95 1.96 1.99 2.20 2.26 2.27
cus(q) -0.31 -0.38 0.77 -0.82 0.78 -0.45 0.22 0.23 0.27 0.30 0.33 0.34
cus(y) -0.69 -2.24 -1.54 -0.92 -0.08 1.49 1.06 1.45 1.62 1.66 1.66 1.74
ipw(m) 0.22 -1.28 -2.87 1.12 0.18 2.29 0.11 0.23 0.84 0.89 0.90 1.08
ipw(q) 0.23 -2.60 -1.80 0.53 0.95 1.87 0.12 0.63 0.87 0.88 0.92 1.05
ipw(y) 0.27 -2.29 -1.24 -0.90 -1.46 7.92∗∗∗ 0.17 0.57 0.68 0.72 0.82 3.04
ipw/us(m) 0.11 -2.31 -3.19 2.76 -1.05 2.16 0.03 0.44 1.18 1.52 1.58 1.74
ipw/us(q) -0.15 -3.69∗∗ -1.40 1.39 -0.88 1.99 0.05 1.09 1.24 1.32 1.36 1.50
ipw/us(y) 0.29 -3.47 -1.52 -0.24 -1.10 7.56∗∗ 0.19 1.11 1.28 1.29 1.34 3.39
cpiw(m) 0.34 -0.25 -2.41 -1.01 -0.26 -1.67 0.25 0.26 0.68 0.72 0.73 0.83
cpiw(q) 0.10 -1.25 -4.07∗∗∗ 0.51 -0.17 -2.67 0.02 0.14 1.35 1.36 1.36 1.61
cpiw(y) -0.38 -1.23 -1.26 -2.58 1.27 2.06 0.33 0.44 0.56 0.86 0.94 1.09
cpiw/us(m) 0.08 -0.34 -0.25 -1.86 0.44 -2.69 0.01 0.02 0.03 0.18 0.19 0.45
cpiw/us(q) -0.05 -1.47 -2.56 -0.05 1.83 -4.49∗ 0.01 0.17 0.65 0.65 0.81 1.53
cpiw/us(y) -0.84∗∗∗ -0.94 0.42 -0.92 0.98 0.94 1.57 1.64 1.65 1.69 1.73 1.76
ipstd(m) 0.24 1.06 -0.91 0.80 -1.91 -0.20 0.13 0.22 0.28 0.31 0.48 0.48
ipstd(q) 0.44 -3.19 1.67 1.00 -4.43∗∗ -0.32 0.43 1.22 1.42 1.47 2.40 2.40
ipstd(y) 0.50 -2.33 0.09 2.97 0.84 1.11 0.51 0.91 0.91 1.30 1.33 1.37
ipstdw(m) 0.03 -1.00 -0.16 2.44 -1.99 -0.13 0.00 0.08 0.08 0.35 0.54 0.54
ipstdw(q) 0.46 -3.96∗ 2.63 2.13 -6.24∗∗∗ 1.34 0.46 1.68 2.19 2.40 4.25 4.31
ipstdw(y) 0.14 -0.60 -1.93 0.34 -2.75 2.35 0.03 0.07 0.28 0.28 0.63 0.83
cpistd(m) -0.12 0.03 -0.49 2.23 2.09 -0.92 0.03 0.03 0.05 0.28 0.48 0.51
cpistd(q) -0.24 1.02 0.09 2.92∗ 3.39∗∗ -0.33 0.13 0.21 0.21 0.59 1.14 1.14
cpistd(y) -0.22 1.71 3.11 0.77 2.18 1.89 0.08 0.34 0.96 0.98 1.19 1.32
cpistdw(m) 0.21 0.79 -1.57 0.06 -0.49 -1.98 0.10 0.15 0.33 0.33 0.34 0.48
cpistdw(q) -0.02 -1.60 -2.59 0.98 -0.21 -2.01 0.00 0.19 0.68 0.72 0.73 0.87
cpistdw(y) -0.12 -1.30 0.34 -1.05 0.33 0.40 0.03 0.15 0.16 0.20 0.21 0.21
unew(m) -0.16 -1.04 1.21 3.18 2.48 1.29 0.06 0.14 0.25 0.70 0.99 1.05
unew(q) -0.15 0.60 0.52 1.26 -0.44 0.23 0.05 0.08 0.10 0.17 0.18 0.18
unew(y) -0.27 -1.32 0.79 0.54 1.46 0.45 0.16 0.30 0.34 0.35 0.45 0.46
unew/us(m) -0.35 -2.31 -3.10∗ -2.85 1.93 0.46 0.28 0.69 1.39 1.76 1.94 1.95
unew/us(q) -0.27 -2.93∗ -2.46 -0.95 1.70 -0.99 0.16 0.82 1.26 1.30 1.44 1.47
unew/us(y) -0.27 -1.99 -3.66∗∗ -2.53 -0.64 1.37 0.16 0.47 1.46 1.75 1.77 1.83
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V Robustness and Stability Analysis

In this section, we first present some robustness exercises. We then investigate the stability of the factor
structure, also showing the time-varying three-pass risk-premium estimates for selected factors.

V.1 Robustness Exercises

In what follows, we provide a detailed description of three main robustness exercises, which regard i) the
dimension of the pricing kernel; ii) the choice of the RP-weight; and iii) the addition of HML portfolios to
the sample of test assets. We then list a number of additional robustness checks.

i) Pricing Kernel Dimension. Along with the optimal SDF estimates, Table 3 also presents the risk-
premium estimates associated with the two- and four-factor SDFs (ϕ(F1−2) and ϕ(F1−4) panels, respec-
tively). In this way, we can evaluate to what extent the omission of relevant slope pricing factors (i.e., the
“Momentum” factor, F̂3), or the inclusion of less relevant ones (i.e., the “Value” factor, F̂4), weigh on the
risk-premium estimates and on the associated statistics.

We find that the exclusion of the “Momentum” factor from the SDF materially impacts on the risk-
premium estimates. This effect is particularly evident for financial and text-based factors. In fact, for
these factors, the risk-premium estimates are substantially higher (in absolute terms) when using ϕ(F1−2)
instead of ϕ(F1−3). This is exactly because, as shown earlier in Table 2, most factors tend to have η-
exposures to F̂2 and F̂3 of opposite signs. Thus, by omitting a weak factor with high SR as is F̂3, risk
premia appear higher than what they should be. This is for example the case of the corporate credit risk
(corp) and intermediaries’ capital ratio (icap) factors, whose λ̂gs and SRs decrease in absolute value when
F̂3 is added to the SDF. Text-based factors seem to follow a similar qualitative pattern. Conversely, macro
factor risk-premium estimates tend to increase in absolute terms, because their η-exposures to “Carry” and
“Momentum” factors are generally of the same sign.

By adding the “Value” factor to the three-factor SDF, the absolute risk-premium estimates are com-
paratively more stable than when detracting the “Momentum” factor. This is consistent with the fact that
factor η-exposures to “Value” tend to be smaller than to “Carry” and “Momentum”, coupled with a lower
price of risk of “Value”. Some macro factors’ risk premia eventually increase, in absolute terms, when using
ϕ(F1−4), but the effect is economically small.42

Taken together, this analysis shows that selecting the optimal SDF is key to obtain precise estimates
of nontradable factors’ currency risk premia. In particular, the omission of the “Momentum” factor can
materially affect the risk-premium estimates in a non-trivial way.

ii) RP-Weights. Next, we shed light on the effect of the RP-weights on the candidate factor risk-premium
estimates. To start with, Table A10 presents the estimates for the SDF consisting of three latent factors
extracted using low (ω = −1, PCA), medium (ω = 20, baseline), and high (ω = 50, high) RP-weights. That
is, we contrast the baseline estimates reviewed before with those obtained using two extreme RP-weights.

As for the PCA case, we find little difference in terms of the number of financial and text-based factors
with significant risk-premium estimates relative to the baseline. However, for many of these factors, the
point estimates deviate substantially. For example, moving from ω = 20 to ω = −1, the risk premium of

42Note that the effects of F̂5 and F̂6 on the candidate factors’ risk-premium point estimates are essentially nil, exactly because
they are time-series factors.
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Global EPU (gepu) drops in absolute terms from −1.41 to −0.85, and similarly that of TED from −0.97 to
−0.67; these reductions are economically meaningful. The absolute risk-premium estimates of text-based
factors are generally lower using PCA than RP-PCA, while no systematic pattern is evident for financial
factors. In this sense, macro factors are of particular interest. In fact, essentially none of the factors delivers
statistically significant risk premia. Thus, using PCA currency returns appear even more disconnected from
macro factors.

However, PCA deviates from RP-PCA also regarding the size of the currency SDF. In fact, the joint
analysis of PCA factors’ “signal strengths” and trade-offs suggested a two-factor SDF (see Section 4.2).
As a result, to fully appreciate the differences in the risk-premium estimates between RP-PCA and PCA
models, one should contrast the evidence from the three-factor SDF with ω = 20 (Table 3) with that from
the two-factor SDF with ω = −1 (Table A11). In doing so, the differences become even starker. Specifically,
using the two-factor SDF with ω = −1, some financial factors’ risk premia become significant (e.g., mf2, gliq,
and corp), and one is no longer significant (psliq). Also, many risk premia that are statistically significant
display very different magnitudes – for example, the risk premium of gvol is reduced by a half using PCA
with two factors. Similarly, the risk premia for text-based factors are also very different in magnitude
despite displaying significant risk premia (e.g., the estimate of gepu changes from −1.41 to −0.71 and that
of emv mp from −0.91 to −0.50), and only the premia of two macro factors remain (marginally) statistically
significant.

In contrast, we find that the use of an high RP-weight leads to small differences in the risk-premium esti-
mates. Regardless of the factor types, many factors display essentially unchanged risk premia. This evidence
on currency returns lends support to LP’s argument that choosing too high penalties is not particularly
harmful.

iii) Adding HML Portfolios to the Test Assets. It is ex-ante unclear if the inclusion of HML port-
folios will weigh on the evidence uncovered so far. On the one hand, one might conjecture that adding HML
portfolios is redundant, because their information should be already spanned by the corner portfolios and
hence incorporated in the baseline test assets. On the other hand, the exercise is motivated as follows. First
and foremost, the analysis of the R2s of Figure 3 revealed that some strategies, although they deliver high
average returns (e.g., GAP), are not explained much by the extracted factors. Second, LP show that the
latent factors extracted using RP-PCA mostly load on the portfolios delivering higher absolute returns and
Sharpe ratios. Thus, we add the nine HML portfolios to our sample of test assets (i.e., N = 55).

The main findings can be summarized as follows. We still find that there is essentially no trade-off
in choosing RP-PCA (with reasonably high RP-weights) than PCA. Factors’ “signal strengths” increase
with the RP-weights. The key pricing factors retain the same interpretation of “Dollar”, “Carry”, and
“Momentum” factors. However, the optimal SDF now seems to include more clearly also the fourth, “Value”
pricing factor (Table A12). But the price of risk and the Sharpe ratio of the “Value” factor are low in
comparison with the ones of the other pricing factors. At the same time, only few nontradable factors
display significant η-exposures to “Value”. As a result, the nontradable factor risk-premium estimates are
essentially unchanged using either the three- or four-factor SDFs. Moreover, the nontradable factors’ risk-
premium estimates are largely consistent with the baseline estimates, so that the method selects a very
similar list of relevant factors. This is because, by including HML portfolios, the main difference seems to
be that the extracted latent factors better explain the information of the highly profitable trading strategies
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other than Carry (i.e., ST Mom and GAP). However, this information is mostly spanned by factors that
are not relevant for pricing (i.e., F̂5 and F̂6), being excluded from the SDF.

Additional Robustness Analysis. We subject the analysis to a number of additional checks that we
briefly illustrate here, before turning to the stability analysis. To start with, we consider the time-series
portfolios, i.e., strategies that are either long or short U.S. dollars, of the nine investment strategies consid-
ered. These time-series portfolios are used either in place of, or in addition to the HML portfolios, finding
little differences in the estimates. In comparison, the inclusion of cross-sectional HML portfolios seems to be
relatively more relevant, as the impact of time-series portfolios on the currency SDF is minimal. We verify
that the main results are robust to constructing cross-sectional and time-series portfolios using currency
ranked-based weights, which are becoming increasingly popular in the literature (e.g., Asness et al., 2013),
instead of equal weights. Turning to the candidate factors, we also computed innovations of persistent
factors by taking their first differences instead of using AR(1) residuals, documenting no evident changes
in their risk-premium estimates. As explained before, we measure macro factor growth rates at multiple
frequencies, using either simple or exponential moving averages, and then take their innovations. However,
in a robustness exercise, we also consider growth rates instead of their AR(1) innovations and still find a
disconnect with currency returns.
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Table A10: Risk Premia of Nontradable Factors: RP-weight Robustness

The table presents the risk-premium estimates of selected candidate nontradable risk factors (gt). Panel FMB presents
the risk-premium point estimates (λg) and Shanken standard errors (se) from the standard two-pass procedure,
including the constant and the candidate factor. The remaining panels report the estimates from the (augmented)
three-pass procedure with three-factor SDFs, ϕ(F1−3), for ω = −1 (no overweight), ω = 20 (baseline RP-weight),
and ω = 50 (high RP-weight) in the left, mid, and right panels, respectively. The risk-premium estimates (λg) are
reported along with the Newey-West standard errors (se), computed following Giglio and Xiu (2021); ∗∗∗,∗∗,∗ denote
significance, respectively, at the 1-, 5- and 10-percent levels. As for the three-pass method, for each factor and a given
SDF, we also report the spanning R2s (R2) resulting from projecting the factor onto the k latent factors entering the
SDF; the Sharpe ratios (SR) associated with the projected factor, i.e., the return-based counterpart to the original
nontradable factor; and the p-value (pval) of the test of GX that factor gt is weak. In Panels A, B and C, we present
financial (FIN), text-based (TXT), and macro (MAC) candidate g factors that have significant risk-premium estimates
according to at least one of the RP-weight reported. When a macro factor is significant for multiple frequencies, we
present the most representative. Factors are expressed as innovations, using the residuals from AR(1) processes,
and are then standardized. The test assets consist of the portfolios from the nine investment strategies (N = 46).
The sample period varies with the factor at hand, according to data availability over the 11/1983-12/2017 period
(T = 410). See nontradable factor descriptions in Tables A5-A7, in the Internet Appendix.

PANEL A: FMB ω = −1 ω = 20 ω = 50
FIN λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

otic 8.36∗∗∗ (2.87) 0.50∗∗ (0.22) 3.58 0.22 0.00 0.75∗∗ (0.32) 3.68 0.32 0.00 0.76∗∗ (0.33) 3.66 0.33 0.00
noise -3.95∗∗∗ (1.33) -1.12∗∗∗ (0.36) 16.66 0.15 0.01 -0.83∗∗ (0.35) 16.33 0.09 0.01 -0.79∗∗ (0.36) 16.45 0.10 0.01
sliq -3.56∗∗ (1.46) -1.02∗∗∗ (0.33) 15.72 0.20 0.00 -0.91∗∗ (0.39) 13.13 0.15 0.01 -0.87∗∗ (0.40) 13.12 0.15 0.01
gfc 2.39∗∗ (1.09) 1.13∗∗∗ (0.40) 36.58 0.16 0.00 1.22∗∗ (0.52) 36.43 0.17 0.00 1.22∗∗ (0.53) 36.43 0.17 0.00
gvol -4.19∗∗ (1.57) -0.97∗∗∗ (0.26) 12.93 0.22 0.00 -1.05∗∗∗ (0.30) 10.79 0.27 0.00 -1.03∗∗∗ (0.31) 10.67 0.26 0.00
psliq 7.64∗∗∗ (2.58) 0.50∗∗ (0.23) 4.70 0.19 0.06 0.83∗ (0.43) 4.96 0.31 0.06 0.84∗ (0.44) 4.93 0.32 0.06
ted -12.27∗∗∗ (3.49) -0.67∗ (0.33) 3.75 0.23 0.30 -0.97∗∗ (0.43) 4.05 0.39 0.21 -0.98∗∗ (0.44) 4.02 0.41 0.21
lib ois -4.71∗∗ (1.86) -1.11∗∗ (0.52) 15.48 0.16 0.08 -1.55∗∗ (0.76) 15.23 0.24 0.12 -1.52∗ (0.76) 15.15 0.25 0.12
move -5.13∗∗∗ (1.88) -0.72∗∗ (0.30) 11.85 0.14 0.00 -0.81∗∗ (0.38) 11.85 0.12 0.00 -0.81∗∗ (0.39) 11.87 0.13 0.00
vxo -4.36∗∗∗ (1.24) -1.34∗∗∗ (0.46) 27.10 0.12 0.00 -1.36∗∗ (0.65) 26.98 0.14 0.00 -1.35∗∗ (0.66) 27.00 0.15 0.00
eqrv -5.74∗∗∗ (1.82) -0.88∗∗ (0.42) 11.71 0.21 0.12 -1.31∗ (0.71) 11.60 0.32 0.13 -1.32∗ (0.72) 11.52 0.32 0.13

PANEL B: FMB ω = −1 ω = 20 ω = 50
TXT λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

gepu -8.12∗∗∗ (2.67) -0.85∗∗∗ (0.30) 8.61 0.19 0.00 -1.41∗∗∗ (0.48) 8.02 0.32 0.00 -1.40∗∗∗ (0.49) 7.92 0.34 0.00
gepu ppp -8.25∗∗∗ (2.65) -0.86∗∗∗ (0.31) 8.85 0.19 0.00 -1.46∗∗∗ (0.48) 8.45 0.32 0.00 -1.45∗∗∗ (0.50) 8.36 0.34 0.00
epu all -5.18∗∗ (2.32) -0.43∗ (0.24) 4.35 0.15 0.04 -0.34 (0.40) 3.92 0.13 0.05 -0.32 (0.41) 3.92 0.13 0.05
epu mp -7.62∗∗∗ (2.65) -0.45∗ (0.23) 4.50 0.16 0.06 -0.59 (0.40) 4.02 0.25 0.07 -0.59 (0.41) 4.00 0.25 0.07
epu reg -8.86∗∗ (3.62) -0.42∗ (0.24) 2.39 0.21 0.15 -0.45 (0.34) 1.79 0.27 0.30 -0.44 (0.34) 1.76 0.27 0.32
epu tr -11.78∗∗∗ (3.64) -0.42∗∗ (0.19) 1.62 0.25 0.16 -0.63 (0.38) 1.44 0.41 0.36 -0.62 (0.38) 1.39 0.42 0.37
emv ov -6.79∗∗∗ (2.30) -0.72∗∗ (0.32) 7.68 0.18 0.08 -0.91∗ (0.45) 7.44 0.26 0.09 -0.91∗ (0.46) 7.41 0.27 0.09
emv mout -7.25∗∗∗ (2.37) -0.74∗∗ (0.32) 7.32 0.20 0.09 -0.95∗∗ (0.43) 6.80 0.29 0.11 -0.95∗∗ (0.43) 6.73 0.30 0.11
emv mqnt -7.77∗∗∗ (2.59) -0.65∗∗ (0.29) 5.51 0.20 0.11 -0.84∗∗ (0.38) 4.97 0.30 0.13 -0.83∗∗ (0.39) 4.90 0.31 0.13
emv inf -7.62∗∗∗ (2.73) -0.52∗∗ (0.25) 5.42 0.16 0.02 -0.72∗ (0.40) 5.52 0.24 0.02 -0.73∗ (0.40) 5.51 0.25 0.02
emv com -6.37∗∗∗ (2.24) -0.68∗∗ (0.31) 7.81 0.17 0.04 -0.84∗ (0.47) 7.68 0.23 0.05 -0.84∗ (0.48) 7.66 0.24 0.05
emv ir -9.09∗∗∗ (2.94) -0.62∗∗ (0.29) 5.08 0.20 0.09 -0.90∗ (0.51) 5.07 0.32 0.10 -0.90∗ (0.52) 5.03 0.33 0.10
emv fc -7.57∗∗∗ (2.73) -0.61 (0.40) 4.52 0.20 0.38 -0.68∗ (0.35) 4.13 0.25 0.28 -0.68∗ (0.34) 4.10 0.26 0.28
emv fp -8.41∗∗∗ (2.93) -0.58∗∗ (0.29) 4.71 0.19 0.17 -0.78∗ (0.40) 4.55 0.29 0.17 -0.78∗ (0.41) 4.51 0.30 0.17
emv tx -7.42∗∗∗ (2.63) -0.63∗∗ (0.30) 5.49 0.20 0.16 -0.79∗ (0.43) 5.07 0.28 0.18 -0.78∗ (0.44) 5.01 0.28 0.19
emv mp -7.18∗∗∗ (2.41) -0.74∗∗ (0.28) 7.21 0.20 0.03 -0.91∗∗ (0.35) 6.80 0.27 0.04 -0.91∗∗ (0.35) 6.76 0.28 0.04
emv reg -8.27∗∗∗ (2.74) -0.65∗ (0.33) 5.93 0.20 0.18 -0.89∗ (0.47) 5.67 0.30 0.20 -0.90∗ (0.48) 5.62 0.31 0.21
emv freg -9.00∗∗∗ (2.96) -0.65∗ (0.33) 4.98 0.21 0.29 -0.88∗ (0.48) 4.75 0.32 0.35 -0.88∗ (0.48) 4.71 0.33 0.36

PANEL C: FMB ω = −1 ω = 20 ω = 50
MAC λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

cus(y) -13.49∗∗∗ (4.14) -0.27 (0.20) 1.31 0.20 0.22 -0.52∗ (0.29) 1.62 0.34 0.15 -0.54∗ (0.29) 1.63 0.35 0.15
ipw(q) -6.27∗∗∗ (1.96) -0.17 (0.17) 0.67 0.17 0.43 -0.42∗ (0.24) 0.87 0.37 0.25 -0.43∗ (0.24) 0.88 0.38 0.24
ipw/us(q) -7.34∗∗∗ (2.19) -0.32∗ (0.16) 1.14 0.25 0.16 -0.57∗∗ (0.26) 1.24 0.43 0.14 -0.58∗∗ (0.27) 1.23 0.44 0.14
cpiw(q) -7.92∗∗∗ (2.92) -0.18 (0.18) 0.99 0.15 0.17 -0.50∗ (0.28) 1.35 0.36 0.04 -0.51∗ (0.29) 1.33 0.37 0.04
cpiw/us(ey) -9.60∗∗∗ (2.78) -0.17 (0.18) 0.46 0.21 0.74 -0.50∗ (0.28) 1.01 0.42 0.25 -0.52∗ (0.29) 1.03 0.43 0.23
unew/us(y) -16.91∗∗∗ (4.95) -0.17 (0.15) 0.46 0.21 0.55 -0.61∗∗ (0.24) 1.46 0.42 0.06 -0.64∗∗ (0.25) 1.52 0.44 0.05
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Table A11: Risk Premia of Nontradable Factors: RP-Weight Robustness with Two-Factor SDFs

The table presents the risk-premium estimates of selected candidate nontradable factors (gt). Panel FMB presents the
risk-premium point estimates (λg) and Shanken standard errors (se) from the standard two-pass procedure, including
the constant and the candidate factor. The remaining panels report the estimates from the (augmented) three-pass
procedure of GX with two-factor SDF, ϕ(F1−2), for ω = −1 (no overweight), ω = 20 (baseline RP-weight), and ω = 50
(high RP-weight) in the left, mid, and right panels, respectively. The risk-premium estimates (λg) are reported along
with the Newey-West standard errors (se), computed following Giglio and Xiu (2021); ∗∗∗,∗∗,∗ denote significance,
respectively, at the 1-, 5- and 10-percent levels. As for the three-pass method, for each factor and a given SDF, we
also report the spanning R2s (R2) resulting from projecting the factor onto the k latent factors entering the SDF; the
Sharpe ratios (SR) associated with the projected factor, i.e., the return-based counterpart to the original nontradable
factor; and the p-value (pval) of the test of GX that factor gt is weak. In Panels A, B and C, we present financial (FIN),
text-based (TXT), and macro (MAC) candidate g factors that have significant risk-premium estimates according to
at least one of the RP-weight reported. When a macro factor is significant for multiple frequencies, we present the
most representative. Factors are expressed as innovations, using the residuals from AR(1) processes, and are then
standardized. The test assets consist of the portfolios from the nine investment strategies (N = 46). The sample
period varies with the factor at hand, according to data availability over the 11/1983-12/2017 period (T = 410). See
nontradable factor descriptions in Tables A5-A7, in the Internet Appendix.

PANEL A: FMB ω = −1 ω = 20 ω = 50
FIN λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

otic 8.36∗∗∗ (2.87) 0.30∗ (0.15) 2.99 0.14 0.00 0.78∗∗∗ (0.27) 3.67 0.34 0.00 0.85∗∗∗ (0.30) 3.55 0.38 0.00
icap 3.41∗∗ (1.56) 0.52∗∗ (0.25) 10.76 0.13 0.00 1.20∗∗∗ (0.34) 7.93 0.35 0.00 1.22∗∗∗ (0.36) 6.56 0.40 0.00
mf2 -1.22 (2.33) -0.27∗ (0.15) 3.33 0.12 0.04 -0.31 (0.21) 3.07 0.15 0.05 -0.29 (0.22) 3.04 0.14 0.04
mf3 -0.01 (2.37) 0.35∗∗ (0.16) 4.42 0.14 0.06 0.35 (0.23) 3.42 0.16 0.09 0.28 (0.23) 3.34 0.13 0.09
noise -3.95∗∗∗ (1.33) -1.10∗∗∗ (0.37) 16.65 0.14 0.00 -1.41∗∗∗ (0.43) 11.27 0.32 0.00 -1.39∗∗∗ (0.43) 10.41 0.34 0.00
sliq -3.56∗∗ (1.46) -0.78∗∗∗ (0.25) 14.32 0.14 0.00 -1.33∗∗∗ (0.38) 10.33 0.31 0.00 -1.30∗∗∗ (0.38) 9.59 0.33 0.00
gfc 2.39∗∗ (1.09) 1.04∗∗∗ (0.38) 36.44 0.14 0.00 1.91∗∗∗ (0.45) 32.33 0.28 0.00 1.93∗∗∗ (0.48) 30.12 0.29 0.00
gliq -4.28 (3.25) -0.24∗∗ (0.11) 2.06 0.14 0.00 -0.44∗∗ (0.19) 1.17 0.34 0.03 -0.42∗ (0.21) 0.90 0.36 0.06
gvol -4.19∗∗ (1.57) -0.54∗∗ (0.21) 10.21 0.14 0.00 -1.32∗∗∗ (0.32) 10.13 0.35 0.00 -1.39∗∗∗ (0.32) 9.07 0.38 0.00
psliq 7.64∗∗∗ (2.58) 0.25 (0.16) 3.82 0.11 0.04 0.91∗∗ (0.36) 4.91 0.34 0.04 1.00∗∗ (0.41) 4.61 0.39 0.05
corp -2.03 (1.57) -0.78∗∗ (0.32) 12.46 0.14 0.06 -0.87∗∗ (0.41) 7.86 0.24 0.13 -0.80∗∗ (0.39) 7.25 0.22 0.14
ted -12.27∗∗∗ (3.49) -0.35∗ (0.21) 2.56 0.14 0.24 -0.89∗∗ (0.43) 3.98 0.35 0.14 -0.96∗∗ (0.45) 4.02 0.40 0.13
lib ois -4.71∗∗ (1.86) -1.08∗∗ (0.52) 15.40 0.14 0.05 -1.88∗ (0.99) 14.32 0.33 0.09 -1.94∗ (1.04) 13.73 0.37 0.10
move -5.13∗∗∗ (1.88) -0.72∗∗∗ (0.26) 11.85 0.14 0.00 -1.35∗∗∗ (0.46) 7.75 0.34 0.02 -1.34∗∗∗ (0.48) 7.09 0.37 0.02
vxo -4.36∗∗∗ (1.24) -1.42∗∗∗ (0.38) 26.96 0.14 0.00 -2.04∗∗∗ (0.60) 20.22 0.34 0.00 -2.05∗∗∗ (0.63) 18.92 0.37 0.00
eqrv -5.74∗∗∗ (1.82) -0.48∗ (0.25) 9.33 0.13 0.07 -1.44∗∗ (0.63) 11.45 0.36 0.06 -1.58∗∗ (0.71) 10.71 0.40 0.07

PANEL B: FMB ω = −1 ω = 20 ω = 50
TXT λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

gepu -8.12∗∗∗ (2.67) -0.71∗∗ (0.29) 7.61 0.13 0.00 -1.52∗∗∗ (0.43) 7.93 0.35 0.00 -1.59∗∗∗ (0.45) 7.64 0.40 0.00
gepu ppp -8.25∗∗∗ (2.65) -0.73∗∗ (0.30) 7.90 0.13 0.00 -1.58∗∗∗ (0.44) 8.35 0.36 0.00 -1.65∗∗∗ (0.46) 8.06 0.40 0.00
epu all -5.18∗∗ (2.32) -0.29 (0.19) 4.05 0.10 0.02 -0.67∗ (0.35) 2.89 0.33 0.09 -0.68∗ (0.39) 2.41 0.37 0.15
epu mp -7.62∗∗∗ (2.65) -0.21 (0.15) 3.57 0.08 0.03 -0.70∗∗ (0.33) 3.91 0.30 0.06 -0.76∗∗ (0.37) 3.67 0.34 0.07
fsi tx -4.06∗ (2.27) -0.33∗ (0.19) 4.46 0.13 0.05 -0.71∗ (0.38) 2.70 0.35 0.16 -0.69∗ (0.40) 2.09 0.39 0.24
emv ov -6.79∗∗∗ (2.30) -0.51∗∗ (0.24) 7.01 0.13 0.04 -1.15∗∗ (0.46) 6.90 0.36 0.05 -1.21∗∗ (0.50) 6.31 0.40 0.06
emv mout -7.25∗∗∗ (2.37) -0.46∗ (0.24) 6.12 0.12 0.06 -1.11∗∗ (0.45) 6.55 0.35 0.05 -1.18∗∗ (0.48) 6.07 0.40 0.06
emv mqnt -7.77∗∗∗ (2.59) -0.38∗ (0.22) 4.38 0.12 0.09 -0.95∗∗ (0.40) 4.85 0.35 0.06 -1.01∗∗ (0.43) 4.51 0.40 0.06
emv inf -7.62∗∗∗ (2.73) -0.41∗∗ (0.19) 5.22 0.12 0.01 -0.97∗∗∗ (0.35) 4.99 0.35 0.02 -1.02∗∗ (0.39) 4.54 0.40 0.03
emv com -6.37∗∗∗ (2.24) -0.53∗∗ (0.23) 7.47 0.13 0.02 -1.15∗∗ (0.45) 6.82 0.36 0.04 -1.20∗∗ (0.49) 6.14 0.40 0.05
emv ir -9.09∗∗∗ (2.94) -0.36∗ (0.19) 4.12 0.12 0.05 -0.97∗∗ (0.44) 5.03 0.35 0.06 -1.04∗∗ (0.49) 4.80 0.40 0.07
emv fx -5.15∗∗ (2.19) -0.31∗ (0.18) 3.49 0.11 0.02 -0.71∗∗ (0.29) 2.81 0.35 0.04 -0.73∗∗ (0.31) 2.44 0.40 0.06
emv fp -8.41∗∗∗ (2.93) -0.38∗ (0.21) 4.07 0.12 0.10 -0.91∗∗ (0.40) 4.38 0.35 0.08 -0.97∗∗ (0.43) 4.07 0.40 0.09
emv tx -7.42∗∗∗ (2.63) -0.40∗ (0.22) 4.70 0.12 0.09 -0.96∗∗ (0.43) 4.82 0.35 0.10 -1.01∗∗ (0.46) 4.41 0.40 0.11
emv gov -15.41∗∗∗ (5.72) -0.13 (0.15) 0.92 0.09 0.30 -0.49∗ (0.28) 1.50 0.33 0.23 -0.54∗ (0.31) 1.52 0.38 0.23
emv mp -7.18∗∗∗ (2.41) -0.50∗∗ (0.22) 6.35 0.13 0.02 -1.12∗∗∗ (0.38) 6.41 0.35 0.01 -1.18∗∗∗ (0.40) 5.91 0.40 0.02
emv reg -8.27∗∗∗ (2.74) -0.38 (0.24) 4.85 0.12 0.11 -1.01∗ (0.51) 5.56 0.35 0.11 -1.08∗ (0.55) 5.23 0.40 0.12
emv freg -9.00∗∗∗ (2.96) -0.40∗ (0.23) 4.01 0.13 0.22 -0.96∗ (0.51) 4.70 0.35 0.20 -1.02∗ (0.55) 4.48 0.40 0.20
emv tp -7.47∗∗ (3.34) -0.34∗∗ (0.17) 3.35 0.13 0.01 -0.70∗∗ (0.31) 2.54 0.36 0.07 -0.72∗∗ (0.34) 2.20 0.40 0.10

PANEL C: FMB ω = −1 ω = 20 ω = 50
MAC λg se λg se R2 SR pval λg se R2 SR pval λg se R2 SR pval

cpius(y) 1.06 (2.76) 0.17∗ (0.09) 0.96 0.14 0.18 0.19 (0.21) 0.34 0.27 0.56 0.12 (0.23) 0.26 0.20 0.65
cfnai(q) 3.64 (2.41) 0.19∗ (0.11) 1.19 0.14 0.18 0.36 (0.24) 0.92 0.31 0.32 0.36 (0.27) 0.80 0.33 0.37
ipw/us(q) -7.34∗∗∗ (2.19) -0.10 (0.09) 0.43 0.13 0.42 -0.44∗∗ (0.21) 1.09 0.35 0.10 -0.52∗∗ (0.23) 1.18 0.40 0.08
unew/us(y) -16.91∗∗∗ (4.95) -0.03 (0.10) 0.17 0.06 0.72 -0.27 (0.21) 0.47 0.34 0.37 -0.38∗ (0.22) 0.67 0.39 0.19
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Table A12: Latent Factor Pricing Diagnostics: Sample Including HML Portfolios

The table presents model diagnostics of the first two steps of the asset pricing procedure of Giglio and Xiu (2021)
applied to currency portfolios excess returns, where the pricing factors are latent and are estimated using the RP-PCA
method of Lettau and Pelger (2020a,b). We report diagnostics for RP-PCA implemented without “overweight” on the
means (ω = −1), i.e., standard PCA, and with increasing values of the RP-weight (ω = 10, 20 and 50). We consider
stochastic discount factors, ϕ(F1−k), including an increasing number of latent factors, k = 1, 2, . . . , 6. Tab A.I First
pass, Panel A: Two-pass Statistics, shows the average idiosyncratic variance, σ2

ε = 1
N

∑N
n=1 [V ar(ε̂n)/V ar(Xn)], and

the average root-mean-square pricing errors, RMSα =
√
α̂α̂>/N , obtained by estimating Xnt = αn + F̂tψ

>
n + εnt,

for n = 1..., N test assets, and t = 1..., T months. Tab A.II Second pass presents the R-squared values (R2(%)), and
the mean absolute errors (MAE) of the cross-sectional regression, Xn = ψ̂nγ

> + an, for n = 1, . . . , N , where γ is the
1 × K vector of latent factors’ prices of risk. Tab B.I Components, Panel B: Sharpe Ratios, presents the maximal
Sharpe ratio (SR) from the tangency portfolio of the mean-variance frontier spanned by the linear combination of the
K selected latent factors, F̂ × b̂>MV , where b̂MV is a 1 × K vector with entries b̂MV,k = µF,k/σ

2
F,k, with µF,k and σ2

F,k

denoting the k-th factor’s mean and variance. ∆SR denotes the difference in SRs between SDFs with k and k − 1
factors. The b̂MV,k entry represents the k-th factor’s weight in the SDF, ϕt = 1 − (F̂t − µF )b̂>MV . The test assets
consist of the plain and HML portfolios from the nine investment strategies (N = 55), for the period 11/1983-12/2017
at monthly frequency (T = 410).

Panel A: Two-pass Statistics Panel B: Sharpe Ratios
A.I First pass A.II Second pass B.I Components

ω = −1 σ2
ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 34.26 2.49 12.84 1.85 F1 0.10 – 0.05 17.48
ϕ(F1−2) 25.78 2.26 16.58 1.56 F2 0.15 0.06 0.18 7.66
ϕ(F1−3) 21.50 1.82 35.99 1.25 F3 0.26 0.11 0.47 9.98
ϕ(F1−4) 18.60 1.11 68.22 0.87 F4 0.39 0.12 0.74 10.71
ϕ(F1−5) 16.24 1.11 68.38 0.85 F5 0.39 0.00 0.06 0.68
ϕ(F1−6) 14.22 0.96 74.97 0.73 F6 0.41 0.02 0.40 4.07
ω = 10 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 34.31 2.49 1.65 1.66 F1 0.11 – 0.06 19.48
ϕ(F1−2) 26.82 2.03 72.95 0.69 F2 0.31 0.20 0.52 16.52
ϕ(F1−3) 22.01 1.14 95.81 0.28 F3 0.42 0.11 0.60 13.88
ϕ(F1−4) 18.70 0.84 98.08 0.20 F4 0.45 0.03 0.38 6.21
ϕ(F1−5) 16.34 0.84 98.09 0.20 F5 0.45 0.00 0.03 0.41
ϕ(F1−6) 14.28 0.77 98.50 0.17 F6 0.46 0.01 0.28 2.85
ω = 20 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 34.43 2.51 2.16 1.47 F1 0.12 – 0.07 20.97
ϕ(F1−2) 27.68 1.86 93.26 0.35 F2 0.37 0.25 0.67 18.01
ϕ(F1−3) 22.10 1.06 98.73 0.16 F3 0.44 0.07 0.46 12.45
ϕ(F1−4) 18.73 0.81 99.36 0.12 F4 0.46 0.02 0.33 5.51
ϕ(F1−5) 16.36 0.81 99.36 0.12 F5 0.46 0.00 0.03 0.40
ϕ(F1−6) 14.30 0.75 99.50 0.10 F6 0.47 0.01 0.27 2.73
ω = 50 σ2

ε RMSα R2(%) MAE SR ∆SR b̂MV,k µF,k

ϕ(F1) 35.01 2.63 58.20 1.02 F1 0.14 – 0.09 23.53
ϕ(F1−2) 28.31 1.70 99.06 0.13 F2 0.40 0.26 0.73 19.30
ϕ(F1−3) 22.18 1.01 99.77 0.07 F3 0.45 0.05 0.36 10.99
ϕ(F1−4) 18.75 0.80 99.88 0.05 F4 0.46 0.02 0.30 5.04
ϕ(F1−5) 16.38 0.79 99.88 0.05 F5 0.46 0.00 0.03 0.39
ϕ(F1−6) 14.31 0.73 99.90 0.04 F6 0.47 0.01 0.26 2.64
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V.2 Stability of Factor Structure and Risk Premia

In this section we complement the in-sample (IS) analysis carried out in Sections 4.2 and 4.3 with the out-
of-sample (OOS) analysis of the SDF, and provide time-varying recursive estimates of the three-pass model
for some nontradable factors. The objective of the section is twofold. First, we shed light on the robustness
of the in-sample estimation of the SDF in an out-of-sample setting. Second, we assess the stability of the
factor structure and the risk-premium estimates over time. We tackle both objectives by varying the number
of factors and the RP-weights, as in the main analysis.

V.2.1 Out-of-Sample Analysis

To start with, we address our first objective, which pertains to the estimation of the SDF in an out-of-sample
setting. Similarly to the in-sample analysis, we rely on the maximal Sharpe ratios, the root-mean-square
pricing errors, and the average idiosyncratic variances to assess the properties of the factor structure of
returns. However, we compute these diagnostic criteria out-of-sample, as follows. For a given ω and k

(for ω = −1, 10, 20, 50, and k = 1, ..., 6), we first estimate factors and local time-varying loadings (Ft and
ψt) containing information only up to time t. Both factors and loadings are estimated recursively with an
initial expanding window of ten years to resemble the real-time behavior of a representative FX investor.
We then follow closely Lettau and Pelger (2020b) in the computation of the out-of-sample diagnostics.
Thus, we use the time-t loadings to predict factors (Ft|t+1) and test-asset returns (Xt|t+1) at time t + 1.
Using the predicted returns, we obtain the out-of-sample pricing errors at time t + 1. Next, with the
mean and variance of the pricing errors, we can easily compute the out-of-sample average pricing errors
and idiosyncratic variation. Finally, to compute the maximal Sharpe ratios, we first obtain the optimal
portfolio weights using information up to time t, and then recover the t + 1 predicted optimal portfolio
return. We repeat these steps for each month t until we recover the time-series of optimal returns, from
which we calculate the out-of-sample Sharpe ratios.

Table A13 reports the in-sample and out-of-sample diagnostics for the period 1993-2017. We find that
the four-factor model with ω = 20 (our preferred RP-weight) yields an in-sample Sharpe ratio of 0.58 (Panel
A). The Sharpe ratio is mostly due to the second factor, but is also contributed to by the other two weak
factors (i.e., F̂3 and F̂4) and by the first strong factor, in proportions similar to the full-sample results
(Table 1). Differently from the full-sample results, we observe a small contribution of F̂6, while F̂5 remains
a time-series factor with no impact on the maximal SR. The magnitudes and patterns of the average pricing
errors and idiosyncratic variation estimated in-sample over the shorter sample 1993-2017 also mirror the
full-sample results (again with the exception of F̂6 that has a more substantial impact on the pricing errors).

Panel B shows that the four-factor model with the same RP-weight of 20 yields a Sharpe ratio of 0.45 out
of sample. This result is consistent with previous evidence showing that the implied Sharpe ratios are smaller
out of sample than in sample using RP-PCA (Lettau and Pelger, 2020b). The out-of-sample Sharpe ratios
exhibit a similar pattern to the in-sample ones, but with some differences. While the first three factors
contribute in similar proportions to the maximal Sharpe ratio as the in-sample ones, the out-of-sample
fourth factor differs by exerting essentially no impact on the Sharpe ratio. Moreover, the root-mean-square
pricing errors and average idiosyncratic variances are higher out of sample than in sample, although their
patterns are to a large degree similar. (Another difference, but arguably less important, regards F̂6 that does
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not reduce out-of-sample the pricing error as much as in-sample.) Therefore, the out-of-sample diagnostic
criteria seem to suggest more clearly a model with three factors.

Turning to the results’ sensitivity to the RP-weights, we find that RP-PCA outperforms PCA also in
the out-of-sample setting, with no evidence of a trade-off in choosing RP-PCA over PCA. In fact, using
RP-PCA we observe much lower average pricing errors than PCA, on the backdrop of essentially equal
average idiosyncratic variations. Moreover, the out-of-sample implied Sharpe ratios remain substantially
higher using RP-PCA than PCA.43 However, compared to the in-sample evidence, the out-of-sample Sharpe
ratios appear stable using PCA, while they deteriorate using RP-PCA. Thus, there is still a sizable gain
in choosing RP-PCA over PCA, but the difference between the two shrinks out of sample.44 Finally, we
observe very similar results for RP-PCA models estimated out-of-sample using different but reasonably high
RP-weights. This out-of-sample evidence on the use of different RP-weights is largely consistent with our
in-sample evidence, corroborating the in-sample choice of the baseline RP-weight.

Summing up, we find that the in-sample results are largely confirmed out of sample. The currency SDF
comprises at least three latent factors. Moreover, RP-PCA still outperforms PCA, in terms of both Sharpe
ratios and pricing errors, and yet yields comparable average idiosyncratic variance. Hence, we document
no trade-off in practice also when the SDFs are constructed in real time. However, in line with previous
studies (e.g., Lettau and Pelger, 2020b; Giglio et al., 2021c), it is apparent that the performance of RP-PCA
deteriorates out of sample, while PCA displays a higher degree of stability.

V.2.2 Time-Varying Analysis

In what follows, we shift the focus to the stability of both the factor structure implicit in FX portfolio
returns and the nontradable factors’ risk-premium estimates over time. First, we resort to the GX and
O tests for the number of factors (see Sections 2.1.1 and 4.2), and the generalized correlations. Unlike
the evidence in Table A13, these two additional diagnostic criteria are not constructed out of sample (but
simply in-sample using an expanding window of data), yet they arguably delve directly into the stability of
the factor structure over time.

We begin the analysis by conducting the GX and O tests over recursive windows with initial size of ten
years. The results are clearcut: regardless of the time period, both tests select three factors using RP-PCA,
and two factors using PCA (Figure A4). These results are not foregone as the consistency of the tests
requires not only large N but also large T , and T is inherently shorter in a recursive estimation, especially
over the first estimation windows. Hence, the time-varying evidence closely mirrors the baseline full-sample
evidence, suggesting a stable number of factors driving test-asset returns over time.

Then, we proceed with the generalized correlations (GCs), a powerful tool to investigate the stability of
the factor structure over time, recently employed by Lettau and Pelger (2020b) in a similar setting to ours.45

43Similar to the baseline in-sample analysis, we find that using a five-factor model the wedge in performance between the
RP-PCA and PCA estimators reduces. This is because using PCA F̂5 is a weak factor with high Sharpe ratio. But this factor
plays no role as is not selected by any of the statistical tests for the number of factors, which suggest more parsimonious SDFs
(formal test results are reported in the next subsection).

44The results are robust if we perform the analysis using an initial expanding window of 20 years (not reported). However,
we find that F̂4 contributes to increase the overall Sharpe ratio and reduce the pricing errors. Hence, its behavior is more in
line with that documented in the in-sample analysis.

45Generalized correlations were first proposed by Bai and Ng (2006), to which we refer the reader for further details.
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Intuitively, GCs help us determine whether two sets of factors represent the same factor model, and hence
span the same vector space. In doing so, importantly, they account for the fact that a factor model is only
identified up to invertible linear transformations. A high qth generalized correlation suggests that the two
sets of factors have at least q common factors. In our setting, the first set denotes the factors extracted over
the whole sample, while the second set consists of the factors estimated recursively over time. Specifically,
we compute the generalized correlations between the total loadings (ψω) estimated over the whole sample
and the local loadings (ψωt ) estimated recursively over expanding windows with initial length of ten years.
Therefore, the GCs help us quantify the degree of stability of the factor structure over time.

Figure A5 shows the generalized correlations for selected RP-weights. We find that using ω = 20 the
generalized correlations of the first three factors are all above 94% and by adding the fourth factor they are
above 87%. The minimum generalized correlation of the third (fourth) factor is somewhat higher (lower)
using PCA (ω = −1), while there are no significant differences using the other reported RP-weigths. Hence,
the factor structure driving the SDF appears to be stable over time. Of course, because the correlations
are estimated recursively, they converge to 100% as we approach the end of the sample. Therefore, to
better zoom into the last years, we repeat the analysis using 20-year rolling windows. Above all, Figure
A6 confirms the recursive evidence pointing to a stable factor structure. The correlations of the first three
factors are all above 96%, and only drop slightly to 91% by including the fourth factor (using PCA they are
95% and 86%, respectively). It is also visible that the fourth generalized correlation reduces slightly over
the last part of the sample. The drop is less pronounced using RP-PCA than PCA. Overall, the results
point to a rather stable factor structure over time, as we observe only a mild decay of the fourth GC towards
the end of the sample.

Finally, we turn to assessing the stability of the risk-premium estimates of the nontradable factors.
These estimates are subject to two sources of potential instability, stemming from both the latent-factor
SDF structure and the spanning regressions linking the candidate factors to the latent factors. Hence, the
nontradable factors’ risk premia can inherit the instability of the factor structure (which is common to all
candidate factors), but they are also potentially subject to an additional layer of instability specific to the
selected candidate nontradable factor. To start with, we extract the factors as before, but for brevity we
only report the results using the baseline RP-weight, i.e., ω = 20. Therefore, the extracted recursive factors
are the same as those underlying the generalized correlations of Panel ω = 20 in Figure A5. Based on
these recursive estimates of the factors, we then estimate the three-pass model recursively and obtain time-
varying estimates of the candidate factors’ risk premia (λ(1:t)

g ). Figures A7-A10 present the risk-premium
point estimates, together with the associated 95% confidence intervals (albeit statistical significance as such
is not the main focus here), for the four selected candidate factors.46 Moreover, for each candidate factor we
show the estimates for the one-factor model and for larger models that successively add latent factors one
by one (moving from top-left to bottom-right panels). Also note that, because the estimation is recursive,
the risk-premium estimates will converge to the full-sample estimates of Table 3 as we reach the end of
the sample. Overall, we find that the risk-premium estimates are rather stable, especially when the SDFs
include at least three latent factors (the number of factors detected by the tests using RP-PCA) and the
estimation window is reasonably long. Specifically, the estimates seem to stabilize around the early 2000s,

46We show the results for the same set of factors used in Figure 6. However, because gepu has many missing values for the
early years of the sample, we replace it with another widely used text-based factor, i.e., equity market volatility.
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which is not surprising as 10 years of data might be too few to achieve robust estimates of expected returns.
For some candidate factors the impact of the global financial crisis on the estimates is more evident, but
the instability is generally contained for all factors.

Summing up, the evidence obtained performing the statistical tests for the number of factors recursively
closely mirrors the full-sample evidence. That is, the suggested number of factors is three using RP-PCA, and
reduces to two using PCA. This evidence is largely corroborated by the generalized correlations, suggesting
that the number of common factors should be at least three. Taken together, the results are consistent with
a stable factor structure over time. Finally, we find that also the candidate factors’ risk-premium estimates
do not show significant degrees of time variation, as long as the estimation window is sufficiently long and
the SDF includes at least the first three factors. Taken together, these multiple pieces of evidence seem
to suggest that the unconditional three-pass model, if well specified, provides a satisfactory description of
dynamically rebalanced FX portfolio returns.
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Table A13: Fit of In-Sample and Out-of-Sample RP-PCA Models

The table presents maximal Sharpe ratios (SR), root-mean-square pricing errors (RMSα), and unexplained idiosyn-
cratic variation (σ2

ε) for in-sample (Panel A) and out-of-sample (Panel B) RP-PCA models with selected RP-weights
(ω) and number of factors (ϕ(F1−k)). The out-of-sample analysis is recursive with an initial, expanding window
of 10 years. The test assets consist of the portfolios from the nine investment strategies (N = 46), for the period
11/1983-12/2017 at monthly frequency (T = 410). Thus, the in-sample (IS) and out-of-sample (OOS) model statistics
refer to the period 12/1993-12/2017.

Panel A: In-Sample Panel B: Out-of-Sample
Panel A.I: IS RP-PCA (ω = −1) Panel B.I: OOS RP-PCA (ω = −1)

ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6) ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6)
SR 0.08 0.22 0.27 0.27 0.33 0.35 0.07 0.13 0.29 0.29 0.39 0.40
RMSα 1.88 1.55 1.41 1.41 1.27 1.23 1.94 1.61 1.14 1.10 0.96 0.94
σ2
ε 22.66 18.91 16.79 15.09 13.73 12.65 24.07 21.00 19.49 18.20 17.13 16.13

Panel A.II: IS RP-PCA (ω = 10) Panel B.II: OOS RP-PCA (ω = 10)
ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6) ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6)

SR 0.09 0.41 0.50 0.56 0.57 0.59 0.07 0.28 0.44 0.44 0.46 0.46
RMSα 1.88 1.42 1.12 0.84 0.79 0.68 1.94 1.34 0.87 0.85 0.86 0.85
σ2
ε 22.67 19.30 17.15 15.62 13.95 12.78 24.04 21.04 19.63 18.51 17.16 16.15

Panel A.III: IS RP-PCA (ω = 20) Panel B.III: OOS RP-PCA (ω = 20)
ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6) ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6)

SR 0.09 0.45 0.53 0.58 0.58 0.60 0.08 0.36 0.45 0.45 0.46 0.46
RMSα 1.89 1.39 1.06 0.78 0.76 0.66 1.93 1.12 0.85 0.84 0.85 0.84
σ2
ε 22.70 19.49 17.24 15.66 13.98 12.79 24.03 21.17 19.65 18.51 17.16 16.16

Panel A.IV: IS RP-PCA (ω = 50) Panel B.IV: OOS RP-PCA (ω = 50)
ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6) ϕ(F1) ϕ(F1−2) ϕ(F1−3) ϕ(F1−4) ϕ(F1−5) ϕ(F1−6)

SR 0.11 0.48 0.55 0.59 0.59 0.61 0.09 0.43 0.45 0.45 0.46 0.46
RMSα 1.95 1.36 1.01 0.75 0.74 0.65 1.92 0.91 0.84 0.83 0.84 0.83
σ2
ε 22.83 19.63 17.31 15.68 13.99 12.80 23.99 21.39 19.66 18.51 17.16 16.16
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Figure A4: Recursive Estimates of the Number of Factors in the SDF
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The figure shows the recursive estimates of the optimal number of factors detected by the Giglio and Xiu (2021;
GX Test) and the Onatski (2010; O Test) tests for the optimal number of factors (Panels A and B, respectively).
That is, the tests inform us about the optimal k in the SDF, ϕ(F̂1−k). For the selected RP-weights (with ω = −1
denoting the PCA estimation), we perform the tests on the eigenvalues which are estimated recursively over expanding
windows with initial length of ten years. The test assets consist of the portfolios from the nine investment strategies
(N = 46), for the period 11/1983-12/2017 at monthly frequency (T = 410). Thus, model statistics refer to the period
12/1993-12/2017.
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Figure A5: Generalized Correlations Between Total and Recursive Local Loadings
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The figure shows the generalized correlations (GCs) between the total loadings (ψω) estimated over the whole sample
and the local loadings (ψωt ) estimated recursively over expanding windows with initial length of ten years. We
perform the analysis for the selected RP-weights, with ω = −1 denoting the PCA estimation. The test assets consist
of the portfolios from the nine investment strategies (N = 46), for the period 11/1983-12/2017 at monthly frequency
(T = 410). Thus, model statistics refer to the period 12/1993-12/2017.
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Figure A6: Generalized Correlations Between Total and Rolling Local Loadings
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The figure shows the generalized correlations between the total loadings (ψω) estimated over the whole sample and the
local loadings (ψωt ) estimated over rolling windows of 20 years. We perform the analysis for the selected RP-weights,
with ω = −1 denoting the PCA estimation. The test assets consist of the portfolios from the nine investment strategies
(N = 46), for the period 11/1983-12/2017 at monthly frequency (T = 410). Thus, model statistics refer to the period
12/2003-12/2017.
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Figure A7: Recursive Risk-Premium Estimates: Global FX Volatility
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The figure shows the recursive three-pass risk-premium estimates of the global volatility (gvol) nontradable financial
factor. The model is estimated recursively over expanding windows with initial length of 10 years, using ω = 20
and SDFs including an increasing number of factors (ϕ(F̂1−k), for k = 1, . . . , 6). The solid black lines show the risk-
premium recursive estimates and the shaded gray areas denote the associated 95% confidence intervals. The test assets
consist of the portfolios from the nine investment strategies (N = 46), for the period 11/1983-12/2017 at monthly
frequency (T = 410). Thus, the recursive risk-premium estimates are displayed for the period 12/1993-12/2017.
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Figure A8: Recursive Risk-Premium Estimates: Intermediaries’ Capital Ratio
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The figure shows the recursive three-pass risk-premium estimates of the intermediaries’ capital ratio (icap) nontradable
financial factor. The model is estimated recursively over expanding windows with initial length of 10 years, using
ω = 20 and SDFs including an increasing number of factors (ϕ(F̂1−k), for k = 1, . . . , 6). The solid black lines show the
risk-premium recursive estimates and the shaded gray areas denote the associated 95% confidence intervals. The test
assets consist of the portfolios from the 9 investment strategies (N = 46), for the period 11/1983-12/2017 at monthly
frequency (T = 410). Thus, the recursive risk-premium estimates are displayed for the period 12/1993-12/2017.
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Figure A9: Recursive Risk-Premium Estimates: Global Liquidity
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The figure shows the recursive three-pass risk-premium estimates of the global (il)liquidity (gliq) nontradable financial
factor. The model is estimated recursively over expanding windows with initial length of 10 years, using ω = 20 and
SDFs including an increasing number of factors (ϕ(F̂1−k), for k = 1, . . . , 6). The solid black lines show the risk-premium
recursive estimates and the shaded gray areas denote the associated 95% confidence intervals. The test assets consist
of the portfolios from the nine investment strategies (N = 46), for the period 11/1983-12/2017 at monthly frequency
(T = 410). Thus, the recursive risk-premium estimates are displayed for the period 12/1993-12/2017.
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Figure A10: Recursive Risk-Premium Estimates: Overall Equity Market Volatility
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The figure shows the recursive three-pass risk-premium estimates of the overall equity market volatility (emv ov)
nontradable text-based factor. The model is estimated recursively over expanding windows with initial length of 10
years, using ω = 20 and SDFs including an increasing number of factors (ϕ(F̂1−k), for k = 1, . . . , 6). The solid black
lines show the risk-premium recursive estimates and the shaded gray areas denote the associated 95% confidence
intervals. The test assets consist of the portfolios from the nine investment strategies (N = 46), for the period
11/1983-12/2017 at monthly frequency (T = 410). Thus, the recursive risk-premium estimates are displayed for the
period 12/1993-12/2017.
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VI Simulation Analysis

In this section, we study the finite-sample performance of the augmented three-pass inference using Monte
Carlo simulations. We also assess how the augmented three-pass estimator performs and compares in
simulation with the two-pass estimator. Importantly, we design the simulations to capture the key features
of FX returns. By doing so, we essentially tackle two key questions. First, is the three-pass method reliable
in finite samples, with N and T equal to the dimension of FX portfolio returns? Second, are the omitted-
variable and measurement-error problems relevant for pricing currency portfolio returns, and hence is the
method desirable for FX returns?

To address both questions, we set up the simulation exercise as in Giglio and Xiu (2021) (with the
main difference regarding the use of RP-PCA instead of standard PCA in extracting the latent factors),
but importantly we tailor the calibration to the specific features of the FX market. The cross section of
FX test assets is relatively small, and the underlying data generating process (DGP) is driven by fewer
factors compared to the case of equities studied, for example, by GX. Specifically, while the five-factor
Fama-French model is the benchmark model for equities (see Fama and French, 2015), the benchmark
model for FX returns has relied so far on much more parsimonious SDFs. At least until recently it has been
the two-factor model of Lustig et al. (2011), consisting of a Dollar and a Carry factor. Regardless of the
identity of the pricing factors, most of the currency SDFs employed so far in the literature have included two
factors, mainly due to the small FX cross sections available. Our analysis, however, suggests that with a
reasonably large N (which, albeit smaller than the typical N for equities, is much larger than the small cross
sections typically used so far in the FX literature), a two-factor SDF is likely to omit relevant sources of FX
risk. In fact, we showed that at least three and potentially four latent factors are required to achieve full
spanning of the entire SDF, and hence robust estimates of risk premia. Therefore, in larger cross sections,
not only the measurement-error problem, but also the omitted-variable problem is likely to be relevant for
FX returns.

Although GX report good performance of the three-pass estimator in simulation also for combinations
of N and T that resemble the one used in our study, it is not obvious that the estimator performs the same
in our case. The above considerations for example suggest that the factor structures driving equity and
FX portfolios returns may well differ, and this can in turn weigh on the estimator performance. Therefore,
in the simulations we consider a four-factor DGP consisting of the de-noised Dollar, Carry, ST Mom, and
Value tradable factors, which most closely approximate the strong latent factor (F̂1) and the three weak
latent factors with significant risk premia (F̂2, F̂3, and F̂4) documented in the empirical analysis. In essence,
this DGP can be interpreted as a reduced-form model for FX returns and the currency SDF. To remove the
noise from the observed tradable factors, we use the three-pass estimator with four latent factors, extracted
using RP-PCA with ω = 20. These four de-noised factors should span the entire SDF (as we know from
Section 4.2 that four latent factors guarantee this), and hence the simulated asset returns should mirror the
properties of the observed ones. This is crucial to then being able to recover the true risk premia via the
three-pass estimator.

Next, we assume that we may not observe all four factors but some noisy versions, plus a potentially
spurious candidate nontradable factor. In this way, both the omitted-variable and the measurement-error
problems can manifest entirely. To begin with, we calibrate the candidate factor to U.S. industrial production

xxxix

Electronic copy available at: https://ssrn.com/abstract=3796290



(ipus) similarly to GX, which according to the three-pass estimates qualifies as a spurious factor also for FX
returns. However, we then repeat the analysis replacing ipus either with gvol or icap (the global volatility
of Menkhoff et al., 2012a, and the intermediaries’ capital ratio of He et al., 2017, respectively). These two
financial factors are of particular interest as they exemplify non-spurious factors whose risk premia estimates
are affected to different extents by the dimension of the SDF considered (as is evident from Section 4.3,
Tables 2 and 3). Taken together, these three candidate factors capture the properties of the nontradable
factors considered in the empirical analysis.

Finally, to evaluate the performance of the three-pass estimator, we estimate the risk premia of the
candidate noisy tradable and nontradable factors by applying the three-pass method to the simulated data.
We use not only SDFs of expanding dimensions, but also with different RP-weights (this latter analysis is
not in GX, as they are clearly concerned only with the case of PCA). However, to be clear, the ultimate
goal of the simulation exercise is not a comparison of the RP-PCA and PCA estimators. Rather, we are
interested in assessing the performance of the three-pass and the two-pass estimators in pricing currency
returns, i.e., when the DGP and the associated parameters driving the simulations match the properties
of the FX portfolio returns studied in our empirical analysis. In this way, we can assess the finite-sample
performance of the three-pass estimator, but also shed light on the relevance of the issues of omitted factors
and measurement error in the factors for FX returns.47

Overall, the simulation results show a satisfactory performance of the three-pass estimator also in our
setting, while the two-pass evidence lends support to the argument made in Section 2 that omitting relevant
pricing factors from the currency SDF and/or measuring the factors with noise can severely distort the
risk-premium estimates. Put simply, the three-pass estimator appears to be both reliable and desirable
for modeling FX portfolio returns, and hence is a valuable method to unveil the sources of the risk-return
trade-off in currency investment strategies.

VI.1 Calibration and Simulation Methods

In this section, we describe the details of the calibration and how we design the simulations. In what follows,
Ft are the latent factors, Zt are the observed tradable factors (Dollar, Carry, ST Mom, and Value), and
Gt are the potentially spurious observed candidate nontradable factors (gvol, icap, and ipus). The DGP is
given by

Xnt = Ẑtψ>Zn + εnt, n = 1, . . . , 46, t = 1, . . . , T, (VI.1)
gιjt = Ẑιtη

>
Zj + ujt, j = 1, . . . , 3, t = 1, . . . , T, (VI.2)

ĝjt = Ẑtη̂
>
Zj , j = 1, . . . , 3, t = 1, . . . , T, (VI.3)

λ̂gj = λ̂Z η̂
>
Zj , j = 1, . . . , 3. (VI.4)

where Ẑt = [ẑt1, ẑt2, ẑt3, ẑt4] are the de-noised tradable Z-factors, Ẑιt denote their demeaned counterparts,
λ̂Z collects the de-noised Z-factors risk premia or sample means, and Gt = [gι1t, gι2t, gι3t] where gιjt is the

47We refer the reader to GX for a fully-fledged comparison of the three-pass and two-pass estimators, e.g., for different
combinations of N and T .
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AR(1) innovation to the j-th candidate factor gt.
First, we apply the three-pass estimator with ω = 20 and k = 4 to the four noisy tradable Z-factors

to recover their de-noised counterparts and risk premia (Ẑ and λ̂Z). Specifically, equipped with the RP-
PCA estimates of the k latent factors (F̂ ), whereby Xnt = F̂tψ>n + εnt, we run the following four spanning
regressions

zιti = F̂ ιt ξ
>
i + ζti, i = 1, . . . , 4, t = 1, . . . , T. (VI.5)

We then obtain the de-noised Z-factors and their risk premia as follows

ẑti = F̂tξ̂
>
i , i = 1, . . . , 4, t = 1, . . . , T, (VI.6)

λ̂Zi = γ̂ξ̂>i , i = 1, . . . , 4. (VI.7)

Second, by applying the same procedure (i.e., the third step of the estimator) to the potentially spurious
nontradable candidate G-factors, we obtain the true estimates of their risk premia. This step reproduces
the exposure and risk-premium estimates (η̂ and λ̂g) of Section 4.3. However, while the gvol and icap risk-
premium estimates are displayed in Table 3 (tab ϕ(F1−4)), the estimates of ipus are not, exactly because
its risk-premium estimates are not significant regardless of the dimension of the SDF used.

Third, we calibrate the parameters λ̂Z , ΣZ , ψ̂Z , ΣψZ
, Σε, η̂Z , σu and σζ that drive the DGP to exactly

match their counterparts in the data. Specifically, λ̂Z collects the means of the de-noised Z-factors obtained
using ϕ(F1−4) with ω = 20; ΣZ is the covariance matrix of the de-noised Z-factors; ψ̂Z collects the test
assets’ loadings on the de-noised Z-factors; ΣψZ

is the covariance matrix of the factor loadings ψ̂Z ; Σε is
the covariance matrix of the test-asset idiosyncratic risk; η̂Z are the candidate G-factor exposures to the
de-noised Z-factors; σu is the volatility of a candidate nontradable G-factor idiosyncratic risk; and σζ is the
volatility of a tradable Z-factor idiosyncratic risk.

Fourth, we simulate from the DGP. For the generic m-th Monte Carlo replication, we generate the
artificial realizations of the parameters and variables ψ(m)

Z , Ẑ(m)
t , ε(m)

t , u(m)
t , u(m)

t from multivariate normals
using the calibrated means and covariances. We then obtain the artificial realizations of the test assets X(m)

t

from eq. (VI.1), the j-th noisy nontradable factor g(m)
jt from eq. (VI.2), and the i-th noisy tradable factor

from z
(m)
it = ẑ

(m)
it + ζ

(m)
it .

Fifth, we recover the objects of interest by applying the estimators to the artificial realizations. Specifi-
cally, for a given replication m, we first extract the k = 6 latent factors, F̂ (m), using RP-PCA with ω=-1, 10,
20, and 50. We then estimate the statistics of interest for each of the RP-weights. Namely, we apply the GX
and O tests to X(m) to estimate the number of latent factors, k(m); we compute the generalized correlations,
GC(m), between F̂ and F̂ (m) to determine the number of common factors between the whole sample and
simulated sets of factors; and we calculate the maximal Sharpe ratio, SR(m), for different combinations of
RP-weights and number of latent factors, k in ϕ(F1−k). Finally, we turn to estimating the Z-factor and
G-factor risk premia and the associated asymptotic variances. We do this using the three-pass estimator
for different combinations of ω and k. For comparison, we also estimate the factor risk premia with the
two-pass (FMB) estimator, whereby we consider SDFs that include the noisy g-factor of interest and some
or all of the Z-factors (i.e., the controls) measured either with or without noise. In this way, we can assess
the issues of omitted variable and measurement error on simulated data.
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We iterate on steps four and five for M = 10, 000 times. We then evaluate the performance of the
estimators on the M artificial realizations of the data.

VI.2 Simulation Results

In this section, we present the results of the simulations. We first report the three-pass estimates of the
Z-factor and G-factor risk premia, which for ϕ(F1−4) and ω = 20 represent the true risk premia to which
we benchmark the simulation estimates. We then assess the factor structure of the simulated data, and
conclude the analysis by inspecting the performance of the three-pass and two-pass estimators in simulation.
For the three-pass estimator, we consider models with different number of latent factors and RP-weights to
estimate the risk premia of the noisy factors. For the two-pass estimator, we consider SDFs that differ in
the number of omitted factors, as well as in the measurement of the factors. With the former estimator we
assess the reliability of the method, while with the second we quantify the severity of the omitted-variable
and measurement-error problem, and hence we try to determine the desirability of the three-pass estimator
in estimating FX risk premia.

VI.2.1 Calibrating Tradable and Nontradable Factor Risk Premia

Table A14 presents the three-pass risk-premium estimates for the tradable Z-factors driving the DGP and
the selected nontradable factors. To begin with, we look at the tradable factor estimates, which are an
important input into the DGP and hence into the simulations. Moreover, for the tradable factors, we
can benchmark the three-pass estimates with the model-free estimates (mf), i.e., the time-series sample
averages of the factors. We find that we can easily recover the price of risk of the Dollar factor, regardless
of the dimension of the SDF and the choice of the RP-weight. This is not surprising as the Dollar factor
is a strong factor, and is mostly explained by F̂1. We then turn to the remaining tradable factors that are
arguably more interesting as they are weak factors with high Sharpe ratios (especially Carry and ST Mom).
Using RP-PCA with ω = 20 (Panel T.I ), we find that the three-pass risk-premium estimates of Carry are
not different, both statistically and economically, from the mf estimate as long as the SDFs include more
than two factors.48 Similarly, the three-pass estimates of ST Mom and Value are not different from their
model-free counterparts with SDFs consisting of at least three and four latent factors, respectively. Overall,
this evidence is consistent with the interpretation of the latent factors provided in Section 4.2. Moreover, it
is worth noting that the Z-factor risk-premium estimates are rather stable if additional factors are added
to the SDF, which is also consistent with full spanning.

By contrast, even with a four-factor SDF, the PCA three-pass estimates are different from the factor
averages (Panel T.II ). By adding a fifth factor (which from Section 4.2 we know has a non-negligible risk
premium in the case of PCA), the three-pass estimates move closer to the factor averages, but the gain
is substantial only for ST Mom. Taken together, this evidence is useful at least for two reasons. First, it
lends support to the choice of RP-PCA over PCA to extract the factors and simulate FX returns so that
the artificial return realizations better mirror the properties of the observed returns. Second, these findings

48By including F̂3 in the SDF, the Sharpe ratio of de-noised Carry becomes closer to that of observed Carry. This evidence
is coherent with the fact that at least three latent factors are needed to accurately span the space of FX portfolios.
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provide additional support to the conjecture that for our sample of FX assets a well-specified SDF should
include at least three latent factors. Therefore, to de-noise Dollar, Carry, ST Mom, and especially Value,
we choose a four-factor SDF whereby the factors are estimated via RP-PCA with ω = 20.

Turning to the nontradable factors, their risk-premium estimates are displayed in Panel NT, whereby
the true risk premia are displayed in columns ϕ(F̂1−4), in Panel NT.I: RP-PCA. It is evident that the
risk-premium estimates obtained with the RP-PCA three-pass method are rather stable already for SDFs
including three factors, while the PCA estimator needs at least five factors to reach stable estimates.
Moreover, the table makes clear the different characteristics and behaviors of the three candidate factors.
U.S. industrial production (ipus) is a spurious candidate factor, as its premium is not significant regardless
of the method and the dimension of the SDF used. The intermediaries’ capital ratio (icap) of He et al.
(2017) presents strong variation in the premia estimates as more latent factors are added to the SDF.
Specifically, the premium is sizable and statistically significant with a two-factor SDF, turns insignificant
with a three-factor SDF, and is again significant (albeit at the 10% level) with larger SDFs. It is clear that
the inclusion of the third latent factor (i.e., “Momentum”) in the SDF reduces in absolute terms the icap
risk-premium estimates. Finally, the risk-premium estimates of the global volatility (gvol) of Menkhoff et
al. (2012a) are significant at least at the 5% level regardless of the SDF considered (although gvol appears
to be related mostly to F̂2).

Summing up, we find that using the three-pass estimator applied to models including four factors,
extracted with baseline RP-weight, we achieve risk-premium estimates for the tradable factors that are not
statistically different from the factor sample averages. At the same time, the estimates are rather stable when
the fifth and sixth factors are included in the SDF, consistent with full spanning of the entire SDF. Finally, it
clearly emerges that ipus, icap, and gvol represent factors with substantially different behavior and premia,
which exemplify the sort of nontradable candidate risk factors considered in the baseline analysis, and hence
make the simulation exercise informative.

VI.2.2 Simulation Accuracy

Next, we simulate the asset returns and the noisy factors as detailed in Section VI.1. To begin with,
we assess the accuracy of the simulated asset returns by comparing the moments of the observed returns
with the means of the moments of the simulated returns. Specifically, Figure A11 shows the averages and
standard deviations of the test-asset returns, as well as the assets’ Sharpe ratios. For the simulated returns
to match the observed returns, all data points must lie on the 45 degree line. This seems to be largely the
case as most assets display small deviations from the 45 degree line.

Therefore, this analysis proves the adequateness of the DGP used in simulation and also confirms that
the four-factor Z-model spans almost entirely the information in the asset returns. Finally, we also note
that the simulated data match closely also the cross-sectional standard deviation of the average test asset
returns. In fact, the mean of the cross-sectional standard deviation of the simulated average returns is
0.0194, and that of the observed average returns is only slightly lower, 0.0173. Having established the
accuracy of the simulations, we can now turn to evaluate the performance of the three-pass estimator on
the simulated data.
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VI.2.3 Factor Structure

Before turning to the candidate factors’ risk-premium estimates, we assess the factor structure of the
simulated data. First, we report in Table A15 the estimated number of factors, using the GX and O tests,
as in the main analysis. In line with the GX’s simulations performed with N = 50, we find that the
estimators cannot recover the true number of factors exactly. In particular, the estimators tend to detect
a lower number of factors than the true one. GX argue that, although their estimator is consistent, this
‘underestimate’ can happen in particular when N is small, and possibly due to arbitrary choices of the
tuning parameters.

Here, based on our empirical evidence, we add that the problem of underestimating the true number
of factors is less evident when using RP-PCA with reasonably high weights. In fact, the tests detect a
higher number of factors when the factors are extracted using RP-PCA instead of PCA, which is consistent
with the fact that RP-PCA enhances the “signal strength” of the factors and better separates factors with
high Sharpe ratios from time-series factors. However, and not surprisingly, even the RP-PCA estimators
do not detect F̂4, the “Value” factor, when extracted from observed data.49 Hence, the results of the tests
need to be interpreted with caution especially in finite samples and in the presence of weak factors with
small premia. GX argue that in empirical applications it is important to select slightly more factors than
indicated by the test to ensure the robustness of the estimates. Thus, in finite samples, the GX and O
estimators seem to provide indications on the minimum number of factors entering the SDF. It is therefore
important to complement this information with other metrics and considerations.

Table A15, Panel B, reports the generalized correlations (GC) of the true latent factors with the simulated
latent factors. As stated in Section V.2, the GC was first proposed by Bai and Ng (2006) and has been
employed recently by Lettau and Pelger (2020b) to assess the stability of the factor structure recovered
with RP-PCA. Here, we note that the generalized correlations are natural statistics to look at also in the
simulations. This is because they help us answer the question: can we recover the true factor structure
in finite samples? Importantly, generalized correlations account for the fact that a factor model is only
identified up to invertible linear transformations. Specifically, they measure the correlations between the
true factors driving the DGP and the simulated factors after rotating them appropriately. A high qth
generalized correlation suggests that the simulated factors have at least q common factors with the true
factors. Therefore, generalized correlations help us quantify the degree to which a linear combination of
the mth simulated factors (F̂ (m)) replicate some or all of the factors in F̂ . Put simply, for a given run m
they inform us on how close the true factor space and a realization of the simulated factor space are to each
other.

We find that the median generalized correlations of the first four simulated factors with the true factors
are high. For ω = 20 they are all at least 97% and the confidence intervals are tiny, suggesting that the
factors driving the observed returns and the simulated factors have at least four common factors. This in
turn confirms that the simulated factors provide a good approximation of the true factors. This finding
holds regardless of the RP-weigth, which is somewhat expected as correlations abstract from the role of the
means of the factors.

49We conjecture that, while this factor is not a time-series factor, it has a much smaller risk premium compared to the other
two weak factors, F̂2 and F̂3. As a result, even RP-PCA is not able to separate F̂4 from F̂5 and F̂6 in a sample with our N and
T .
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To complete this part of the analysis, we assess the maximal Sharpe ratios implied in the simulated
data (Table A16). We find that, when the factors are extracted using RP-PCA, at least three factors are
needed to recover the true Sharpe ratios. In fact, the two-factor model severely underestimates the Sharpe
ratios, and this tendency only slightly reduces for higher RP-weights. Conversely, using more than three
factors does not lead to statistically significant increases in the Sharpe ratios; this finding aligns well with
the properties of the observed SDF. In fact, recall that the fourth latent factor (i.e., “Value”) has a small
impact on the model Sharpe ratio, and the remaining two factors are time-series factors. Their counterparts
estimated on simulated data behave similarly. Finally, while we find that RP-PCA yields slightly higher
point estimates using more than three factors, PCA underestimates the true Sharpe ratio for SDFs of any
dimension. The absolute biases and RMSEs of PCA become comparable to those of RP-PCA only when all
six latent factors are included in the SDF.

Overall, the above analysis suggests that, despite the relatively small sample size N , we can to a large
extent recover in simulation the true factor structure of the return data. The simulations confirm the
tendency, previously documented by GX, of the tests to underestimate the true number of factors in finite
samples. We find that this problem is attenuated (albeit not eliminated) by estimating the factors via
RP-PCA, as the fourth latent pricing factor remains hard to detect. However, while a good recovery of the
factor structure is per se important, the ultimate object of interest is the ability of the three-pass estimator
to recover the risk-premium estimates and standard errors of the candidate factors in finite samples, to
which we turn next.

VI.2.4 Three-pass Estimator

In this section we assess the performance of the three-pass estimator, and hence its reliability, in finite
samples. The estimation results are reported in Table A17. For each RP-weight (ω = −1, 10, 20, 50) we
estimate the risk premia using models that include an increasing number of factors (k = 2, . . . , 6). For each
combination of ω and k, we then report the biases (Bias, left panels), i.e., the estimate minus the true
value, and the root-mean-square errors (RMSE, right panels) for the four tradable Z-factors and the three
nontradable G-factors. Recall that the true number of latent factors is four and the RP-weight used in the
factor extraction is 20.

Using ϕ(F̂1−4) and ω = 20 (hence the true number of factors and RP-weight), we find that the Z-factor
biases and RMSEs are small, suggesting a very good performance of the three-pass estimator also when
N is relatively small. For most tradable factors, the estimator yields small biases and RMSEs already for
three-factor models. In fact, we can easily recover the true Dollar factor’s risk premium using a parsimonious
single-factor model (not reported), while the second and third factors are particularly important to price
accurately the Carry and ST Mom factors. By adding a fourth factor to the SDF, however, the gains in the
pricing accuracy of the Value factor are sizable (the bias further reduces, albeit slightly, using a five-factor
model).

A four-factor model with ω = 20 turns out to price well also the G-factors. However, two observations are
in order. First, for gvol and icap, both the biases and RMSEs further improve by including the fourth factor.
Thus, although F̂4 has a low Sharpe ratio compared to the other two weak factors, F̂2 and F̂3, its omission
can also lead to distorted risk-premium estimates. Second, for all nontradable factors, the absolute biases
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further reduce using a five-factor model, but the gains in terms of RMSEs are tiny or absent. Therefore, while
the model already achieves an accurate pricing performance with four latent factors, adding an extra factor
or two can lead to further reductions in the biases for some candidate factors, without being particularly
harmful for the other factors. In contrast, it is clear that underestimating the number of relevant factors
can lead to severe biases in the estimates. For example, with a two-factor model we severely overestimate
(in absolute terms) the risk premia of gvol and icap. Thus, we find that including a lower number of factors
than the optimal SDF is much more problematic than using a higher number of factors in the risk-premium
estimation.

We then turn to the sensitivity of the estimates to the RP-weight. Starting from the comparison
between PCA (ω = −1) and RP-PCA with baseline RP-weight (ω = 20), the difference is most apparent
when examining the bias (Panel A). Using a four-factor model the differences in bias are substantial (much
larger in absolute value for PCA than RP-PCA), and they remain high also for models with more than four
factors. We observe no clear pattern in the RMSE differences using the two estimators (Panel B).50 The
results for RP-PCA are qualitatively identical when setting the RP-weight to either 10 or 50 as long as the
SDF includes at least three factors (see Panel II: ω = 10 and Panel IV: ω = 50, respectively).

Next, to complete the analysis, we plot the histograms of the standardized three-pass bias estimates,
using the asymptotic standard errors. In this way, we can verify the central-limit results of the estimator
in the presence of small N . For the results to hold, the histograms should match the standard normal
distribution. Figures A12–A15 present the results for the tradable factors. We find that, using four-factor
models with ω = 20, the bars essentially overlap with the standard normal distribution for all factors but
Value. Specifically, the histograms of Carry and ST Mom show small deviations from the standard normal
distribution for models that include at least three factors, while for the Dollar factor a one-factor model is
enough. While Value benefits substantially from the inclusion of F̂4, the central-limit result is verified using
a five-factor model. Finally, Figures A16–A18 show that the central-limit results are also confirmed for
the nontradable factors. Using four-factor models, all factors’ estimates display small deviations from the
standard normal distributions. For gvol such deviations become imperceptible using a five-factor model.
Moreover, in line with the above evidence, for both tradable and nontradable factors we obtain similar
results when extracting the latent factors with ω equal to 10 and 50. On the contrary, for some factors (e.g.,
the HML factors, and icap) and SDFs, the PCA histograms tend to deviate substantially from the standard
normal distribution.

Finally, we note that the fact that we can recover the true risk premia shows the rotation-invariance
property (which is a general property that underlies the three-pass estimator; see Sections 2.1.2 and 4.2) in
our sample. This is because the DGP of the asset returns is driven by the de-noised Z-factors, but the risk
premia are estimated via the three-pass method and, hence, as linear combinations of the latent factors,
F -factors. Put simply, the returns and the candidate factors are simulated using the reduced-form Z-factor
model, and yet the risk premia are recovered using the reduced-form F -factor model.

Therefore, we conclude that the augmented three-pass estimator performs well in finite samples that
50As said before, here the main objective is not to compare RP-PCA with PCA, also because we use RP-PCA with ω = 20 to

de-noise the Z-factors that drive the DGP. However, we note that the biases and RMSEs are in general smaller if we simulate
the DGP with PCA and estimate the model with RP-PCA than (as we do here) if we simulate the DGP with RP-PCA and
estimate the model with PCA (results available upon request).
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match the properties of our cross section of FX returns. That is, we can recover the true risk premia of both
tradable and nontradable factors also when these factors are measured with noise. Hence, the simulation
analysis shows that the three-pass method proves to be a reliable estimator also for FX risk premia. At
the same time, we find that for most factors we can recover the true risk premia even using parsimonious
factor models (especially for higher RP-weights), but for some factors it is beneficial to use models that
include more latent factors. Using five-factor models (thus an additional factor than the true model), we
can verify the central-limit results for all factors. Thus, our simulation results are in line with those of GX
and, notably, are obtained in a setting that matches the properties of FX portfolio returns. As a result,
they lend additional support to the validity of the (augmented) three-pass estimator.

VI.2.5 Two-pass Estimator

In what follows, we assess the finite-sample performance of the two-pass estimator. We consider SDFs of
expanding dimensions by adding Dollar, Carry, ST Mom, and Value control factors one at a time along with
the selected nontradable candidate risk factor (i.e., gvol, icap, or ipus). In this way, the omitted-variable
problem can manifest to different degrees, as the true set of control factors should consist of all four factors.

In Panel A of Table A18 the controls are some noisy versions of the de-noised Z-factors driving the
DGP, so that the measurement-error problem adds to that associated with omitting relevant factors from
the SDF. It is evident that the two-pass estimator recovers the true risk premia only when the SDF includes
all relevant control factors. In fact, the biases are small for all three candidate factors. On the contrary,
the omission of relevant factors can severely distort the risk-premium estimates, although the biases do not
necessarily reduce as more relevant controls are included. While the absolute biases of ipus monotonically
reduce as more controls are added to the SDF, this is not the case for gvol or icap. For example, the inclusion
of F̂3 widens the absolute bias for gvol, while it reduces it for icap. Nevertheless, when moving from the
two- to the three-factor SDFs, the RMSEs drop for all candidate factors. Moreover, Panel B shows that the
biases remain sizable even absent random noise around the controls. However, the RMSEs are (slightly)
smaller for well-specified SDFs with de-noised controls. This is because the presence of random noise around
the control factors widens the confidence intervals of the candidate factors’ risk-premium estimates.

We then turn to the tradable factors’ risk-premium estimates, which make even more apparent the
impact of the measurement-error problem on the risk-premium estimates. On the one hand, the random
noise around the tradable factors can cloud the impact of the omission of relevant factors on the tradable
factor biases. On the other hand, when tradable factors are de-noised, we can appreciate fully the omitted-
variable problem. In fact, Panel B shows that when factors are measured without noise we get closer to the
true tradable factor risk premia as more relevant controls are added to the SDF. By contrast, this is not
necessarily the case when factors are measured with random noise, due to the non-trivial interplay between
the omission of relevant factors and the presence of noise around the factors.

Finally, Figures A19-A21 plot the histograms of the standardized two-pass bias estimates of the gvol,
icap, and ipus nontradable factors, respectively, using Shanken (1992) standard errors. We find that the
standardized histograms deviate substantially from the standard normal when the SDFs omit relevant
factors. This result holds irrespective of whether the controls are de-noised or not. Then, the comparison of
Panels I and II reveals that the standardized histograms of the tradable factors can deviate substantially
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from the standard normal if the controls are measured with noise, also when all relevant factors are included
in the SDF. Hence, both the omitted-variable and measurement-error problems can lead to severely distorted
two-pass estimates.

Summing up, the two-pass analysis on simulated data shows that the omitted-variable problem can be
material, leading to distorted risk-premium estimates. The two-pass estimator delivers the true premia only
if the SDF is correctly specified. In some cases, even if none of the relevant factors are omitted from the
SDF, but some of the factors are measured with noise, we cannot recover the true risk premia. Therefore,
both the omitted-variable and measurement-error problems manifest in simulation, making the use of the
three-pass estimator desirable in the estimation of FX risk premia, as it performs well also in finite samples.

VI.3 Final Remarks

Taken together, the simulation analysis uncovers a number of important insights, which can be summarized
as follows. To begin with, the simulated returns generated from a four-factor reduced-form model match the
properties of the observed FX returns. This makes the simulation analysis reliable, but it also implies that
this four-factor model spans the entire space of asset returns. Moreover, we find that RP-PCA achieves a
good recovery of the true factor structure on simulated data. Similar to GX, we find a tendency of the tests
to underestimate the true number of factors. Such tendency is attenuated when the factors are extracted
via RP-PCA, but is not eliminated (the fourth latent factor is not detected by any of the tests). However,
the analysis of the generalized correlations and Sharpe ratios point to an accurate recovery of the factor
structure.

We then turn to the estimation of the candidate factor risk premia (our ultimate goal), which establishes
two important results. First, the augmented three-pass estimator recovers the true factor risk premia in
simulation. Second, the central-limit results are verified. These results show that the three-pass estimator
is highly reliable, also in finite samples tailored to the properties of our FX asset returns. At the same time,
they show the rotation invariance of the risk premia in our setting. Moreover, throughout the analysis, it
emerges that omitting relevant latent factors is far more harmful than adding extra factors to the SDF.
Actually, for some candidate factors it turns out to be beneficial to add an extra factor to the SDF, without
any tangible adverse effect on the other candidate factors.

Finally, we find that the two-pass estimator can lead to substantially distorted estimates if some of the
relevant factors are omitted from the SDF and/or are measured with noise (the interplay between these
two sources of bias is material, and yet is non-trivial, so that the omitted-variable absolute bias might not
reduce as more relevant factors are added to the SDF). Overall, based on the simulations, we can conclude
that the three-pass estimator is both reliable and desirable in the estimation of currency risk premia.
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Table A14: Three-Pass Estimates of Tradable and Nontradable Factor Risk Premia

The table presents the risk-premium estimates for selected tradable (Panel T) and nontradable (Panel NT) factors.
Column mf shows the model-free estimates of the risk premia (λ), that is the factor’s return sample average, along
with the Newey-West standard errors (se) and p-values (pval), and the factor Sharpe ratio (SR). The remaining
columns report the estimates from the (augmented) three-pass procedure for SDFs of different dimensions (ϕ(F̂1−k)
with k = 2, . . . , 6). In left panels the latent factors are estimated using the RP-PCA method with baseline RP-weight
(i.e., ω = 20), while in right panels using PCA (i.e., RP-PCA with ω = −1) for comparison. The underlying test
assets consist of the portfolios from the nine investment strategies (N = 46). We report the RP-PCA risk-premium
estimates with the asymptotic standard errors, and p-values, and the de-noised factor Sharpe ratios. Tradable factors
are Dollar, Carry, ST Mom, and Value; their de-noised version from ϕ(F̂1−4) drive the DGP in the simulations. The
nontradable factors gvol, icap, and ipus are the AR(1) innovations to the global volatility of Menkhoff et al. (2012a),
the intermediaries’ capital ratio of He et al. (2017), and the U.S. industrial production, respectively (see Tables A5-A7
in the IA). The sample period is from 11/1983 to 12/2017 at monthly frequency (T = 410).

Panel T: Tradable Factors
Panel T.I: RP-PCA (ω = 20) Panel T.II: PCA (ω = −1)

T1.I Dollar T1.II Dollar
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ 0.026 0.026 0.025 0.026 0.026 0.026 0.024 0.024 0.024 0.025 0.026
(se) 0.012 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013
<pval> 0.044 0.055 0.058 0.050 0.052 0.052 0.070 0.072 0.073 0.056 0.054
SR 0.368 0.361 0.355 0.367 0.365 0.366 0.339 0.337 0.337 0.359 0.363

T2.I Carry T2.II Carry
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ 0.073 0.085 0.063 0.064 0.062 0.063 0.029 0.040 0.040 0.048 0.049
(se) 0.014 0.013 0.014 0.014 0.014 0.014 0.013 0.013 0.014 0.014 0.014
<pval> 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.005 0.006 0.001 0.001
SR 0.865 1.211 0.842 0.854 0.817 0.817 0.405 0.544 0.535 0.642 0.649

T3.I ST Mom T3.II ST Mom
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ 0.069 0.019 0.079 0.082 0.083 0.082 -0.011 0.025 0.024 0.071 0.067
(se) 0.015 0.011 0.013 0.012 0.012 0.013 0.004 0.011 0.011 0.013 0.014
<pval> 0.000 0.083 0.000 0.000 0.000 0.000 0.010 0.023 0.028 0.000 0.000
SR 0.770 0.894 1.212 1.249 1.224 1.039 0.481 0.470 0.444 0.945 0.819

T4.I Value T4.II Value
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ 0.033 0.006 -0.007 0.022 0.023 0.022 0.002 -0.028 -0.029 0.007 0.007
(se) 0.013 0.007 0.008 0.010 0.010 0.010 0.004 0.008 0.008 0.010 0.010
<pval> 0.014 0.377 0.421 0.034 0.034 0.038 0.630 0.001 0.001 0.468 0.485
SR 0.446 0.594 0.390 0.369 0.375 0.370 0.134 0.663 0.661 0.127 0.123

Panel NT: Nontradable Factors

Panel NT.I: RP-PCA (ω = 20) Panel NT.II: PCA (ω = −1)
NT1.I gvol NT1.II gvol

mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)
λ – -1.323 -1.048 -0.759 -0.769 -0.791 -0.540 -0.968 -0.962 -0.716 -0.773
(se) – 0.317 0.302 0.360 0.358 0.385 0.207 0.262 0.259 0.296 0.315
<pval> – 0.000 0.001 0.041 0.037 0.046 0.012 0.001 0.001 0.020 0.018
SR – 1.198 0.920 0.595 0.598 0.567 0.488 0.776 0.759 0.553 0.553

NT2.I icap NT2.II icap
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ – 1.197 0.612 0.756 0.790 0.801 0.518 0.390 0.377 0.729 0.760
(se) – 0.335 0.386 0.430 0.423 0.437 0.245 0.259 0.253 0.371 0.387
<pval> – 0.001 0.120 0.086 0.068 0.074 0.040 0.140 0.144 0.056 0.056
SR – 1.226 0.534 0.641 0.615 0.612 0.456 0.339 0.304 0.562 0.572

NT3.I ipus NT3.II ipus
mf ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

λ – 0.163 0.227 0.159 0.166 0.168 -0.013 0.141 0.137 0.165 0.170
(se) – 0.354 0.378 0.385 0.385 0.384 0.143 0.228 0.228 0.291 0.294
<pval> – 0.649 0.551 0.681 0.667 0.664 0.929 0.542 0.550 0.575 0.565
SR – 0.637 0.860 0.539 0.529 0.530 0.061 0.477 0.430 0.514 0.525
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Table A15: Factor Structure in Simulation

The table presents statistics about the factor structure of the simulated data. Panel A.I and A.II report the percentiles
(10th, 50th, and 90th) and standard deviations (SD) of the estimates of the number of factors as suggested by the
tests of Onatski (2010; O), and Giglio and Xiu (2021; GX), respectively. Panel B reports the percentiles and standard
deviations of the first four generalized correlations (GC). We implement the GX and O tests and compute the GC
for factors extracted using RP-PCA with different RP-weights (ω = −1, 10, 20, 50). The true data-generating process
(DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry,
ST Mom, and Value). Hence, the true number of factors is four. To remove noise from the factors, we applied the
three-pass procedure with ω = 20 and four latent factors (ϕ(F̂1−4)) to the panel of observed FX portfolio returns.
The results are based on M = 10, 000 artificial Monte Carlo realizations with N = 46 and T = 410, which match the
cross-section and time-series dimensions of FX portfolio returns.

Panel A: Number of Factors
Panel A.I: O Test Panel A.II: GX Test

10th 50th 90th SD 10th 50th 90th SD
ω=–1 2 2 2 0.27 2 2 2 0.23
ω=10 2 3 3 0.50 3 3 3 0.11
ω=20 3 3 3 0.40 3 3 3 0.09
ω=50 3 3 3 0.38 3 3 3 0.09

Panel B: Generalized Correlations
Panel B.I: ω=–1 Panel B.II: ω=10

10th 50th 90th SD 10th 50th 90th SD
GC1 99.95 99.97 99.98 0.01 99.95 99.97 99.98 0.01
GC2 99.03 99.33 99.56 0.21 99.01 99.32 99.55 0.21
GC3 97.65 98.4 98.91 0.51 97.58 98.35 98.88 0.52
GC4 95.27 96.79 97.80 1.05 95.21 96.69 97.75 1.02

Panel B.III: ω=20 Panel B.IV: ω=50
10th 50th 90th SD 10th 50th 90th SD

GC1 99.95 99.97 99.98 0.01 99.95 99.97 99.98 0.01
GC2 99.01 99.31 99.55 0.21 99.00 99.31 99.54 0.21
GC3 97.56 98.34 98.87 0.53 97.55 98.33 98.86 0.53
GC4 95.16 96.67 97.73 1.03 95.12 96.65 97.72 1.05
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Table A16: Sharpe Ratios in Simulation

The table presents the estimates (Avg.), standard deviations (SD), biases (Bias), and root-mean-square errors
(RMSE) of the maximal Sharpe ratio (SR) computed on the simulated data. The bias is given by the estimate
minus the true value of the SR. We refer to Section 2.1 and Table 1 for a detailed description of the maximal SR.
Here, we note that we compute the maximal SR for each artificial realization using SDFs of different dimensions
(ϕ(F̂1−k) with k = 1, . . . , 6), whereby the latent factors are estimated with different RP-weights (ω = −1, 10, 20, 50).
The true data-generating process (DGP) has four factors, and the parameters are calibrated based on the four de-
noised tradable factors (Dollar, Carry, ST Mom, and Value). To remove noise from the factors, we applied the
three-pass procedure with RP-weight ω = 20 and four latent factors (ϕ(F̂1−4)) to the panel of observed FX portfolio
returns. The true maximal SR is 0.476. The results are based on M = 10, 000 artificial Monte Carlo realizations with
N = 46 and T = 410, which match the cross-section and time-series dimensions of the FX portfolio returns.

Panel A: Avg. Panel B: SD
ω=-1 ω=10 ω=20 ω=50 ω=-1 ω=10 ω=20 ω=50

ϕ(F̂1) 0.098 0.103 0.107 0.116 0.048 0.050 0.051 0.051
ϕ(F̂1−2) 0.154 0.351 0.417 0.450 0.049 0.075 0.061 0.054
ϕ(F̂1−3) 0.263 0.482 0.494 0.502 0.059 0.052 0.051 0.049
ϕ(F̂1−4) 0.302 0.500 0.507 0.513 0.063 0.052 0.051 0.050
ϕ(F̂1−5) 0.403 0.508 0.514 0.518 0.063 0.051 0.051 0.050
ϕ(F̂1−6) 0.438 0.511 0.516 0.520 0.053 0.051 0.051 0.050

Panel C: Bias Panel D: RMSE
ω=-1 ω=10 ω=20 ω=50 ω=-1 ω=10 ω=20 ω=50

ϕ(F̂1) -0.378 -0.373 -0.369 -0.360 0.382 0.377 0.373 0.364
ϕ(F̂1−2) -0.322 -0.126 -0.059 -0.027 0.326 0.146 0.085 0.060
ϕ(F̂1−3) -0.213 0.006 0.018 0.025 0.221 0.053 0.054 0.055
ϕ(F̂1−4) -0.175 0.024 0.031 0.036 0.186 0.057 0.060 0.062
ϕ(F̂1−5) -0.074 0.032 0.038 0.042 0.097 0.061 0.063 0.065
ϕ(F̂1−6) -0.038 0.035 0.040 0.044 0.065 0.062 0.065 0.066
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Table A17: Three-Pass Simulation Results

The table presents the bias (Bias) and the root-mean-square error (RMSE) of the risk-premium estimates using
the (augmented) three-pass estimator with k = 2, . . . , 6 latent factors (ϕ(F̂1−k)) and selected RP-weights (ω =
−1, 10, 20, 50). The bias is computed as the estimate minus the true risk premium. The true data-generating process
(DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry,
ST Mom, and Value). To remove noise from the factors, we applied the three-pass procedure with ω = 20 and four
latent factors (ϕ(F̂1−4)) to the panel of FX portfolio returns. The true (annualized) risk premia of the noisy yet
observed tradable (Dollar, Carry, ST Mom, and Value) and nontradable (gvol, icap, and ipus) factors are reported in
Table A14, columns (ϕ(F̂1−4)) of Panels T.I and NT.I, respectively. The results are based on M = 10, 000 artificial
Monte Carlo realizations with N = 46 and T = 410, which match the cross-section and time-series dimensions of our
baseline sample of FX portfolio returns.

Panel A: Bias Panel B: RMSE
Panel A.I: ω=-1 Panel B.I: ω=-1

ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)
Dol -0.002 -0.002 -0.002 -0.001 -0.001 Dol 0.013 0.013 0.013 0.012 0.012
Carry -0.035 -0.025 -0.022 -0.011 -0.007 Carry 0.037 0.028 0.026 0.018 0.015
ST Mom -0.093 -0.063 -0.054 -0.027 -0.017 ST Mom 0.093 0.065 0.056 0.031 0.021
Value -0.020 -0.047 -0.043 -0.019 -0.011 Value 0.020 0.047 0.045 0.024 0.016

gvol 0.216 -0.180 -0.185 -0.063 -0.022 gvol 0.306 0.327 0.337 0.324 0.328
icap -0.238 -0.351 -0.318 -0.150 -0.090 icap 0.323 0.431 0.418 0.349 0.335
ipus -0.172 -0.036 -0.022 -0.017 -0.015 ipus 0.200 0.173 0.192 0.247 0.268

Panel A.II: ω=10 Panel B.II: ω=10
ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

Dol -0.001 -0.001 0.000 0.000 0.000 Dol 0.013 0.012 0.012 0.012 0.012
Carry 0.016 -0.001 0.000 0.000 0.000 Carry 0.026 0.014 0.013 0.013 0.013
ST Mom -0.069 -0.003 -0.002 0.000 0.000 ST Mom 0.072 0.013 0.012 0.012 0.012
Value -0.016 -0.028 -0.009 -0.002 -0.001 Value 0.018 0.031 0.018 0.012 0.012

gvol -0.489 -0.294 -0.096 -0.021 -0.013 gvol 0.598 0.467 0.387 0.361 0.361
icap 0.382 -0.140 -0.046 -0.006 -0.003 icap 0.521 0.372 0.356 0.352 0.353
ipus -0.019 0.067 0.020 0.004 0.003 ipus 0.227 0.299 0.303 0.307 0.309

Panel A.III: ω=20 Panel B.III: ω=20
ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

Dol 0.000 -0.001 0.000 0.000 0.000 Dol 0.013 0.012 0.012 0.012 0.012
Carry 0.025 0.000 0.000 0.001 0.001 Carry 0.031 0.014 0.013 0.013 0.013
ST Mom -0.050 0.000 0.000 0.001 0.001 ST Mom 0.055 0.012 0.012 0.012 0.012
Value -0.015 -0.024 -0.007 -0.001 0.000 Value 0.018 0.028 0.017 0.012 0.012

gvol -0.597 -0.267 -0.084 -0.020 -0.013 gvol 0.689 0.455 0.385 0.363 0.363
icap 0.438 -0.118 -0.033 -0.001 0.002 icap 0.579 0.368 0.357 0.354 0.355
ipus 0.030 0.063 0.019 0.005 0.004 ipus 0.260 0.305 0.307 0.310 0.311

Panel A.IV: ω=50 Panel B.IV: ω=50
ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6) ϕ(F̂1−2) ϕ(F̂1−3) ϕ(F̂1−4) ϕ(F̂1−5) ϕ(F̂1−6)

Dol 0.000 -0.001 0.000 0.000 0.000 Dol 0.012 0.012 0.012 0.012 0.012
Carry 0.027 0.001 0.001 0.001 0.001 Carry 0.032 0.014 0.013 0.013 0.013
ST Mom -0.038 0.002 0.001 0.002 0.002 ST Mom 0.044 0.012 0.012 0.012 0.012
Value -0.014 -0.022 -0.006 -0.001 0.000 Value 0.018 0.026 0.016 0.012 0.012

gvol -0.601 -0.248 -0.076 -0.019 -0.013 gvol 0.703 0.447 0.384 0.365 0.364
icap 0.421 -0.103 -0.025 0.003 0.005 icap 0.582 0.366 0.358 0.356 0.357
ipus 0.049 0.061 0.018 0.006 0.004 ipus 0.279 0.309 0.310 0.312 0.313
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Table A18: Two-pass Simulation Results

The table presents the bias (Bias) and root-mean-square error (RMSE) of the risk premia estimates of selected
nontradable factors (g) using the two-pass estimator. The bias is computed as the estimate minus the true risk
premium. We consider SDFs of expanding dimensions whereby the four tradable control factors are added, along with
the nontradable factor, one at a time. We consider the case of noisy controls (ϕ([Z1−j , g]), for j = 1, . . . , 4) in Panel
A, and that of de-noised controls (ϕ([Ẑ1−j , g]), for j = 1, . . . , 4) in Panel B. The true data-generating process (DGP)
has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry, ST
Mom, and Value). To remove noise from the factors, we applied the three-pass procedure with ω = 20 and four latent
factors (ϕ(F̂1−4)) to the panel of FX portfolio returns. The true (annualized) risk premia of the noisy yet observed
tradable (Dollar, Carry, ST Mom, and Value) and nontradable (gvol, icap, and ipus) factors are provided in the
‘True’ column (and in column ϕ(F̂1−4) of Panels T.I and NT.I in Table A14, respectively). The results are based
on M = 10, 000 artificial Monte Carlo realizations with N = 46 and T = 410, which match the cross-section and
time-series dimensions of our baseline sample of FX portfolio returns.

Panel A: Two-Pass with Noisy Controls
Panel AI: Bias Panel AII: RMSE

Panel AI.G1: gvol Panel AII.G1: gvol
True ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g]) ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g])

Dol 0.0260 -0.0021 -0.0013 -0.0002 0.0001 0.0125 0.0124 0.0124 0.0124
Carry 0.0635 – -0.0094 0.0154 0.0104 – 0.0203 0.0224 0.0195
ST Mom 0.0821 – – 0.0321 0.0359 – – 0.0364 0.0397
Value 0.0217 – – – 0.0101 – – – 0.0200
gvol -0.7587 -4.1996 1.2328 3.2566 -0.0007 4.6426 4.4373 4.0290 2.6795

Panel AI.G2: icap Panel AII.G2: icap
True ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g]) ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g])

Dol 0.0260 -0.0016 -0.0015 -0.0004 0.0001 0.0125 0.0125 0.0124 0.0124
Carry 0.0635 – 0.0009 0.0054 0.0103 – 0.0192 0.0175 0.0193
ST Mom 0.0821 – – 0.0320 0.0360 – – 0.0364 0.0398
Value 0.0217 – – – 0.0100 – – – 0.0195
icap 0.7565 3.4286 -6.6970 2.5930 0.0711 3.9838 8.3949 3.9431 2.7254

Panel AI.G3: ipus Panel AII.G3: ipus
True ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g]) ϕ([Z1, g]) ϕ([Z1−2, g]) ϕ([Z1−3, g]) ϕ([Z1−4, g])

Dol 0.0260 -0.0020 -0.0014 -0.0005 0.0001 0.0125 0.0125 0.0124 0.0124
Carry 0.0635 – -0.0113 0.0095 0.0104 – 0.0201 0.0186 0.0190
ST Mom 0.0821 – – 0.0296 0.0359 – – 0.0344 0.0397
Value 0.0217 – – – 0.0101 – – – 0.0194
ipus 0.1592 7.0869 3.6691 -1.4835 0.0684 10.1581 8.2552 3.7566 2.9203

Panel B: Two-Pass with De-Noised Controls
Panel BI: Bias Panel BII: RMSE

Panel BI.G1: gvol Panel BII.G1: gvol
True ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g]) ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g])

Dol 0.0260 -0.0022 -0.0015 -0.0004 -0.0001 0.0124 0.0123 0.0123 0.0123
Carry 0.0635 – -0.0198 -0.0022 -0.0012 – 0.0238 0.0129 0.0127
ST Mom 0.0821 – – -0.0044 -0.0024 – – 0.0122 0.0116
Value 0.0217 – – – -0.0009 – – – 0.0100
gvol -0.7587 -4.2043 1.2808 3.3776 -0.0090 4.6497 4.4686 4.1045 2.6131

Panel BI.G2: icap Panel BII.G2: icap
True ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g]) ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g])

Dol 0.0260 -0.0018 -0.0017 -0.0006 -0.0001 0.0124 0.0124 0.0123 0.0123
Carry 0.0635 – -0.0184 -0.0029 -0.0012 – 0.0226 0.0130 0.0127
ST Mom 0.0821 – – -0.0059 -0.0024 – – 0.0130 0.0116
Value 0.0217 – – – -0.0009 – – – 0.0100
icap 0.7565 3.4234 -6.8503 2.6437 -0.0284 3.9823 8.5134 3.9289 2.6379

Panel BI.G3: ipus Panel BII.G3: ipus
True ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g]) ϕ([Ẑ1, g]) ϕ([Ẑ1−2, g]) ϕ([Ẑ1−3, g]) ϕ([Ẑ1−4, g])

Dol 0.0260 -0.0022 -0.0016 -0.0007 -0.0001 0.0124 0.0124 0.0123 0.0123
Carry 0.0635 – -0.0192 -0.0032 -0.0012 – 0.0233 0.0131 0.0127
ST Mom 0.0821 – – -0.0064 -0.0024 – – 0.0132 0.0116
Value 0.0217 – – – -0.0009 – – – 0.0100
ipus 0.1592 7.0664 3.6057 -1.6145 -0.0206 10.1536 8.2555 3.7628 2.7922
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Figure A11: Observed vs. Simulated Test-Asset Return Moments
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The figure shows the moments of the observed and simulated test-asset returns. In Average, we plot the time-series
averages of the observed portfolio returns (Observed) against the means of the time-series averages of the simulated
portfolio returns (Simulated; in percent, annualized); in Standard Deviation, we show the standard deviations of
the observed returns against the means of the standard deviations of the simulated returns (in percent, annualized);
in Sharpe ratio, we report the Sharpe ratios of the observed returns against the means of the Sharpe ratios of the
simulated returns. The observed cross-sectional standard deviation of the average returns is 0.0173, and the mean of
the cross-sectional standard deviation of the simulated average returns is 0.0194. The true data generating process
(DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry,
ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors. We
simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A12: Histograms of the Three-Pass Standardized Bias Estimates of the Dollar Factor in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the Dollar factor using asymptotic
standard errors. We implement the three-pass estimator using SDFs including an increasing number of pricing factors
(ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The true data generating process (DGP) has
four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry, ST Mom,
and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors. We simulate
the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A13: Histograms of the Three-Pass Standardized Bias Estimates of the Carry Factor in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the Carry HML factor using asymp-
totic standard errors. We implement the three-pass estimator using SDFs including an increasing number of pricing
factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The true data generating process
(DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry,
ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors. We
simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A14: Histograms of the Three-Pass Standardized Bias Estimates of the Short-term Momentum
Factor in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the ST Mom HML factor using
asymptotic standard errors. We implement the three-pass estimator using SDFs including an increasing number of
pricing factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The true data generating
process (DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar,
Carry, ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors.
We simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A15: Histograms of the Three-Pass Standardized Bias Estimates of the Value Factor in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the Value HML factor using asymp-
totic standard errors. We implement the three-pass estimator using SDFs including an increasing number of pricing
factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The true data generating process
(DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar, Carry,
ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors. We
simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A16: Histograms of the Three-Pass Standardized Bias Estimates of the Global FX Volatility Factor
in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the global FX volatility factor of
Menkhoff et al. (2012a) using asymptotic standard errors. We implement the three-pass estimator using SDFs including
an increasing number of pricing factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The
true data generating process (DGP) has four factors, and the parameters are calibrated based on the four de-noised
tradable factors (Dollar, Carry, ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with
ω = 20 and four pricing factors. We simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and
Table A17).
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Figure A17: Histograms of the Three-Pass Standardized Bias Estimates of Intermediaries’ Capital Ratio
Factor in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the intermediaries’ capital ratio factor
of He et al. (2017) using asymptotic standard errors. We implement the three-pass estimator using SDFs including
an increasing number of pricing factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The
true data generating process (DGP) has four factors, and the parameters are calibrated based on the four de-noised
tradable factors (Dollar, Carry, ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with
ω = 20 and four pricing factors. We simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and
Table A17).
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Figure A18: Histograms of the Three-Pass Standardized Bias Estimates of U.S. Industrial Production Factor
in Simulation

The figure shows the histograms of the three-pass standardized bias estimates of the U.S. industrial production factor
using asymptotic standard errors. We implement the three-pass estimator using SDFs including an increasing number
of pricing factors (ϕ(F̂1−k) for k = 1, . . . , 6) and multiple RP-weights (ω = −1, 10, 20, 50). The true data generating
process (DGP) has four factors, and the parameters are calibrated based on the four de-noised tradable factors (Dollar,
Carry, ST Mom, and Value). To de-noised the tradable factors, we used RP-PCA with ω = 20 and four pricing factors.
We simulate the models 10,000 times with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A19: Histograms of the Two-Pass Standardized Bias Estimates of the Global FX Volatility Factor
in Simulation

Panel I: Noisy Controls Panel II: De-Noised Controls

The figure shows the histograms of the two-pass standardized bias estimates of the global FX volatility factor of
Menkhoff et al. (2012a) using Shanken (1992) standard errors. We consider SDFs of expanding dimension by adding
Dollar, Carry, ST Mom, and Value control factors one at a time along with the candidate nontradable factor g = gvol.
In Panel I the controls contain noise (ϕ([Z1−k, g])), while in Panel II are de-noised (ϕ([Ẑ1−k, g])). The biases are
obtained as the estimates minus the true risk premia (the latter are presented in Panels AI.G1 and BI.G1 of Table
A18). The true data generating process (DGP) has four de-noised factors, and we simulate the models 10,000 times
with N = 46 and T = 410 (see Section VI and Table A17).
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Figure A20: Histograms of the Two-Pass Standardized Bias Estimates of the Intermediaries’ Capital Ratio
Factor in Simulation

Panel I: Noisy Controls Panel II: De-Noised Controls

The figure shows the histograms of the two-pass standardized bias estimates of the intermediaries’ capital ratio factor
of He et al. (2017) using Shanken (1992) standard errors. We consider SDFs of expanding dimension by adding Dollar,
Carry, ST Mom, and Value control factors one at a time along with the candidate nontradable factor g = icap. In
Panel I the controls contain noise (ϕ([Z1−k, g])), while in Panel II are de-noised (ϕ([Ẑ1−k, g])). The biases are obtained
as the estimates minus the true risk premia (the latter are presented in Panels AI.G2 and BI.G2 of Table A18). The
true data generating process (DGP) has four de-noised factors, and we simulate the models 10,000 times with N = 46
and T = 410 (see Section VI and Table A17).
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Figure A21: Histograms of the Two-Pass Standardized Bias Estimates of the U.S. Industrial Production
Factor in Simulation

Panel I: Noisy Controls Panel II: De-Noised Controls

The figure shows the histograms of the two-pass standardized bias estimates of the U.S. industrial production factor
using Shanken (1992) standard errors. We consider SDFs of expanding dimension by adding Dollar, Carry, ST Mom,
and Value control factors one at a time along with the candidate nontradable factor g = ipus. In Panel I the controls
contain noise (ϕ([Z1−k, g])), while in Panel II are de-noised (ϕ([Ẑ1−k, g])). The biases are obtained as the estimates
minus the true risk premia (the latter are presented in Panels AI.G3 and BI.G3 of Table A18). The true data
generating process (DGP) has four de-noised factors, and we simulate the models 10,000 times with N = 46 and
T = 410 (see Section VI and Table A17).
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VII Weak Candidate Factors

The augmented three-pass procedure tackles both the omitted-variable and measurement-error problems in
the estimation of factor risk premia; see Section 2, and Section VI in the Internet Appendix. However, the
method (regardless of the RP-weight used) is not designed to explicitly address the issue of weak candidate
factors (Giglio et al., 2021c, GXZ henceforth). Such problem manifests if only few assets are exposed to the
candidate factor, and this can in turn affect the inference on the factor risk premium. A factor is more likely
to be weak in large cross sections of test assets, because the strength of a factor is not an inherent property
of the factor, as it also depends on the cross section of assets used in the analysis. Hence, a factor is not
strong or weak in absolute terms, but relative to the cross section of test assets. Large cross sections are a
prerequisite of the three-pass estimator to effectively address the omitted-variable problem, as the extracted
latent factors and hence the SDF should span all relevant sources of FX risk. Despite the cross section
of FX portfolios is relatively small, the problem of weak factors could manifest to different degrees in our
sample of candidate factors. For example, it might weigh on the inference on macro factor risk premia, and
thus explain at least in part the disconnect that we document between macro factors and currency portfolio
returns. But it could also affect the risk-premium estimates of some financial and text-based factors if these
factors are also weak.

In light of these considerations, we assess the robustness of the candidate factor risk-premium estimates
using the supervised principal component analysis (SPCA) recently proposed by GXZ. This novel three-pass
estimator is designed to explicitly tackle the omitted-variable and measurement-error problems accounting
for the possibility that the candidate factor of interest is weak. The SPCA procedure delivers robust
estimates of a weak factor’s risk premium because it shrinks and adapts the assets’ cross section to match
the properties of the factor. By doing so, the factor becomes strong with respect to the new tailored
cross section of assets, making the inference on the factor risk premium valid. As a consequence, unlike
the original GX three-pass method, the SPCA estimator does not hinge on a unique SDF common to all
candidate factors (being driven by the full cross section of assets), but potentially on several SDFs. Put
differently, in SPCA the SDFs are pinned down by the candidate factor properties and hence by supervised
selections of the original cross section. Thus, while SPCA is not particularly useful to shed light on the
properties of the currency SDF (the first goal of this study), it is highly relevant for the second goal of our
study: that is, the estimation of candidate factor risk premia.

VII.1 SPCA Method

In what follows, we describe the main insights and steps of the SPCA method, while we refer the reader
to GXZ for more details. Take the T ×N cross section of asset excess returns X, and a generic candidate
factor, either tradable or nontradable. Then, the SPCA procedure consists of iterating on the following
steps: i) compute the univariate correlation of all test asset returns X with the candidate factor of interest;
ii) select the top-qN assets most correlated with the factor; iii) extract the first latent factor from this subset
of qN asset returns via PCA (thus the tuning parameter q determines how many assets we use to extract
the latent factor); and iv) project the candidate factor and all the X-asset returns on the latent factor, and
then take residuals. By iterating k times on steps i-iv (where portfolio returns and the candidate factor are
replaced from the second iteration onwards by the residuals from the previous iteration projection step),

lxv

Electronic copy available at: https://ssrn.com/abstract=3796290



one recovers the k latent factors. Equipped with the estimates of the k latent factors, one then applies the
three-pass GX procedure and retrieves the risk-premium estimates of the candidate factor. The procedure
is performed separately on each candidate factor.

In the above procedure, the two key tuning parameters q and k are assumed to be known by the
researcher, i.e., to be predetermined. GXZ show that these parameters can be jointly determined in advance
by repeatingM times a K-fold cross-validation exercise. The exercise essentially consists of first constructing
a grid of out-of-sample R2s for different combinations of the tuning parameters q and k (the R2s are the
averages from repeating the cross-validation M times), and then selecting the combination {q, k} that
maximizes the R2. Specifically, in line with GXZ, we design the cross-validation exercise as follows.51 For
each repetition m (with m ranging from 1 to M = 100), we randomly split the sample period into K = 3
parts of equal length, where two parts consist of the longer training period and the remaining part of the
shorter testing (or out-of-sample evaluation) period. For selected combinations of the tuning parameters q
and k, we build the weights of the hedging portfolio for the candidate factor by SPCA using the training
data only.52 Such weights are then used to construct the returns of the hedging portfolio over the evaluation
period and then determine the fraction of the factor’s variance hedged by the portfolio (the out-of-sample
R2). For each repetition m, we perform the analysis for all three possible permutations of training and
testing periods. For each combination of {q, k}, we then average over the explained variances computed
over the three testing periods and obtain the grid of R2s for repetition m. We repeat these steps for each
of the M repetitions, and then average over the M grids containing the cross-validation out-of-sample R2s
of each repetition to get the final grid. Based on this grid, we choose the pair {q, k} that yields the highest
cross-validation out-of-sample R2.53

Before turning to the empirical results, two observations are in order. First, if the number of selected
test assets qN equals the overall number of test assets N (i.e., there is no asset selection), then the SPCA
factor risk-premium estimates are identical to the standard GX three-pass estimates (i.e., where the factors
are estimated with PCA; see Panels ω = −1 of Tables A10 and A11), for a given dimension of the SDF.
Therefore, for these estimates to be free from an omitted-variable bias, the SDF needs to include enough
latent factors to fully span the assets’ space. We know from Section 4 that for this to be the case at least
three, and potentially four, latent factors are needed using RP-PCA (more factors are needed using PCA;
see also Panel T.II in Table A14). Second, in the above sketch of the SPCA algorithm, the analysis is
carried out for one candidate factor at a time. Thus, the assets’ selection is only driven by the factor at
hand. By performing the SPCA estimation factor by factor, the risk-premium estimates are consistent and,
importantly, we can determine which assets are relevant for which factors. However, factor risk premia
can also be estimated via SPCA using more factors simultaneously. In such joint estimation, the selection
of the assets is driven simultaneously by a set that includes multiple (potentially all) candidate factors.
Specifically, assets are sorted by the maximum correlation with any of the factors in the set. While both the

51We implement the cross-validation exercise as set up in the SPCA code made available by GXZ.
52We require a minimum of 10 assets selected, and similarly to GXZ we work with a range of numbers of test assets (instead

of working with the tuning parameter q). Specifically, we consider qN= [10, 15, 20, 25, 30, 35, 40, 46]. Meanwhile, we assess
models with SDFs of expanding dimension including a maximum of 10 latent factors, so that k = [1, . . . , 10]. Thus, the grid of
out-of-sample R2 has 8× 10 entries.

53One can alternatively fix one of the two parameters, and select the second parameter that maximizes the out-of-sample R2

for that choice of the first parameter. In this way, for a given candidate factor one can for example assess how the optimal qN
and R2 vary with the dimension of the SDF.

lxvi

Electronic copy available at: https://ssrn.com/abstract=3796290



one-by-one and the joint factor SPCA estimators are consistent, the joint estimation is required to make
inference on the premium estimates (see Giglio et al., 2021c). This is because for the central-limit-theorem
assumptions to hold, the factors are required to have exposures to the entire SDF. This is a far more
stringent requirement to be satisfied than is needed for consistency.

Finally, in presenting the empirical evidence below, we distinguish between factors with positive and
negative cross-validation out-of-sample R2s. We only report the estimation results for factors with positive
R2s, as a negative R2 suggests that we cannot hedge that factor, and hence its risk-premium estimate is not
informative. Thus, the cross-validation exercise allows us to further filter out factors that cannot be hedged
out of sample by the currency assets. This criterion can be seen as an additional way to further discern
relevant candidate factors from non-relevant ones. This means that, while SPCA gives us the best chance
to detect candidate factors with a non-zero risk premium by allowing for weak factors, it can also reduce
the number of relevant factors (relative to the three-pass procedure) due to this additional constraint.

VII.2 SPCA Results

Next we assess the risk-premium estimates obtained using SPCA, and then unveil the identities of the assets
selected by SPCA in the estimation of the latent factors, another useful by-product of the procedure. We
present the main results for both tradable and nontradable factors.

VII.2.1 Cross-Validation Analysis and Risk-Premium Estimates

While the main focus of our analysis pertains to the estimation of nontradable factor risk premia, it is
convenient to look at the case of tradable factors first. This is exactly because for tradable factors we can
benchmark the SPCA estimates to the model-free estimates of the factor risk premia, and hence we can
precisely assess the performance of the SPCA estimator. In particular, we can determine the number of
latent factors entering the SDF in the joint estimation, which is then key to carry out the inference on both
tradable and nontradable factors. Thus, we first review the case of tradable factors, before turning to the
nontradable factor risk-premium estimates, which we then contrast with our baseline three-pass estimates
of Table 3.

Tradable Z-Factors. Table A19, Panel A, reports the estimates of the tradable factor risk premia ob-
tained applying SPCA to each candidate factor separately. The tradable Z-factors include the Dollar level
factor (the cross-sectional average of individual currency returns) and the nine HML factors of the invest-
ment strategies. The first column shows the model-free estimates (avg) for each of the tradable factors, while
the subsequent blocks of columns present the results for models including an increasing number of latent
factors (the tuning parameter k). For each model, the table displays the SPCA risk-premium estimates (λ),
the cross-validation out-of-sample R2s (R2) of the implied hedging portfolios for the tradable factor, and
the number of test assets (#TA) selected also in the cross-validation exercise, i.e, qN . Importantly, we find
that SPCA successfully recovers the model-free risk-premium estimates for all tradable factors. However,
while for the Dollar factor even a parsimonious model suffices, for most HML factors (e.g., Value) the model
requires a larger number of latent factors. At times, the improvement in terms of R2s is material also
for reasonably large SDFs (e.g., for GAP when moving from a model with eighth to one with ten latent

lxvii

Electronic copy available at: https://ssrn.com/abstract=3796290



factors). By including eight latent factors, all R2s are above 90%, with the only exceptions of Value and
LDC. Moreover, the number of selected assets is 10 (i.e., the minimum allowed) for all HML factors, and
does not vary with the number of latent factors. In contrast, for the Dollar factor the number of selected
assets decreases with the number of latent factors (from a maximum of 46 to a minimum of 10).

Next, Panel B shows the results from the joint Z-factor estimation. Because here the asset selection is
performed jointly, the models require a slightly higher number of factors to recover the model-free estimates
than in the one-by-one factor analysis. But Figure A22 shows that the improvements in the model perfor-
mance level off as the model includes at least 10 latent factors. Specifically, for models with more than 10
factors, the gains in the R2s are small, and the differences in the root-mean-square errors are essentially
imperceptible. Moreover, the bottom panel shows that the selected number of assets drops to 15 as the
fourth latent factor is included into the SDF, and does not change as more factors are added to the SDF.
Thus, taken together, this evidence suggests that a 10-factor model performs well in the joint factor analysis.
Hence, we use this model to make inference on the risk-premium estimates. The standard errors show that
all estimates are statistically not different from the factor averages, and meanwhile are statistically different
from zero (marginally so for Term and LYld). Note that standard errors do not necessarily increase as more
factors are added to the SDF. This evidence on the joint Z-factor analysis paves the way to the nontradable
G-factor analysis, to which we turn next.

Nontradable G-Factors. Table A20 presents the risk-premium estimates for the nontradable factors. The
table shows in the first columns (Optimal k) the SPCA model estimates when both the numbers of test
assets and latent factors are chosen with the cross-validation exercise. To start with, we use this evidence
to distinguish between factors with positive and negative R2s. We do not report the estimation results
for these latter factors, as a negative R2 suggests that we cannot hedge that risk factor with the selected
assets. If we cannot construct an hedging portfolio for a factor, its risk-premium estimate is not informative
(given that the risk-premium can be interpreted as the cost of hedging insurance). We therefore focus on
the remaining nontradable factors that can be at least partly hedged.

Before delving into the individual factor estimates, we look at the average R2s by factor types (we also
add the tradable factor evidence). We do so in Figure A23 where we show the average R2s for models with
different numbers of latent factors. We apply the same filter of Table A20 and only include the nontradable
factors with positive R2s. We find that, while for tradable factors the R2s increase with the number of
latent factors (that is we can better hedge the factor with more latent factors), the opposite is true for
nontradable factors. But there is a clear distinction among factors of different types. The R2s are positive
for financial factors, improve substantially when moving from a one- to a two-factor model (reaching roughly
9%), and decay, albeit slowly, as more factors are added. Also for text-based factors we can appreciate a
clear improvement in the R2 when the second factor is included in the model; but the average two-factor
model R2 is much lower. Moreover, the text-based factor R2s reduce almost linearly as the models include
more factors, and eventually turn negative as the models include more than five factors. Of particular
interest is the evidence on macro factors, arguably the main reason why we turned to the SPCA estimator
(given our baseline results). The one-factor model R2 is only slightly positive, while the remaining R2s are
all negative, and more so as the models include more factors. Therefore, we cannot hedge essentially any of
the macro factors using FX portfolios. Put simply, this evidence confirms and refines the disconnect between
FX returns and macro factors uncovered using the augmented three-pass estimator. If before we argued
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that, based on the three-pass estimates, the disconnect cannot be imputable either to omitted variables
and/or measurement errors in the factors, here we add that it cannot be ascribed either to the fact that
macro factors are weak in the cross section of FX portfolios.

While the above evidence is in itself highly informative, we then look at some of the individual non-
tradable factors, as there are significant differences also among factors of the same type. For most financial
factors, the cross-validation exercise reveals that there is no asset selection and the ‘optimal’ number of
latent factors is two (Panel A, Table A20).54 But for some factors there is supervision as qN is less than N
(i.e., otic, icap, noise, sliq, gfc), and for almost all these factors the optimal number of latent factors turns
out to be two (except for gfc that is four). Turning to the text-based factors (Panel B), we find that six
out of 13 factors display asset selection to different degrees but all yield the highest R2 with k = 2 (i.e.,
gepu, gepu ppp, epu all, epu mp, fsi tx, and emv mp). Finally, for all macro factors (Panel C), we find
no selection of test assets, and with only few exceptions a one-factor model is optimal according to the
cross-validation exercise. Thus, this evidence echoes that uncovered earlier on, suggesting no relationship
between the macro factors and FX assets.

To further zoom into the differences among factors, Figure A24 plots, for selected factors, the R2 and
the number of selected test assets (qN) also using SDFs of larger dimension. The factor gvol stands out
as a strong factor, as the cross-validation method achieves the highest R2 using all N assets, and enough
latent factors (there is evidence of asset selection only for models including less than six latent factors).
On the other hand, icap is a weaker factor, as the best performing model in the cross-validation exercise
features asset selection and a contained number of latent factors. The factor gepu is also a weak factor as
some supervision helps, while the model performance gradually worsens by adding latent factors and using
all assets. The text-based factor emv mp behaves similarly to gepu, but the cross-validation R2s are lower
and turn negative for larger models. Finally, the two macro factors exemplify the disconnect between macro
factors and currency investment strategies.

Taken together, these multiple pieces of evidence show that, for nontradable factors models with a
contained number of factors perform better (this contrasts with the previous evidence on tradable factors).
With the exception of gvol, there is little scope in looking at models including more than four factors. We
therefore add in the subsequent columns of Table A20 the estimation results obtained with two-, three-, and
four-factor models (i.e., ϕ(F [gj ]

1−k), for k = 2, 3, 4). Consistent with Figure A24, it is evident that for most
factors that display selection the R2s tend to decrease as the models include more factors. However, as
noted before, for most of these factors only the joint estimation turns out to be actually meaningful. This is
because, without asset selection, the risk-premium estimates obtained using a small number of factors are
distorted due to the omission of relevant factors.

Therefore, to complete the nontradable-factor analysis and carry out inference on the risk premia, we
turn to the joint estimation. Here, we depart slightly from the approach used by GXZ in their empirical
application, but we follow their theoretical insights to make the inference valid. Specifically, we estimate
the model simultaneously on the candidate g-factor of interest and all the ten tradable Z-factors. In this
way, we fulfill the key requirement that the factors need to jointly span the entire SDF. Moreover, we can
make use of the evidence uncovered before on the joint estimation of tradable factors’ risk premia (Panel B,

54As noted before, for these factors the ‘optimal’ individual factor risk-premium estimates are not of particular interest, as
the SDF omits relevant sources of risks (other than Dollar and Carry).
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Table A19) and set k to 10. Thus, we use the model ϕ(F [g,Z]
1−10) to carry out the inference on a nontradable

g-factor’s risk premium. We find that not all factors with positive cross-validation out-of-sample R2s have
significant risk premia (Joint, Table A20). Specifically, the financial factors with significant premia are:
otic, icap, gfc, gvol, psliq, move, vxo, and eqrv. Then, among the text-based factors, gepu and gepu ppp,
the emv tracker and some of its subcategories (i.e., emv mout, emv inf, emv com, emv mp, and emv ir)
are significant. Only ipw/us(q) is statistically significant among the macro factors.55 Note that essentially
all these factors had significant premia also using the RP-PCA three-pass estimator, and the two point
estimates are generally close to each other (see Table 3).56

Summing up, we find that the nontradable factor risk-premium estimates are largely robust to the
estimation method used. In fact, the estimates obtained with SPCA are largely consistent with our baseline
three-pass estimates. Above all, this additional analysis confirms the disconnect between macro factors
and currency portfolios. However, we see added value in complementing the baseline analysis with SPCA:
while based on the three-pass method we argued that the disconnect cannot be attributed to either omitted
variables in the SDF or measurement error in the factors, now we can further exclude that the disconnect
is due to the fact that macro factors are weak in the cross section of currency portfolios. Moreover, the
cross-validation exercise allows us to further filter out factors that cannot be hedged out of sample by the
currency test assets. Next we turn to another useful output of SPCA which regards the assets selected (or
the most relevant assets) for each nontradable factor.

VII.3 Asset Selection

In what follows we shift the focus to the assets selected by SPCA in the estimation of tradable and non-
tradable factor risk premia. While our main goal is to use the asset-selection analysis to link currency
portfolios to the relevant nontradable factors, it is first instructive to delve into the identities of the assets
selected by SPCA to extract the latent factors which are then used to price the tradable factors. In fact,
for the procedure to work well, it is reasonable to expect that SPCA exploits the information of the corner
portfolios to price the HML factor of interest. At the same time, we regard the asset selection implemented
on the tradable factors as an alternative valuable tool to shed light on the relationships among currency
investment strategies.

Tradable Z-Factors. Table A21 reports the main findings on the assets selected by SPCA for the best
performing models in the cross-validation exercise.57 To start with, we look at the Dollar factor, and then

55Note that, while the point risk-premium estimates obtained with one-by-one and joint estimations are both consistent, in
finite samples they can deviate from each other. For tradable factors, such differences are small. For many nontradable factors
the differences are contained, while for others they are more evident. But, in line with what argued before, the comparisons
of the risk premia obtained with the one-by-one and joint factor estimation is not meaningful for those factors without asset
selection and SDFs including too few latent factors.

56Recall that we exclude from Table A20 factors that display negative out-of-sample R2s in the cross-validation exercise.
This explains why some of the candidate factors of Table 3 do not feature in Table A20, regardless of whether their premia are
statistically significant or not. Thus the cross-validation R2s can be regarded as an additional screening criterion to filter out
factors that despite having positive in-sample R2s have negative R2s in the out-of-sample cross-validation exercise.

57For brevity, for a given factor of interest we only report the top-5 selected assets in terms of their absolute correlation with
the factor. We also limit the focus to the first three iterations, that is, on the assets used to extract the first three factors.
While we also do this to contain on space, for most factors the first three latent factors are enough to recover the bulk of the
factor risk premia.
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turn to the case of the HML factors (the latter are somewhat more informative as naturally connect with
the currency investment strategies). From our previous analysis, it is clear that one latent factor is enough
to price accurately the Dollar factor, therefore it is particularly useful to focus on the assets used by SPCA
to extract the first latent factor. We find that none of the assets selected is a corner portfolio, and all
the selected assets display very high correlations with the Dollar factor (being all above 90 percent). This
finding is understandable because the Dollar factor plays the role of level or market factor.

On the contrary, for the HML factors the table shows that SPCA mostly relies on the information
contained in the corner portfolios to extract the latent factors. In fact, for many HML factors the strategies’
corner portfolios score as the top-two assets in terms of their absolute correlations with the factor. It is
therefore evident that the procedure works particularly well in selecting the most relevant currency portfolios
for the tradable factor at hand. In fact, the identities of the assets selected by SPCA are intuitively clear
(at least based on the first three latent factors, which however account for most of the cross-validation
out-of-sample R2s). From the analysis it also emerges that Carry is an important source of risk for NFA,
LDC, Term and LYld strategies (i.e., the carry-related strategies also driving F̂2 in the three-pass analysis),
while Carry corner portfolios play little if no role (not being selected) in the extraction of the first three
latent factors used to price the ST and LT Mom, Value, and GAP HML factors. Therefore, the identities
of the selected assets confirm the close association between Carry and long-term interest rate, and global
imbalance currency strategies. On the other hand, this evidence suggests that Carry, ST Mom, Value and
GAP appear as distinct and, to a large extent, key sources of FX risks (consistently with the fact that these
sources of risk feature to a different extent in the currency SDF uncovered using RP-PCA).

Nontradable G-Factors. In Tables A22 and A23, we report the top-5 assets selected by SPCA to extract
the latent factors used to price the nontradable factors. We focus on the relevant factors, i.e., those of
Table A20 with statistically significant risk premia. Moreover, like before we only show the assets used to
extract the first three latent factors. However, for most nontradable factors, two is the optimal number of
latent factors resulting from the cross-validation exercise. Hence, there is little scope to look beyond the
third factor (for a candidate factor a column of dashes means that the latent factor is not selected by the
cross-validation exercise).

It is evident that the absolute correlations are lower for nontradable than for tradable factors. But
for many factors the correlations are quite high, and the assets selected make sense economically. For
example, otic (a measure of foreign central banks’ accumulation of U.S. Treasury securities) mostly correlates
with global imbalance strategies (namely, NFA-P5). The only macro factor with significant risk premium,
ipw/us(q) (measuring the difference between world and U.S. industrial production quarterly growth rates),
is tightly linked to the high-risk GAP portfolio. On the other hand, GAP corner portfolios seem to be
not particularly relevant for any of the other nontradable factors. In fact, most financial and text-based
factors relate to Carry and carry-related strategies (e.g., LYld and NFA). This finding echoes the in-sample
three-pass evidence of Table 2, showing that most factors are hedged by the second latent factor (F̂2), which
can be interpreted as “Carry”; put differently, the SPCA analysis confirms that the tight link between
currency and other asset markets is mainly channeled through Carry and hence also through carry-related
strategies. Moreover, we find that for many nontradable factors the first and second extracted latent factors
load respectively on high-risk and low-risk corner portfolios. In general, most of the top-ranking portfolios
are corner portfolios, and this in turn helps relate the nontradable factors to specific investment strategies.
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Thus, it is natural to ask, what are the most relevant nontradable factors for each currency investment
strategy? To shed light on this question, Figure A25 shows for each corner portfolio its correlation with
the relevant nontradable factors, i.e. those factors that display a statistically significant risk premium and
a positive cross-validation out-of-sample R2. We only report the correlation if the portfolio is selected by
SPCA within the top-10 assets in the factor-by-factor analysis (thus the figure might capture factors that
are not in Tables A22 and A23). More intense colors denote higher absolute correlations between the factor
and the portfolio of interest, consistently with the SPCA selection criterion, while the white color means
that the correlation is not within the top ten.

The key findings can be summarized as follows. First, for almost all strategies (except for Value and
GAP), the high-risk corner portfolios show higher correlations with the nontradable factors than the low-risk
corner portfolios; put simply, it is easier to explain P5/6 than P1 portfolios. This is particularly evident if
one looks at Carry, NFA, Term, and LYld strategies. At the same, it emerges that is harder to connect ST
Mom, Value, and GAP strategies than Carry and carry-related strategies to the nontradable factors. This
holds if one looks at the first latent factors (Panel A), and even more if one looks at the assets selected
in extracting the second latent factor (Panel B). Therefore, in comparison with the carry-strategies, the
drivers of ST Mom, Value, and GAP remain less clear. However, our results show that some factors do
matter also for these strategies. For example, focusing on the high-risk portfolios, vxo and icap seem to be
relevant factors for Value, while gepu and eqrv single out as important risks for ST Mom.

On the other hand, as is evident by now, many sources of nontradable risks seem to explain carry-
related strategies. The absolute correlations can provide a first means to try to detect the most relevant
ones. However, if the SPCA method is useful in this regard, it is not explicitly designed to determine either
the most relevant nontradable factors among the set of relevant ones (i.e., the factor pecking order), or
which factors are subsumed by others. (The main objective remains the estimation of risk premia in the
presence of weak factors.) Other methods, such as for example the one recently developed by Feng et al.
(2020), are arguably better suited to address these questions.

Summing up, by means of the SPCA estimator, we detect a similar group of relevant nontradable
factors to that documented in the baseline analysis, which instead uses the three-pass estimator with RP-
PCA extracted factors. Above all, the two sets of results consistently point to a clear disconnect between
macro factors and currency portfolio returns, at least in our sample. Thus, the SPCA estimates show that
the disconnect cannot be imputable to the problem of weak factors. Moreover, the cross-validation exercise
allows us to further filter out factors that cannot be hedged out of sample by the currency assets. This
criterion can be seen as an additional way to further discern relevant candidate factors from non-relevant
ones. Another clear benefit of using SPCA is the asset selection, which provides valuable information by
zooming into the most correlated assets. In fact, by inspecting the identities of the selected assets, it emerges
a clear link between the nontradable factors and the investment strategies. That is, Carry and carry-related
strategies seem to react to a number of sources of nontradable risks, while we can identify a smaller number
of relevant factors for ST Mom, Value, and GAP strategies. Thus, for the former strategies it might be
useful in further research to try to establish a pecking order among these factors, whereas for the latter the
search for other factors is still warranted to better hedge their underlying risks.
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Table A19: SPCA Estimates of Tradable Factor Risk Premia

The table presents the in-sample SPCA estimates of the tradable factor risk premia. In Panel A we report in the first
column the sample averages of the factors (avg). The next columns show, for models with different number of factors
k, the factor-by-factor SPCA estimation results (ϕ(F [zj ]

1−k)). Specifically, for each choice of k, we report the risk premia
estimates (λ), the cross-validation out-of-sample R2s (R2) of the implied hedging portfolios (averages over evaluation
periods), and the number of test assets (#TA) selected by SPCA also in the cross-validation exercise (governed by
the tuning parameter q). In Panel B, for convenience, we present again the factor averages. In the other columns,
we show the SPCA estimates obtained including all the ten tradable Z-factors simultaneously, i.e., the joint factor
analysis results (ϕ(F [Z]

1−k)). For each choice of k, we report the risk premia estimates (λ), the standard errors (se), and
the difference between the risk premium estimate and the factor sample average (err). Finally, for the joint analysis,
we also present the cross-validation out-of-sample R2s of the implied hedging portfolios (R2), the root-mean-square
errors (MSE), and the number of test assets selected by SPCA (#TA). The test assets consist of the portfolios
from the nine investment strategies (N = 46). The sample spans the 11/1983-12/2017 period at monthly frequency
(T = 410).

Panel A: One-by-One Factor Analysis

ϕ(F [zj ]
1−2) ϕ(F [zj ]

1−4) ϕ(F [zj ]
1−6) ϕ(F [zj ]

1−8) ϕ(F [zj ]
1−10)

avg λ R2 #TA λ R2 #TA λ R2 #TA λ R2 #TA λ R2 #TA
Dollar 2.62 2.41 0.99 46.00 2.41 1.00 15.00 2.43 1.00 15.00 2.50 1.00 10.00 2.58 1.00 10.00
Carry 7.26 3.93 0.74 10.00 5.38 0.84 10.00 6.42 0.87 10.00 6.71 0.90 10.00 7.02 0.93 10.00
Mom(ST) 6.93 1.30 0.27 10.00 4.67 0.82 10.00 6.78 0.89 10.00 7.04 0.94 10.00 7.11 0.96 10.00
Mom(LT) 4.24 3.23 0.67 10.00 3.32 0.83 10.00 4.54 0.89 10.00 4.94 0.93 10.00 4.63 0.95 10.00
Value 3.33 0.42 0.38 10.00 2.50 0.58 10.00 4.15 0.73 10.00 2.49 0.85 10.00 2.75 0.92 10.00
NFA 3.00 2.83 0.73 10.00 2.43 0.90 10.00 2.37 0.93 10.00 2.58 0.94 10.00 2.66 0.94 10.00
LDC 4.12 2.71 0.45 10.00 3.81 0.73 10.00 3.56 0.80 10.00 3.63 0.83 10.00 3.79 0.86 10.00
Term 2.82 3.24 0.46 10.00 3.51 0.81 10.00 3.01 0.90 10.00 2.53 0.93 10.00 2.40 0.96 10.00
LYld 1.87 3.30 0.83 10.00 1.82 0.90 10.00 2.56 0.93 10.00 2.17 0.94 10.00 2.42 0.95 10.00
GAP 6.27 2.30 0.13 10.00 6.78 0.69 10.00 6.36 0.85 10.00 6.48 0.92 10.00 6.38 0.96 10.00

Panel B: Joint Factor Analysis
ϕ(F [Z]

1−6) ϕ(F [Z]
1−8) ϕ(F [Z]

1−10) ϕ(F [Z]
1−11) ϕ(F [Z]

1−12)
avg λ se err λ se err λ se err λ se err λ se err

Dollar 2.62 2.49 1.30 0.14 2.51 1.30 0.11 2.44 1.30 0.18 2.42 1.30 0.20 2.42 1.30 0.20
Carry 7.26 4.89 1.39 2.37 5.46 1.42 1.80 6.20 1.50 1.05 6.08 1.56 1.18 6.17 1.57 1.08
Mom(ST) 6.93 5.90 1.47 1.02 6.73 1.53 0.20 6.68 1.51 0.25 6.62 1.51 0.31 6.63 1.51 0.30
Mom(LT) 4.24 4.44 1.44 -0.21 3.74 1.46 0.49 4.19 1.49 0.04 4.37 1.47 -0.14 4.33 1.46 -0.10
Value 3.33 1.16 1.02 2.17 2.01 1.02 1.32 2.92 1.12 0.41 3.28 1.33 0.05 3.13 1.33 0.20
NFA 3.00 4.30 1.23 -1.30 2.51 1.30 0.50 2.91 1.34 0.09 2.96 1.33 0.05 2.99 1.33 0.02
LDC 4.12 3.69 1.13 0.43 3.43 1.15 0.69 3.90 1.19 0.22 3.90 1.19 0.22 4.05 1.23 0.07
Term 2.82 0.54 1.41 2.28 1.88 1.48 0.93 2.73 1.60 0.08 2.93 1.58 -0.11 2.83 1.58 -0.02
LYld 1.87 4.01 1.48 -2.14 3.17 1.48 -1.30 2.91 1.55 -1.04 2.87 1.57 -1.00 2.90 1.57 -1.03
GAP 6.27 6.62 1.15 -0.35 7.21 1.29 -0.94 6.34 1.35 -0.07 6.27 1.35 0.00 6.26 1.35 0.01

R2 MSE #TA R2 MSE #TA R2 MSE #TA R2 MSE #TA R2 MSE #TA
0.71 1.52 15.00 0.83 0.97 15.00 0.90 0.50 15.00 0.93 0.51 15.00 0.95 0.49 15.00
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Table A20: SPCA Estimates of Nontradable Factor Risk Premia

The table presents the SPCA estimates of the nontradable factor risk premia (grouped in Panels A, B, and C by the
types of factors). In the first-four blocks of columns we show the factor-by-factor SPCA estimation results. In the first
block (Optimal k, ϕ(F [gj ]

1−k)), we report the SPCA risk-premium estimates (λ) using the combination of number of test
assets (#TA) and number of latent factors (k) that yields the highest out-of-sample R2s (R2) in the cross-validation
exercise. In the other blocks (ϕ(F [gj ]

1−k)), we report the risk premia estimates and the cross-validation out-of-sample
R2s obtained by estimating models with fixed number of latent factors (i.e., k = 2, 3, 4) and using the number of
test assets (#TA) that yields the highest out-of-sample R2s in the cross-validation exercise for that choice k. In
the last three columns (Joint, ϕ(F [gj ,Z]

1−10 )), for a given candidate g-factor we report the risk-premium estimate (λ),
the standard error (se), and the p-value (pval) obtained by estimating the SPCA model with 10 latent factors and
including the g-factor simultaneously with the ten tradable Z-factors (see Table A19). We report the results only for
the nontradable factors that have positive out-of-sample R2s using the optimal combination of k and qN determined
by the cross-validation exercise. The test assets consist of the portfolios from the nine investment strategies (N = 46).
The sample spans the 11/1983-12/2017 period at monthly frequency (T = 410).

Panel A: Financial Factors

Optimal k, ϕ(F [gj ]
1−k) ϕ(F [gj ]

1−2) ϕ(F [gj ]
1−3) ϕ(F [gj ]

1−4) Joint, ϕ(F [gj ,Z]
1−10 )

λ R2 #TA k λ R2 #TA λ R2 #TA λ R2 #TA λ se pval
otic 0.51 0.02 30.00 2.00 0.51 0.02 30.00 0.50 0.01 46.00 0.72 0.01 30.00 0.78 0.34 0.03
icap 0.78 0.11 25.00 2.00 0.78 0.11 25.00 0.96 0.10 30.00 0.68 0.11 30.00 0.92 0.41 0.03
mf2 -0.20 0.02 46.00 1.00 -0.27 0.01 46.00 -0.08 0.01 46.00 -0.08 0.00 46.00 -0.22 0.29 0.44
mf3 0.10 0.02 46.00 3.00 0.35 0.02 46.00 0.10 0.02 46.00 0.10 0.01 46.00 0.10 0.26 0.70
noise -1.08 0.08 20.00 2.00 -1.08 0.08 20.00 -0.98 0.07 40.00 -0.99 0.06 40.00 -0.64 0.43 0.15
sliq -0.85 0.08 35.00 2.00 -0.85 0.08 35.00 -1.03 0.07 40.00 -0.95 0.08 46.00 -0.36 0.46 0.43
gfc 1.43 0.40 10.00 4.00 1.11 0.38 10.00 1.27 0.40 10.00 1.43 0.40 10.00 1.46 0.52 0.01
gliq -0.24 0.01 46.00 2.00 -0.24 0.01 46.00 -0.19 0.00 46.00 -0.18 0.00 46.00 -0.19 0.22 0.38
gvol -0.83 0.08 46.00 8.00 -0.73 0.07 15.00 -1.00 0.07 40.00 -0.93 0.07 40.00 -0.97 0.34 0.01
psliq 0.25 0.01 46.00 2.00 0.25 0.01 46.00 0.50 0.01 46.00 0.49 0.00 46.00 0.93 0.45 0.04
corp -0.48 0.04 46.00 3.00 -0.76 0.04 40.00 -0.48 0.04 46.00 -0.49 0.03 46.00 -0.22 0.34 0.52
move -0.72 0.07 46.00 2.00 -0.72 0.07 46.00 -0.72 0.06 46.00 -0.71 0.05 46.00 -0.77 0.40 0.06
vxo -1.42 0.21 46.00 2.00 -1.42 0.21 46.00 -1.31 0.20 40.00 -1.30 0.21 46.00 -1.34 0.57 0.02
eqrv -0.48 0.02 46.00 2.00 -0.48 0.02 46.00 -0.88 0.01 46.00 -0.88 0.00 46.00 -1.39 0.66 0.04

Panel B: Text-Based Factors

Optimal k, ϕ(F [gj ]
1−k) ϕ(F [gj ]

1−2) ϕ(F [gj ]
1−3) ϕ(F [gj ]

1−4) Joint, ϕ(F [gj ,Z]
1−10 )

λ R2 #TA k λ R2 #TA λ R2 #TA λ R2 #TA λ se pval
gepu -0.92 0.06 35.00 2.00 -0.92 0.06 35.00 -0.85 0.06 46.00 -1.01 0.05 46.00 -1.20 0.50 0.02
gepu ppp -0.90 0.06 35.00 2.00 -0.90 0.06 35.00 -0.86 0.06 46.00 -1.00 0.05 46.00 -1.26 0.50 0.02
epu all -0.36 0.02 25.00 2.00 -0.36 0.02 25.00 -0.43 0.01 46.00 -0.35 0.01 46.00 -0.35 0.40 0.38
epu mp -0.24 0.01 30.00 2.00 -0.24 0.01 30.00 -0.45 0.01 46.00 -0.44 0.00 46.00 -0.61 0.40 0.14
fsi tx -0.45 0.01 20.00 2.00 -0.45 0.01 20.00 -0.35 0.01 46.00 -0.33 0.00 46.00 -0.38 0.37 0.31
emv ov -0.51 0.02 46.00 2.00 -0.51 0.02 46.00 -0.72 0.01 46.00 -0.70 0.00 46.00 -0.89 0.45 0.06
emv mout -0.46 0.01 46.00 2.00 -0.46 0.01 46.00 -0.74 0.01 46.00 -0.74 0.00 46.00 -0.89 0.43 0.05
emv inf -0.41 0.02 46.00 2.00 -0.41 0.02 46.00 -0.52 0.01 46.00 -0.52 0.00 46.00 -0.82 0.39 0.04
emv com -0.53 0.03 46.00 2.00 -0.53 0.03 46.00 -0.68 0.02 46.00 -0.66 0.01 46.00 -0.94 0.47 0.05
emv ir -0.36 0.00 46.00 2.00 -0.36 0.00 46.00 -0.62 -0.01 46.00 -0.59 -0.02 46.00 -0.85 0.50 0.10
emv fx -0.31 0.01 46.00 2.00 -0.31 0.01 46.00 -0.27 0.00 46.00 -0.33 0.00 46.00 -0.34 0.30 0.26
emv mp -0.50 0.03 40.00 2.00 -0.50 0.03 40.00 -0.74 0.02 46.00 -0.74 0.02 46.00 -0.90 0.34 0.01
emv tp -0.34 0.02 46.00 2.00 -0.34 0.02 46.00 -0.32 0.01 46.00 -0.34 0.00 46.00 -0.42 0.37 0.27

Panel C: Macro Factors

Optimal k, ϕ(F [gj ]
1−k) ϕ(F [gj ]

1−2) ϕ(F [gj ]
1−3) ϕ(F [gj ]

1−4) Joint, ϕ(F [gj ,Z]
1−10 )

λ R2 #TA k λ R2 #TA λ R2 #TA λ R2 #TA λ se pval
nfpyr(q) 0.13 0.01 46.00 1.00 0.18 0.00 46.00 0.18 0.00 46.00 0.18 -0.01 46.00 0.37 0.26 0.16
nfpyr(eq) 0.10 0.00 46.00 1.00 0.11 -0.01 46.00 0.06 -0.02 46.00 0.06 -0.03 46.00 0.15 0.32 0.64
cus(m) -0.16 0.01 46.00 1.00 -0.15 0.00 46.00 -0.12 -0.01 46.00 -0.13 -0.01 46.00 -0.10 0.32 0.76
cus(eq) -0.15 0.01 46.00 1.00 -0.16 0.00 46.00 -0.15 -0.01 46.00 -0.15 -0.01 46.00 -0.11 0.32 0.74
cus(ey) -0.15 0.01 46.00 1.00 -0.16 0.00 46.00 -0.20 -0.01 46.00 -0.20 -0.02 46.00 -0.16 0.31 0.60
ipw/us(q) -0.32 0.01 46.00 8.00 -0.10 -0.01 46.00 -0.32 -0.01 46.00 -0.32 -0.01 46.00 -0.60 0.26 0.03
cpiw/us(y) -0.14 0.01 46.00 1.00 -0.18 0.01 46.00 -0.18 0.00 46.00 -0.18 0.00 46.00 -0.25 0.22 0.26
ipstdw(q) -0.11 0.01 46.00 4.00 -0.08 0.00 46.00 -0.15 0.00 46.00 -0.11 0.01 46.00 -0.22 0.31 0.47
ipstdw(eq) -0.11 0.01 46.00 4.00 -0.08 0.00 46.00 -0.15 0.00 46.00 -0.11 0.01 46.00 -0.22 0.31 0.47

lxxiv

Electronic copy available at: https://ssrn.com/abstract=3796290



Table A21: Asset Selections for Tradable Factors

For each tradable factor, the table reports the top-5 assets selected by SPCA in extracting the first three latent
factors. While assets are ordered by their absolute correlation with the factor at hand, we show next to the name of
the selected asset (Asset) its correlation with the candidate factor (ρ). Each panel refers to a different candidate factor
and, for brevity, we report the results only for the first three iterations, i.e., the first three extracted latent factors.
We refer to Table A19 for further details on the SPCA estimation and the underlying cross-validation exercise.

Dollar Factor Carry HML Factor
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

NFA-P3 94 Carry-P5 79 Carry-P1 52 Carry-P5 62 Carry-P1 -91 Carry-P5 81
Value-P3 93 NFA-P5 69 LYld-P1 49 LYld-P5 44 Carry-P5 85 Carry-P1 -65

LT Mom-P3 93 LYld-P5 59 NFA-P1 48 Term-P5 38 LYld-P1 -83 NFA-P2 43
Value-P4 92 LDC-P6 58 LYld-P5 -43 Carry-P1 -33 NFA-P1 -68 NFA-P5 -39
NFA-P2 92 ST Mom-P1 54 Term-P5 -42 NFA-P4 31 NFA-P2 -67 LDC-P1 37

ST Mom HML Factor LT Mom HML Factor
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

ST Mom-P1 -60 ST Mom-P5 89 ST Mom-P1 -86 LT Mom-P1 -58 LT Mom-P5 88 LT Mom-P1 -71
ST Mom-P5 44 ST Mom-P1 -84 ST Mom-P5 83 LT Mom-P5 49 LT Mom-P1 -87 LT Mom-P5 66
ST Mom-P2 -28 ST Mom-P4 48 ST Mom-P2 -40 LT Mom-P2 -25 LT Mom-P4 50 Value-P2 -41
LT Mom-P1 -22 Term-P3 30 LT Mom-P4 -40 Value-P5 -21 Value-P1 43 LYld-P1 -39

LYld-P5 -18 LT Mom-P5 28 Carry-P3 -40 LT Mom-P4 16 LT Mom-P2 -34 GAP-P2 -38

Value HML Factor NFA HML Factor
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Value-P1 -50 Value-P5 88 Value-P5 79 NFA-P5 87 NFA-P5 83 NFA-P5 91
Value-P5 37 Value-P1 -82 Value-P1 -75 LDC-P4 64 NFA-P1 -67 NFA-P4 -54

LT Mom-P5 -27 LT Mom-P1 44 NFA-P5 -41 LDC-P5 62 LDC-P1 -66 Term-P5 -46
LT Mom-P4 -22 Value-P4 33 LDC-P5 -33 Carry-P5 61 NFA-P2 -66 Carry-P1 41

Value-P2 -21 LT Mom-P2 32 LDC-P4 -27 LYld-P5 60 NFA-P3 -66 LYld-P1 35

LDC HML Factor Term HML Factor
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

LDC-P6 64 LDC-P1 -70 LDC-P6 77 Term-P5 59 Term-P1 -86 Term-P5 84
Carry-P5 55 NFA-P2 -58 LDC-P1 -48 Carry-P5 36 Term-P5 81 Term-P1 -75
NFA-P5 53 LYld-P1 -54 LYld-P5 -46 LYld-P5 36 Carry-P2 -51 LYld-P1 44
LYld-P5 42 LDC-P6 49 Term-P5 -38 Term-P1 -30 Value-P3 -50 NFA-P2 34

ST Mom-P1 41 Carry-P1 -48 LDC-P5 -23 LDC-P5 20 Carry-P1 -50 LYld-P2 32

LYld HML Factor GAP HML Factor
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

LYld-P5 53 LYld-P1 -93 LYld-P5 84 GAP-P1 -53 GAP-P5 85 GAP-P5 81
Carry-P5 39 LYld-P5 93 LYld-P1 -55 GAP-P5 29 GAP-P1 -79 GAP-P1 -73
LYld-P1 -38 Carry-P1 -80 LYld-P2 40 GAP-P2 -20 NFA-P3 21 GAP-P4 -29
Carry-P1 -35 NFA-P2 -75 LDC-P2 34 LDC-P3 -20 Carry-P3 20 Term-P3 -25
Term-P5 34 NFA-P1 -71 NFA-P3 32 ST Mom-P1 -20 ST Mom-P3 18 LT Mom-P4 -23
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Table A22: Asset Selections for Financial Factors

For each relevant financial factor, the table reports the top-5 assets selected by SPCA in extracting the latent factors.
While assets are ordered by their absolute correlation with the factor at hand, we show next to the name of the selected
asset (Asset) its correlation with the candidate factor (ρ). Each panel refers to a different candidate factor and, for
brevity, we report the results for the first three iterations, i.e., the first three extracted latent factors. For a given
iteration, a column of dashes denotes that the associated latent factor is not selected by the cross-validation exercise.
We do not report the results for the factors of which the risk premia estimates are not significant in Table A20. We
refer to that table also for further details on the SPCA estimation and the underlying cross-validation exercise.

otic icap
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

NFA-P5 16 LYld-P1 -19 – – NFA-P5 25 NFA-P2 -34 – –
LDC-P5 15 LT Mom-P2 -18 – – Carry-P5 23 LT Mom-P4 -30 – –
Carry-P4 14 NFA-P2 -18 – – LT Mom-P1 21 LYld-P1 -30 – –
LDC-P4 13 NFA-P1 -17 – – LDC-P4 21 NFA-P1 -29 – –
Carry-P5 13 Carry-P1 -16 – – LYld-P5 18 LYld-P2 -28 – –

gfc gvol
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

LDC-P5 54 LYld-P1 -38 LYld-P5 -20 LT Mom-P5 -26 NFA-P2 33 NFA-P2 20
LDC-P4 54 NFA-P2 -38 GAP-P2 20 Carry-P5 -25 Carry-P1 33 LT Mom-P5 -20
NFA-P5 54 Value-P3 -35 Term-P5 -18 NFA-P4 -24 LYld-P1 32 Carry-P1 20
Carry-P5 53 Carry-P1 -34 LT Mom-P5 15 NFA-P5 -23 NFA-P1 27 GAP-P2 -19
LYld-P4 52 LDC-P1 -33 LDC-P3 15 LDC-P5 -22 LDC-P1 25 LYld-P1 18

psliq move
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Carry-P5 12 Carry-P5 19 – – Carry-P5 -26 LYld-P1 27 – –
NFA-P5 10 NFA-P5 17 – – ST Mom-P1 -24 Carry-P5 -22 – –
Carry-P1 -9 Carry-P1 -17 – – LYld-P5 -23 NFA-P2 22 – –

LT Mom-P5 8 LYld-P1 -17 – – LDC-P4 -22 Carry-P1 21 – –
ST Mom-P5 8 NFA-P2 -16 – – LT Mom-P1 -22 LYld-P2 19 – –

vxo eqrv
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

NFA-P5 -42 LYld-P1 42 – – Carry-P5 -22 LYld-P1 29 – –
LYld-P5 -38 NFA-P5 -38 – – LT Mom-P5 -21 NFA-P2 28 – –
Carry-P5 -37 NFA-P2 36 – – NFA-P5 -20 Carry-P1 27 – –
LDC-P4 -36 LYld-P5 -32 – – LDC-P5 -19 Carry-P5 -24 – –
LDC-P5 -35 Carry-P1 31 – – LYld-P5 -18 LDC-P5 -23 – –
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Table A23: Asset Selections for Text-Based and Macro Factors

For each relevant text-based or macro factor, the table reports the top-5 assets selected by SPCA in extracting the
latent factors. While assets are ordered by their absolute correlation with the factor at hand, we show next to the
name of the selected asset (Asset) its correlation with the candidate factor (ρ). Each panel refers to a different
candidate factor and, for brevity, we report the results for the first three iterations, i.e., the first three extracted
latent factors. For a given iteration, a column of dashes denotes that the associated latent factor is not selected by
the cross-validation exercise. We do not report the results for the factors of which the risk premia estimates are not
significant in Table A20; we do not show the asset selection for gepu ppp as is similar to that of gepu. We refer to
Table A20 also for further details on the SPCA estimation and the underlying cross-validation exercise.

gepu emv ov
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Carry-P5 -21 LDC-P2 26 – – Carry-P5 -17 LYld-P1 24 – –
LT Mom-P5 -19 NFA-P2 25 – – NFA-P5 -16 Carry-P1 21 – –

LDC-P6 -18 LYld-P1 25 – – LYld-P5 -15 NFA-P2 21 – –
NFA-P4 -17 Carry-P1 24 – – LDC-P5 -15 Carry-P5 -20 – –
NFA-P5 -16 LT Mom-P3 23 – – LT Mom-P5 -15 LDC-P5 -20 – –

emv mout emv inf
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Carry-P5 -16 LYld-P1 24 – – Carry-P5 -15 Carry-P5 -20 – –
LYld-P5 -14 NFA-P2 21 – – NFA-P5 -13 LYld-P1 19 – –
NFA-P5 -14 Carry-P1 20 – – LYld-P5 -12 Carry-P1 18 – –

LT Mom-P5 -13 Carry-P5 -20 – – LDC-P4 -11 NFA-P5 -17 – –
LDC-P5 -13 LYld-P5 -18 – – LDC-P5 -10 NFA-P2 17 – –

emv com emv ir
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Carry-P5 -18 LYld-P1 25 – – Carry-P5 -13 LYld-P1 20 – –
NFA-P5 -18 Carry-P1 22 – – LDC-P5 -11 Carry-P1 19 – –
LYld-P5 -17 NFA-P2 21 – – NFA-P5 -11 Carry-P5 -17 – –
LDC-P4 -15 Carry-P5 -21 – – LYld-P5 -11 LDC-P5 -17 – –
LDC-P5 -15 NFA-P5 -20 – – LT Mom-P5 -10 LYld-P2 16 – –

emv mp ipw/us(q)
Iter #1 Iter #2 Iter #3 Iter #1 Iter #2 Iter #3
Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ Asset ρ

Carry-P5 -18 LYld-P1 24 – – GAP-P5 -12 GAP-P5 -18 GAP-P5 -18
LYld-P5 -17 Carry-P1 21 – – LYld-P5 -8 LT Mom-P2 17 LT Mom-P2 16
NFA-P5 -16 NFA-P2 20 – – NFA-P5 -8 Term-P2 -12 Term-P2 -14

LT Mom-P5 -16 Carry-P5 -18 – – LT Mom-P5 -8 NFA-P5 -12 LYld-P1 -12
Term-P5 -15 LYld-P5 -17 – – Term-P2 -7 Term-P3 12 LT Mom-P4 -11
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Figure A22: Diagnostics of the Joint SPCA Estimation on Tradable Factors
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The figure shows the diagnostics for SPCA models with up to 12 latent factors estimated including all the ten tradable
Z-factors simultaneously. We report in the top panel the cross-validation out-of-sample R2s of the implied hedging
portfolios, in the middle panel the root-mean-square errors (computed as the differences between the risk premium
estimates and the factor sample averages), and in the bottom panel the number of test assets selected by SPCA
(governed by the parameter q in GXZ). The test assets consist of the portfolios from the nine investment strategies
(N = 46). The sample spans the 11/1983-12/2017 period at monthly frequency (T = 410).
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Figure A23: Average Cross-Validation Out-of-Sample R2s by Candidate Types
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The figure shows the average cross-validation out-of-sample R2s (CV OOS R2 (%)) for both tradable and nontradable
factors, grouped by factor types. The individual factor R2s are obtained by estimating the SPCA models factor by
factor, using an increasing number of latent factors (k ranging from 1 to 10). We filter out candidate nontradable
factors with negative R2s based on the optimal combination of number of latent factors (k) and number of test assets
(qN) selected by the cross-validation exercise. Thus, the underlying candidate nontradable factors are those displayed
in Table A20. For a given k, we then average the factor R2s by factor types. The test assets consist of the portfolios
from the nine investment strategies (N = 46). The sample spans the 11/1983-12/2017 period at monthly frequency
(T = 410).
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Figure A24: SPCA Diagnostics of Selected Nontradable Candidate Factors
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For selected nontradable candidate factors, the figure shows the cross-validation out-of-sample R2s on the vertical
axis and, on the horizontal axis, the number of test assets for SPCA models with different number of latent factors,
with k ranging from 1 to 10. The SPCA models are estimated individually on each candidate factor. We select from
Table A20 two financial factors (gvol, and icap), two text-based factor (gepu, and emv mp), and two macro factors
(cpiw/us(y), and nfpyr(q)). Further details on the cross-validation exercise are displayed in Table A20. The test
assets consist of the portfolios from the nine investment strategies (N = 46). The sample spans the 11/1983-12/2017
period at monthly frequency (T = 410).
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Figure A25: Relevant Nontradable Factors and Corner Portfolios

Panel A: Correlations Iter #1
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Panel B: Correlations Iter #2
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For each relevant nontradable factor, the figure shows its correlation with the investment strategies’ corner portfolios,
if the corner portfolio is selected by SPCA within the top-10 most correlated assets. We omit to report the middle
portfolios for brevity but also because are less informative. The colors are set based on the absolute correlations,
consistently with the SPCA selection criterion, while the white color means that the corner portfolio is not in the
group of the top-10 most correlated assets for a given candidate factor and latent-factor extraction. We present the
results for the first two iterations of SPCA, i.e., the first two extracted latent factors (for most nontradable factors the
third latent factor is not selected by the cross-validation exercise, see Table A20). We only report the results for the
relevant nontradable factors of Table A20, i.e. factors with significant risk premia and positive cross-validation out-of-
sample R2s. We refer to that table also for further details on the SPCA estimation and the underlying cross-validation
exercise.
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