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1 Introduction

The asset pricing literature has documented that large and time-varying risk premia are

pervasive across asset classes, including the FX market. It is now well accepted that variation

in risk premia helps explain the uncovered interest parity (UIP) failure, starting with Hansen

and Hodrick (1980) and Fama (1984), the cross-section in currency excess returns (e.g.,

Lustig, Roussanov, and Verdelhan, 2011), the performance of global investment strategies

such as the carry trade (e.g., Menkho↵, Sarno, Schmeling, and Schrimpf, 2012), or contribute

to exchange rate predictability (e.g., Della Corte, Ramadorai, and Sarno, 2016; Kremens and

Martin, 2019; Della Corte, Jeanneret, and Patelli, 2021).

A fundamental question is obviously: What drives such risk premia? In the asset pricing

literature, investor risk preferences are time-invariant (e.g., models with long-run risk and

recursive preferences) or time-varying (e.g., models with habit preferences). In either case,

risk preferences have a flat term structure, that is the preferences of agents are independent

of their forecast horizon. This is a strong assumption that ought to be challenged.1 For

example, shall we expect FX investors to perceive the risk of a currency crash similarly if

their investment horizon is one month vs. one year? Probably not. How should the term

structure of such perceived risk look like? It remains unclear to date. As these questions

illustrate, one reason we still have a poor understanding of risk premia in the FX market is

because we have limited knowledge of the term structure of risk preferences and, in particular,

how this term structure varies over time.

In this paper, we analyze the FX risk premium, both theoretically and empirically, and

uncover a set of new facts on the term structure of risk preferences. We first show with theory

that we can extract a utility-free measure of risk preferences for FX market participants. We

then estimate this measure by comparing expected exchange rate returns from professional

forecasters with exchange rate premia computed from option prices, through the lens of no-

arbitrage condition in the FX market. We can then explore how the term structure of risk

preferences varies across di↵erent economic/financial conditions.

1Such assumption may also appear at odds with the empirical evidence that the term structure of risk
premia varies over the business cycle, as we observe in the equity market for example (Gormsen, 2021).
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Our main results are as follows. First, investor preferences reflect a strong aversion to high-

order risk, thus departing from the log utility considered recently (e.g., Kremens and Martin,

2019; Della Corte, Jeanneret, and Patelli, 2021). Second, the unconditional term structure of

risk preferences is downward-sloping, that is FX risk premia provide a greater compensation

for high-order risk as the forecast horizon decreases. Third, a conditional analysis reveals

that the negative term structure slope strengthens in bad times, but becomes upward-sloping

in good times. Hence, fear of high-order risk is greater in the shorter term during bad times,

but greater in the longer term during good times. Our findings thus provide novel insights

on the conditional term structure of risk preferences.

Our theoretical approach exploits the no-arbitrage condition based on the existence of the

so-called growth optimal portfolio.2 We show that the expected excess exchange rate return

(or risk premium) can be rewritten as the following identity:

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T

=
1

Rf,T
cov⇤t

✓
Rg,T ,

ei,T
ei,t

◆
, (1)

where cov⇤t

⇣
Rg,T ,

ei,T
ei,t

⌘
captures the conditional risk-neutral covariance between the gross

return of the growth optimal portfolio (Rg,T ) and the gross exchange rate return ( ei,Tei,t
) over

the horizon T � t. The return of the optimal growth portfolio is a power function of the

market return Rmkt,T , such that Rg,T = �R�
mkt,T , where � is a level parameter and � > 0

is a coe�cient capturing the degree of risk preferences. Our approach therefore links the

risk premium with a directly-interpretable measure of risk preferences, given by �, whereby

a large value implies that FX investors are more ”averse” against higher-order risk, such as

co-skewness (� = 3), co-kurtosis (� = 4), and so on.

Our measure of risk preferences is general and nests various interesting versions studied in

the literature. For example, � can be interpreted as the risk aversion of an unconstrained

representative investor with CRRA utility whose entire wealth is invested in the market. We

also show that � can be endogenously time varying in a model with heterogeneous agents

(Chan and Kogan, 2002). Our approach thus addresses the critique of Bekaert, Engstrom,

and Xu (2021) that most studies estimate time-varying risk aversion measures motivated by

2The growth optimal portfolio has been early considered in Kelly Jr (1956), Roll (1973), Fama and
MacBeth (1974), Markowitz (1976), Long Jr (1990), and more recently in Alvarez and Jermann (2005),
Martin (2012), Martin and Wagner (2019) in the context of the equity market.
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models that essentially assume a constant risk aversion coe�cient and hence are inherently

inconsistent.

To empirically measure the FX risk premium, we compute the risk-neutral covariance in (1)

using options on the S&P 500 and on exchange rates for di↵erent horizons (between 1 month

and 24 months). We then identify the value of � such that our theoretically-implied risk

premium best matches observable expected excess exchange rate returns, using survey data

from professional forecasters. We exploit a cross-section of G30 currencies against the USD

over the sample spanning the 1996.01.01 to 2020.12.31 period. Unconditionally, we obtain an

estimate of � = 4.5, which suggests that FX investors are substantially averse to high-order

risk.

Our approach allows us to explore the term structure of risk preferences, which we obtain

by estimating � using options of di↵erent maturities (and forecasts of di↵erent horizons).

We find that � decreases from 4.5 at the one-month horizon to 1.4 at the two-year horizon.

That is, investors care less about higher-order risk as their forecast horizon increases. One

explanation is that the risk of a currency crash (e.g., the Australian dollar in October 2008

or the Russian Ruble in February 2022) matters less to investors over a longer horizon, as a

currency has more time to recover following a severe depreciation. At the one-month horizon,

however, a currency would not have time to recover following a crash, which translates into

severe losses. Investors are then more fearful towards such tail risk events when their horizon

is shorter, which is expressed by a higher � and thus a downward-sloping term structure.

We then turn to a conditional analysis of this term structure. To do so, we split our sam-

ple according to NBER-dated recessions and expansions and estimate � on each subsample

separately for di↵erent horizons. We show that the term structure of risk preferences has a

steep negative slope in recessions, which turns positive during expansions. We find similar

results when we analyze risk preferences across di↵erent measures of financial conditions.

For example, we separate the sample by high and low levels of CBOE equity-option implied

volatility index (VIX), based on the sample mean. Alternatively, we split the sample accord-

ing to the level of the option-implied volatility for a basket of G7 currencies (VXY) or using

the implied volatility on one-month U.S. Treasury options (MOVE). In all cases, the term

structure of risk preferences is countercyclical with respect to aggregate economic/financial

conditions.
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In sum, our approach contributes to the literature in three ways. First, we consider a

utility-free environment to extract risk preferences. While the relation between the optimal

growth portfolio and the power of market return is consistent with various model classes,

as we show in the paper, our approach is not tied to specific model assumptions. In this

regard, our framework generalizes Kremens and Martin (2019), which builds on investors

having log utility. Second, using an empirical representation of identity (1), we can estimate

� by simple OLS regressions. The simplicity of this approach is in contrast to existing

methods to extract preferences from macroeconomic data and financial asset prices (e.g.,

Bekaert, Engstrom, and Xu, 2021). Third, we use observable expected exchange rate returns

to measure the left-hand side of (1). While the literature has typically considered past or

ex post realized returns, we instead exploit survey data from professional forecasters. Our

approach allows us, therefore, to compare the risk premium computed from forward-looking

option prices and the consensus based expected excess return at the daily frequency and for a

cross-section of currencies. Last but not least, given that forecasts and options are available

for di↵erent horizons, we can shed light on the conditional term structure of �. Our paper

is the first to provide insights on how risk preferences vary over di↵erent horizons.

This paper relates to a growing literature on extracting time-varying preferences from sur-

veys, experiments, or asset prices. Guiso, Sapienza, and Zingales (2018) find that investors’

risk aversion increases after the 2008 crisis, by comparing the risk premium investors would

pay to eliminate a simple gamble. Baker and Wurgler (2006) estimate a time-varying mea-

sure of sentiment for stock investors. Cohn, Engelmann, Fehr, and Maréchal (2015) show, in

a lab experiment, that investors’ fear increases as the financial environment becomes riskier.

Pflueger, Siriwardane, and Sunderam (2020) extract a measure of perceived risk from stock

investors and show that it varies over the business cycle. Finally, Bekaert, Engstrom, and

Xu (2021) extract a measure of time-varying aggregate risk aversion from macro data and fi-

nancial asset prices. Consistent with these studies, we find that � increases during recessions

and periods of heightened uncertainty, suggesting that FX market participants are indeed

more averse to higher-order risk as economic/financial conditions worsen. A fundamental

di↵erence between our paper and this literature, however, is that we are able to extract and

provide insights on the term structure of risk preferences.

The remainder of the paper is organized as follows. Section 2 shows theoretically how the

growth optimal portfolio helps identify the role of risk preferences for expected exchange rate
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excess returns. Section 3 describes the construction of the main variables and presents our

framework to estimate the term structure of risk preferences. Section 4 reports and discusses

the results. We conclude in Section 5. The Internet Appendix contains technical details and

presents additional results not included in the main body of the paper.

2 Theory

In this section, we derive the expected excess return for exchange rates and shed new light

on the role of investor preferences in driving risk premia in the FX market. Our approach

extends the theory of Kremens and Martin (2019) by exploiting the growth optimal portfolio,

which allows to consider general risk preferences in a model-free environment.

2.1 Environment

Consider a currency strategy that converts a dollar into foreign currency at time t, lends at

the foreign riskless rate between time t and T , and then exchanges the proceeds in foreign

currency for dollars at time T . According to the fundamental equation of asset pricing, the

expected excess exchange rate return is given by

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T

= �Rf,t covt

✓
MT ,

ei,T
ei,t

◆
, (2)

where Et is the expectation operator (under the physical measure) conditional on the infor-

mation available at time t, ei,t is the spot exchange rate defined as units of dollars per foreign

currency i such that an increase in ei,t reflects an appreciation of the foreign currency, Ri
f,T

(Rf,T ) denotes the gross risk-free rate in foreign country (US) from time t to T (known at

t), and MT is a stochastic discount factor (SDF) that prices assets denominated in dollars.

Under the risk-neutral expectation E
⇤
t , the covariance term disappears in (2) and the expected

excess exchange rate return is zero. This condition fails to hold empirically and the non-zero

excess return can be interpreted as compensation for time-varying risk (e.g., Fama, 1984;

Lustig, Roussanov, and Verdelhan, 2011). This is equivalent to saying that investors demand
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a risk adjustment component captured by the covariance between the SDF and the gross

exchange rate return. Because the SDF is unobservable ex-ante and likely to change over

time, it remains challenging to determine how investor preferences exactly shape this risk

compensation. The objective of this paper is to overcome this challenge and to shed new

light on risk preferences in the FX market.

Our approach relies on a risk-neutral representation, building on the insights of Martin

(2017), Kremens and Martin (2019), Martin and Wagner (2019) and Della Corte, Jeanneret,

and Patelli (2021). To do so, we exploit a property of the no-arbitrage condition, largely

overlooked in the recent FX literature, which is the existence of a so-called growth optimal

portfolio. The growth optimal portfolio is particularly useful in our case because its gross

return, denoted by Rg,T , satisfies MTRg,T = 1, every state of the world.3 In this case, the

expected excess exchange rate return can be rewritten as the following identity:

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T

=
1

Rf,T
cov⇤t

✓
Rg,T ,

ei,T
ei,t

◆
, (3)

where cov⇤t

⇣
Rg,T ,

ei,T
ei,t

⌘
captures the conditional risk-neutral covariance between the gross

return of the growth optimal portfolio (Rg,T ) and the gross exchange rate return ( ei,Tei,t
) over

the horizon T � t.

Derivation of (3). Using the property that MTRg,T = 1, one can expand the expectation of

the gross exchange rate return as follows:

Et


ei,T
ei,t

�
= Et


MTRg,T

ei,T
ei,t

�
=

1

Rf,T
E

⇤
t


Rg,T

ei,T
ei,t

�
(4)

3The growth optimal portfolio reaches the entropy bound of the SDF in Bansal and Lehmann (1997) and
Alvarez and Jermann (2005), where

Et[logRg,T ]  �Et[logMT ] .

The growth optimal portfolio can be viewed as a benchmark portfolio that is analogous to the minimum
second moment portfolio from the Hansen-Jagannathan bound. For early work using this portfolio, see e.g.
Kelly Jr (1956), Roll (1973), Fama and MacBeth (1974), Markowitz (1976), Long Jr (1990), and Ross (1999).
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and then decompose the above risk-neutral expectation:

E
⇤
t


Rg,T

ei,T
ei,t

�
= E

⇤
t [Rg,T ]| {z }
= Rf,T

E
⇤
t


ei,T
ei,t

�

| {z }
Rf,T /Ri

f,T

+cov⇤t

✓
Rg,T ,

ei,T
ei,t

◆
, (5)

where E⇤
t [Rg,T ] = Rf,T follows from the relation between the risk-neutral probability and the

SDF valuation and E
⇤
t

h
ei,T
ei,t

i
= Rf,T/Ri

f,T from the Uncovered Interest Rate Parity (UIP)

condition. By combining the two equations and rearranging, we obtain (3).

2.2 Optimal growth portfolio and investor preferences

We now derive the optimal growth portfolio return and show how risk preferences enter the

expected excess exchange rate return.

We assume that the return of the optimal growth portfolio Rg,T is a power function of the

market return Rmkt,T , such that Rg,T = �R�
mkt,T , where � is a level parameter and � > 0,

possibly time varying, is a coe�cient capturing the degree of risk preferences. We find that

such specification arises endogenously in various existing asset pricing models, as we will

discuss in Section 2.2.1. We can then rewrite the right-hand side of (3) as follows:

1

Rf,T
cov⇤t

✓
Rg,T ,

ei,T
ei,t

◆
=

1

�E⇤
t [R

�
mkt,T ]

cov⇤t

✓
�R�

mkt,T ,
ei,T
ei,t

◆
(6)

= cov⇤t

 
R�

mkt,T

E
⇤
t [R

�
mkt,T ]

,
ei,T
ei,t

!
, (7)

using E
⇤
t [Rg,T ] = Rf,T , which implies that the constant � cancels out and thus vanishes from

the expected excess exchange rate return.

This optimal growth portfolio is particularly relevant to forward our understanding of the

expected excess exchange rate return. To see that, we can expand the risk-neutral covariance
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Figure 1. Relative weights of risk-neutral covariances

(7) to rewrite the identity (3) as follows:4

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T

=

�
e� � 1

�

Rf,T

1X

n=1

w�,n cov
⇤
t

✓
rnmkt,T ,

ei,T
ei,t

� 1

◆
, (8)

where rmkt,T = Rmkt,T � 1 denotes the market net return. The weight w�,n =
�
e� � 1

��1 �n

n!

sums to one and is a bell-shaped function in terms of n with its maximum value around �,

as illustrated in Figure 1. The higher the value of �, the higher the factor e� � 1 in front of

the infinite sum and the more weights are shifted to the (risk-neutral) higher-order terms.

This decomposition shows that the level of expected excess exchange rate return is thus

increasing in �. Note that the value of � is intrinsically related to aversion to higher-order

risk, such as co-skewness (� = 3), co-kurtosis (� = 4), and so on. So � has a direct economic

interpretation in terms of risk preferences.

2.2.1 Rationalizing the return of the optimal growth portfolio

We now show that our specification, where the return of the optimal growth portfolio Rg,T

is proportional to a power function of the market return, Rg,T / R�
mkt,T , is consistent with

4This is done by expanding the exponential function in the covariance R�1
f,T cov⇤t

⇣
R�

mkt,T ,
ei,T
ei,t

⌘
=

R�1
f,T cov⇤t

⇣
e�rmkt,T , ei,T

ei,t

⌘
using power series, i.e. ex = 1 + x+ 1

2!x
2 + ....
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di↵erent asset pricing models. To do so, we consider di↵erent economic environments and,

for each case, derive the return of the optimal growth portfolio.

We start with a simple static portfolio choice problem of an unconstrained CRRA agent who

invests in the market. Her maximization problem can be written as follows:

max
w

Et
(
P

i wiRi,T )
1��

1� �
, s.t.

X

i

wi = 1 .

Taking the first order condition for each weight wi, we have � = Et

h
Ri,T (

P
i w

⇤
iRi,T )

��
i
,

8i, where � is the Lagrangian multiplier, and w⇤
i is the optimal weight of an asset with gross

return Ri,T in the representative agent’s portfolio. Note that the quantity (
P

i w
⇤
iRi,T )

�� =

R��
mkt,T is proportional to the SDF, which proves that Rg,T = �R�

mkt,T is the growth optimal

portfolio return. A similar result can be obtained in a setting with ambiguity aversion (see

Appendix A.1).

Consider now, as an extension, that the representative agent holds only part of her portfolio

in the market. This agent has a portfolio weight ! 2 (0, 1] in the market portfolio and

(1 � !) in the risk-free asset. This would imply the growth optimal portfolio being Rg,T =

� (!Rmkt,T + (1� !)Rf,T )
�. Under some reasonable conditions,5 the above binomial function

can be expanded as a Maclaurin series

Rg,T = �(1� !)�R�
f,T

 
1 + �

!

1� !

Rmkt,T

Rf,T
+

�(�� 1)

2!

✓
!

1� !

Rmkt,T

Rf,T

◆2

+ ...

!
,

which is essentially a sum of integer powers of the market return with constant coe�cients.

Since the value of the coe�cient �(��1)(��2)...(��n)
(n+1)! converges to zero when n ! 1, the value

of � indicates the maximum power of the market return that is relevant for Rg,T . That is, a

higher � is associated with a greater aversion to higher-order risk.

5The value of � should be a rational number, which is a sensible choice here since the set of rational
number is dense in the set of real number. Also, the random variable has compact support Rmkt,T /Rf,T 2
[0, 2(!�1 � 1)].
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2.2.2 An example with time-varying �

We now show that � can be endogenously time varying in a model with heterogeneous agents.

Intuitively, variation in � arises from the change in the distribution of wealth among agents

with di↵erent preferences, as in Chan and Kogan (2002).

The following example builds on Longsta↵ and Wang (2012), except that each agent faces

a portfolio choice problem. Consider a two-period model with complete markets and two

agents from country 1 and country 2 with homogeneous beliefs and power utility, but with

di↵ering coe�cients of risk aversion, �2 > �1 � 1. Agent i’s problem is as follows:

max
W 1��i

i,t

1� �i
+ � Et

W 1��i
i,T

1� �i
.

As markets are complete and beliefs are homogeneous, the SDF is unique, so that

�

✓
W1,T

W1,t

◆��1

= �

✓
eTW2,T

etW2,t

◆��2

,

where et is the exchange rate of one unit currency in country 2 valued in the currency of

country 1.

Assuming that �1 = � and �2 = 2� to ensure a closed form solution, as in Longsta↵ and

Wang (2012), we have
W1,T

W1,t
=

✓
eTW2,T

etW2,t

◆2

.

Writing Wt = W1,t + etW2,t for aggregate wealth measured in currency 1 implies that

eTW2,T = 2
a

�p
1 + aWT � 1

�
, where the constant a = 4W1,t/(etW2,t)2 reflects the relative

wealth of the two agents. Although agents 1 and 2 are not representative—neither invests

only in the market—they have the same beliefs and SDF as a representative agent. Such

representative agent has a wealth WT (measured in currency 1) and marginal utility v0(WT )

that is proportional to eTW
�2�
2,T . Integrating across agents, this representative agent’s utility

function is

v(WT ) =

�p
1 + aWT � 1

�2(1��)

2(1� �)
+

�p
1 + aWT � 1

�1�2�

1� 2�
,
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such that her relative risk aversion, denoted by �(WT ), can be written as:

�(WT ) = �WTv00(WT )

v0(WT )
= � +

�p
1 + aWT

with the limits limWT!1 � = � and limWT!0 = 2�. The coe�cient � therefore varies over

time, as the relative wealth of the agents changes, in a range given by � and 2�.

3 Empirical Methodology

We present our approaches to estimate �, based on the framework developed in Section 2,

and then describe the construction of the main variables.

3.1 Two approaches to estimate �

We start by proposing two approaches to estimate � in the data, which we will use to shed

light on risk preferences in the FX market. Note that, combining (3) and (7), the expected

excess exchange rate return is given by

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T

=
1

Rf,T
cov⇤t

✓
Rg,T ,

ei,T
ei,t

◆
= cov⇤t

 
R�

mkt,T

E
⇤
t [R

�
mkt,T ]

,
ei,T
ei,t

!
. (9)

Main Approach. We can write an empirical representation of (9) as follows:

Et


ei,T
ei,t

�
� Rf,T

Ri
f,T| {z }

ERXi,t

= ↵� + �� cov
⇤
t

 
R�

mkt,T

E
⇤
t [R

�
mkt,T ]

,
ei,T
ei,t

!

| {z }
ERP

(�)
i,t

, (10)

where ERXi,t reflects observable expected excess exchange rate return and ERP(�)
i,t is the

expected risk premium for a given �. An accurate specification of the expected risk premium

implies ↵� = 0 and �� = 1 when regressing ERXi,t on ERP(�)
i,t . This is the condition we are
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going to consider in this approach to pin down the coe�cient of �. Specifically, each ERP(�)
i,t

implies a di↵erent slope coe�cient �� and we can thus select the level of � such that �� is

closest to one.

A Linear Approximation. To provide a comparison of our ERP(�)
i,t to the Quanto risk

premium defined in Kremens and Martin (2019), we derive an exact decomposition of the

risk-neutral covariance term from (10),6

1

Rf,T
cov⇤t

⇣
R�

mkt,T ,
ei,T
ei,t

⌘

| {z }
ERP

(�)
i,t

= �
1

Rf,T
cov⇤t

✓
Rmkt,T ,

ei,T
ei,t

◆

| {z }
ERP

(1)
i,t

+
�(�� 1)

2

1

Rf,T
cov⇤t

✓
⇠��2
T (Rmkt,T �Rf,T )

2,
ei,T
ei,t

◆
, (11)

where ⇠T is a random number that lies between Rf,T and Rmkt,T . Note that ERP(1)
i,t on the

right hand-side is equivalent to the QRPi,t, i.e. the Quanto risk premium defined in Kremens

and Martin (2019).

If, on average, the exchange rate’s risk-neutral co-skewness with market’s volatility is not

too large, one could expect the non-linear term in (11) to be small and negligible. When

that is true, a simplified empirical representation of (15) should work well:

ERXi,t = ↵ + � ERP(1)
i,t , (12)

where ↵ and � can be estimated by jointly regressing ERXi,t on ERP(1)
i,t . In the absence

of the non-linear term in (11), we should have the coe�cients in (12) to satisfy ↵ = 0 and

� = �.

However, conditionally, when downside risk spikes in the international financial market, the

non-linear term might be important and non-negligible. As an illustrating example, we could

get rid of the random variable ⇠T in the non-linear term when � = 2 and derive a simpler

6The decomposition is exact due to the mean value theorem. Recall that f(x) = f(c) + f 0(c)(x � c) +
1
2f”(⇠)(x� c)2 for ⇠ 2 [c, x]. Here we used f(x) = x�, c = Rf,T , and x = Rmkt,T .
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representation of (11):

ERP(2)
i,t = 2ERP(1)

i,t| {z }
QRPi,t

+
1

Rf,T
cov⇤

✓
(Rmkt,T � E

⇤
t [Rmkt,T ])

2 ,
ei,T
ei,t

◆
, (13)

where the second covariance term can be synthetically priced as a Quanto contract of

SVIX2
t = E

⇤
t

⇥
(Rmkt,T � E

⇤
t [Rmkt,T ])2

⇤
, i.e., the ‘simple variance swap’ introduced in Mar-

tin (2011). Empirically, as shown in Martin (2017), the SVIX2
t tracks VIX2

t closely. So we

can think of this second covariance term as the co-skewness between exchange rate returns

and the level of VIX2
t .

7 In a nutshell, this analysis shows that (simple) variance risk becomes

priced by FX investors when � > 1.

3.2 Construction of the main variables

We now describe how we compute, for each currency pair, the expected excess exchange

rate return and the expected risk premium. We exploit a cross-section of the G30 currencies

against the USD over the sample spanning the 1996.01.01 to 2020.12.31 period.

3.2.1 Expected excess exchange rate returns

We use exchange rate forecasts to compute expected excess exchange rate returns as follows:

ERXi,t,T =
Et [ei,T ]

ei,t
� Rf,T

Ri
f,T

, (14)

where Et [ei,T ] is the mean exchange rate forecast for currency i, observed at time t, and for

horizon T �t. The last term in (14) is the traditional UIP forecast that we approximate with

the interest rate di↵erential between USD and the considered currency. For the construction

of this component, we rely on daily zero-coupon rates bootstrapped from money market

rates and interest rate swaps obtained from Bloomberg. We match the maturity with that

of the forecasts. The monthly exchange rate forecast data are from the Foreign Exchange

7A caveat is that, to have SVIX2
t ⇡ VIX2

t , market return has to be log-normally distributed.

13



Consensus Forecasts, with forecast horizons of 1, 3, 6, 12 and 24 months. We interpolate

monthly data to obtain daily observations.

3.2.2 The expected risk premium

We here describe how we construct an empirical measure of the expected risk premium,

which is given by:

ERP(�)
i,t = cov⇤t

 
R�

mkt,T

E
⇤
t [R

�
mkt,T ]

,
ei,T
ei,t

!
. (15)

The above risk-neutral covariance is not directly observable from market prices, as Quanto

contracts on a power of the market index are not typically traded (except for � = 1 as

discussed in Kremens and Martin (2019)). To overcome this challenge, we can decompose

the risk-neutral covariance into its three distinct components:

cov⇤t

 
R�

mkt,T

E
⇤
t [R

�
mkt,T ]

,
ei,T
ei,t

!
= ⇢⇤�,i,T

vuuutvar⇤t

0

@ R�
mkt,T

E
⇤
t

h
R�

mkt,T

i

1

A
s

var⇤t

✓
ei,T
ei,t

◆
, (16)

where ⇢⇤�,i,T captures the risk-neutral correlation between R�
mkt,T and ei,T/ei,t, while the var⇤t

operator denotes the risk-neutral variance.

Armed with this decomposition, we can compute the risk-neutral covariance for each level of

�. The risk-neutral correlation is not directly observable — so we use the realized correlation

between R�
mkt,T and ei,T/ei,t.8 We use the return of the S&P 500 over the horizon T as a

proxy for Rmkt,T and the gross return on spot exchange rates from Bloomberg for ei,T/ei,t.

The two risk-neutral variances, however, can be obtained from option prices, by comput-

ing risk-neutral moments of the market index returns and exchange rate returns with the

Breeden-Litzenberger (or Carr-Madan) method. We provide details on the construction of

8We show in Appendix B.1 that the risk-neutral correlation, implied from the Quanto contracts in Kre-
mens and Martin (2019), is close to the realized correlation between the market and exchange rate returns.
So the realized correlation is a reasonable proxy of the risk-neutral correlation.
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these risk-neutral variances in Appendix B.2. Essentially, we extract the risk-neutral variance

of the powered market return and of the exchange rate returns using equity index options

and FX options, respectively, which we describe below.

Equity index option prices are based on the daily implied volatility surface of SPX Eu-

ropean options, as provided by OptionMetrics. We use observations from 1996.01.01 to

2020.12.31. We also take the yield curve term structure from OptionMetrics. We revert the

implied volatility back to option prices to compute the risk-neutral moments of the S&P 500

index returns with maturities of 1, 3, 6, 12 and 24 months.

FX option prices are converted from implied volatility data collected over-the-counter

(OTC) currency options from JP Morgan and Bloomberg. The quoted implied volatili-

ties, in terms of Garman and Kohlhagen (1983), are on baskets of constant maturity plain

vanilla options for fixed deltas (�). From these data, we recover the implied volatility smile

ranging from a 10� put to a 10� call option. To convert deltas into strike prices and im-

plied volatilities into option prices, we employ exchange rates and zero-yield rates obtained

by bootstrapping money market rates and interest rate swap data from Datastream and

Bloomberg.

Using the realized correlation and the risk-neutral variances, we then compute the daily

expected risk premium ERP(�)
i,t,T for each of the 30 currency pairs, each level of � ranging

between 1 and 10, and each maturity between 1 and 24 months.

4 Empirical Results

We estimate �, using the two approaches presented in Section 3.1, and explore the conditional

term structure of risk preferences. We first highlight the contributions of our approach and

then discuss the results.
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4.1 Contributions

Our methodology contributes to the literature in three major ways. First, we consider a

model-free environment to extract risk preferences. While the relation between the optimal

growth portfolio and the power of market return is consistent with various model classes, as

discussed in Section 2.2.1, our approach is not tied to specific model assumptions. In this

regard, our framework generalizes Kremens and Martin (2019), which builds on investors

having log utility. Second, using the two empirical representations provided in Section 3.1,

we can estimate � by comparing the simple OLS regressions with ERP�
i,t when the non-linear

term is negligible. The simplicity of this approach is in contrast to existing methods to extract

preferences from macroeconomic data and financial asset prices Bekaert, Engstrom, and Xu

(2021). Third, we use observable expected exchange rate return to measure the left-hand

side of (10) and (12), i.e., ERXi,t. While the literature has typically considered past or

ex post realized returns, we instead exploit survey data from professional forecasters. Our

approach allows us, therefore, to compare the expected risk premium (ERP(�)
i,t ) computed

from forward-looking option prices and the consensus based expected excess return (ERXi,t)

at the daily frequency and for a cross-section of currencies. Last but not least, given that

forecasts and options are available for di↵erent horizons, we can shed light on the term

structure of �.

4.2 Unconditional analysis

We estimate the unconditional level of � by running panel regressions at the daily frequency

based on the following specification:

ERXi,t,T = ↵i + ↵t + �� ERP
(�)
i,t,T +"�,i,t,T , (17)

where ↵i and ↵t are currency and time (calendar date) fixed e↵ects, respectively. We estimate

the above specification by forecast horizon T �t and for di↵erent values of �. Table 1 reports

estimates for di↵erent forecast horizons, i.e., 1 month in Panel A, 3 months in Panel B, 1

year in Panel C, and 2 years in Panel D. In each panel, we report the results for a di↵erent

value of �, ranging between 1 and 7.
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Table 1 about here

Panel A shows that the slope coe�cient �� is close to one when � is between 4 and 5, as

suggested by our identity (10). Consistent with this finding, the slope coe�cient �1, which

corresponds to regressing ERXi,t,T on ERP(1)
i,t,T is equal to 4.497 and is highly statistical

significant. In this second approach, the value of �1 can be directly interpreted as the level

of � when the non-linear approximation term in (11) is negligible. The results imply that

the second approach is a good approximation of the baseline approach, as both cases imply

a level of � lying between 4 and 5. This is a significant departure from the case of log utility

(Kremens and Martin, 2019), i.e., � = 1. Our estimate suggests that investors are thus

substantially averse to higher-order risk.

We then explore the term structure of risk preferences, as given by the estimates of � over

di↵erent forecast horizons. When moving from Panel A to Panel D, we find that the term

structure is downward sloping unconditionally. In particular, Column (1) indicates that �

decreases from 4.497 at the one-month horizon to 1.439 at the two-year horizon. These

findings suggest that investors care less about higher-order risk as their forecast horizon

increases. A possible explanation is that the risk of a currency crashes becomes less relevant

over a longer horizon, as a currency has more time to recover following a severe depreciation.

At the one-month horizon, however, a currency would not have time to recover following a

crash, which translates into severe losses to FX market participants. Over a shorter horizon,

investors are then more averse to such tail risk events, which is expressed by a higher �.

4.3 Additional analysis

We now summarize a set of additional results that further corroborate our core findings.

First, we show that the dynamics of � at di↵erent horizons remain qualitatively similar

when adding a set of control variables Xi,t to our panel specifications, i.e., we run panel

regressions based on

ERXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +�0Xi,t + "�,i,t,T , (18)
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where Xi,t includes the year-on-year inflation di↵erential between the US and country i at

time t, the realized covariance of exchange rate changes with the negative reciprocal of the

S&P 500 return observable at time t and computed between times t�T and t as in Kremens

and Martin (2019), and the dollar basis constructed at time t using the one-month US

dollar interest rate and its synthetic replication based on local currency interest rates and

spot/forward exchange rates. We report the estimates in Table 2 and show in Column (1)

that � decreases from 5.085 at the one-month horizon to 2.371 at the two-year horizon, thus

confirming that investors are more (less) averse to tail risk events when their investment

horizon is shorter (longer).

Table 2 about here

In Table 3, moreover, we employ expected exchange return (as opposed to currency expected

excess returns) as the dependent variable. At the same time, we add the corresponding

interest rate di↵erential as explanatory variable to our panel regressions

EFXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +� IRDi,t,T +"�,i,t,T , (19)

where EFXi,t,T = Et [ei,T ] /ei,t is the expected exchange rate return based on consensus

forecasts observed at time t and IRDi,t,T = Rf,T/Ri
f,T � 1 is the interest rate di↵erential at

time t. We find that estimates of � remain remarkably close to those reported in Table 1. In

particular, Column (1) shows that � decreases from 4.605 at the one-month horizon to 1.451

at the two-year horizon. In Table 4, we further add the control variables in Xt but results

remain virtually identical to those reported in Table 2.

Tables 3 and 4 about here

4.4 Conditional term structure of risk preferences

We then investigate how risk preferences vary over time. Several empirical studies suggest

that risk aversion increases in “bad times”. For example, investors are willing to pay a higher
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risk premium to eliminate a simple gamble after (compared to before) the 2008 crisis (Guiso,

Sapienza, and Zingales, 2018). Also, investors’ fear appears to increase as financial conditions

become riskier, as reported in a lab experiment by Cohn, Engelmann, Fehr, and Maréchal

(2015). Investors’ perceived risk, as measured by comparing the valuation of stocks with

di↵erent volatility, decreases as economic conditions improve (Pflueger, Siriwardane, and

Sunderam, 2020). Stock investors are also found to have higher risk aversion in times of

greater market uncertainty (Bekaert, Engstrom, and Xu, 2021). It is thus important to

analyze how risk preferences of FX investors, as measured by �, vary in good vs. bad times.

To do so, we split our sample according to NBER-dated recessions and expansions, estimate

the specification in Equation (17) on each subsample separately, and then plot the estimates

of � in the top-left Panel of Figure 2. Consistent with the existing evidence, we find that �

tends to increase during recessions, suggesting that FX market participants are indeed more

averse to higher-order risk as economic conditions worsen.

Figure 2 about here

We then turn to a conditional analysis of this term structure. The top-left Panel of Figure 2

shows that the term structure has a steep negative slope in recessions, while it becomes much

flatter during expansions. We find similar results when we analyze risk preferences across

di↵erent measures of financial conditions. The top-right Panel, for example, shows the results

when we separate the sample by high and low levels of CBOE equity-option implied volatility

index (VIX), based on the sample mean. The bottom panels replace the VIX index with the

option-implied volatility for a basket of G7 currencies (VXY) and the implied volatility on

one-month U.S. Treasury options (MOVE), respectively. In all cases, the term structure of

risk preferences is countercyclical with respect to aggregate economic/financial conditions.

Our paper is the first to provide insights on how risk preferences vary over di↵erent horizons

as well as on the conditional term structure.
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5 Concluding Remarks

This paper sheds light on the FX risk premium and the term structure of risk preferences.

We first show theoretically that we can extract a utility-free measure of risk preferences for

FX market participants. We then estimate this measure by comparing expected exchange

rate returns from professional forecasters with exchange rate premia computed from option

prices, through the lens of no-arbitrage condition in the FX market. We can then explore

how the term structure of risk preferences varies across economic/financial conditions.

The main results are as follows. Investor preferences reflect a strong aversion to high-order

risk, thus departing from the log utility considered recently (e.g., Kremens and Martin,

2019; Della Corte, Jeanneret, and Patelli, 2021). Unconditionally, the term structure of risk

preferences is downward-sloping, that is FX risk premia provide a greater compensation for

high-order risk as the forecast horizon decreases. Conditionally, this negative term structure

slope strengthens in bad times, but becomes upward-sloping in good times. Hence, fear of

high-order risk is greater in the shorter term during bad times, but greater in the longer term

during good times. We therefore provide novel insights on the conditional term structure of

risk preferences.
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Figure 2. Market Conditions and Estimates of �

This figure displays panel estimates of � across di↵erent market conditions. The top-left panel refers to NBER recession and NBER
expansion periods, the top-right panel to high VIX and low VIX periods (relative to its sample average), the bottom-right panel
to high VXY and VYX periods (defined relative to its sample average), and the bottom-left panel to high and low MOVE periods
(defined relative to its sample average). The sample runs at the daily frequency between January 1996 and December 2020. Data
are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

24



Table 1. Expected Excess Returns and Risk Premia

This table presents panel regression estimates based on the following specification

ERXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +"�,i,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t for currency i and maturity T � t
and ERP(�)

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
with ↵t and ↵i denoting time and currency fixed e↵ects, respectively. ERXi,t,T is calculated using exchange
rate consensus forecasts and interest rate di↵erentials whereas ERP(�)

i,t,T is based on S&P 500 and currency
options for di↵erent levels of � and maturities ranging between one month and two years. Standard errors,
reported in parenthesis, are clustered by currency and time (calendar days) dimension. Statistical significance
at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The sample runs at the daily
frequency between January 1996 and December 2020 for a cross-section of 30 currency pairs relative to the
US dollar. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

� 1 2 3 4 5 6 7

ERP 4.497*** 2.289*** 1.550*** 1.177*** 0.950*** 0.798*** 0.687***
(0.828) (0.435) (0.305) (0.239) (0.199) (0.172) (0.153)

R2 0.326 0.326 0.325 0.325 0.324 0.324 0.324

N 154,876 154,876 154,876 154,876 154,876 154,876 154,876

Panel B: 3-month Maturity

ERP 1.700*** 0.871*** 0.593*** 0.453** 0.368** 0.311** 0.270**
(0.553) (0.295) (0.209) (0.166) (0.139) (0.122) (0.109)

R2 0.325 0.325 0.325 0.324 0.324 0.324 0.324

N 156,635 156,635 156,635 156,635 156,635 156,635 156,635

Panel C: 1-year Maturity

ERP 1.539*** 0.848*** 0.617*** 0.500*** 0.428*** 0.378*** 0.342***
(0.435) (0.245) (0.182) (0.150) (0.130) (0.117) (0.107)

R2 0.448 0.448 0.447 0.447 0.447 0.447 0.446

N 156,548 156,548 156,548 156,548 156,548 156,548 156,548

Panel D: 2-year Maturity

ERP 1.439** 0.821** 0.615** 0.510** 0.445** 0.402** 0.371**
(0.538) (0.310) (0.234) (0.195) (0.171) (0.155) (0.143)

R2 0.526 0.526 0.526 0.525 0.525 0.525 0.525

N 140,704 140,704 140,704 140,704 140,704 140,704 140,704

currency fe X X X X X X X
time fe X X X X X X X
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Table 2. Expected Excess Returns and Risk Premia – With

Controls

This table presents panel regression estimates based on the following specification

ERXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +�0Xt + "�,i,t,T ,

where ERXi,t,T is the expected currency excess return observed at time t for currency i and maturity T � t
and ERP(�)

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
with ↵t and ↵i denoting time and currency fixed e↵ects, respectively. Xt refers to control variables, i.e., the
year-on-year inflation di↵erential between the US and country i at time t, the realized covariance of exchange
rate changes with the negative reciprocal of the S&P 500 return observable at time t and computed between
times t�T and t, and the dollar basis constructed at time t using the one-month US dollar interest rate and
its synthetic replication based on local currency interest rates and spot/forward exchange rates. ERXi,t,T is
calculated using exchange rate consensus forecasts and interest rate di↵erentials whereas ERP(�)

i,t,T is based
on S&P 500 and currency options for di↵erent levels of � and maturities ranging between one month and
two years. Standard errors, reported in parenthesis, are clustered by currency and time (calendar days)
dimension. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
The sample runs at the daily frequency between January 1996 and December 2020 for a cross-section of 30
currency pairs relative to the US dollar. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

� 1 2 3 4 5 6 7

ERP 5.085*** 2.386*** 1.473*** 1.010*** 0.730** 0.543** 0.409*
(1.223) (0.641) (0.445) (0.346) (0.286) (0.245) (0.215)

R2 0.330 0.330 0.329 0.329 0.329 0.328 0.328

N 152,627 152,627 152,627 152,627 152,627 152,627 152,627

Panel B: 3-month Maturity

ERP 4.948*** 2.463*** 1.621*** 1.196*** 0.940*** 0.770*** 0.648***
(0.941) (0.505) (0.358) (0.283) (0.237) (0.205) (0.182)

R2 0.335 0.334 0.332 0.331 0.331 0.330 0.329

N 153,827 153,827 153,827 153,827 153,827 153,827 153,827

Panel C: 1-year Maturity

ERP 2.235*** 1.216*** 0.872*** 0.694*** 0.584** 0.506** 0.448**
(0.698) (0.400) (0.301) (0.249) (0.217) (0.194) (0.178)

R2 0.455 0.455 0.454 0.454 0.454 0.453 0.453

N 153,740 153,740 153,740 153,740 153,740 153,740 153,740

Panel D: 2-year Maturity

ERP 2.371*** 1.358*** 1.016*** 0.837*** 0.727*** 0.654*** 0.601***
(0.690) (0.404) (0.309) (0.259) (0.227) (0.206) (0.192)

R2 0.551 0.551 0.551 0.551 0.551 0.551 0.551

N 140,570 140,570 140,570 140,570 140,570 140,570 140,570

controls X X X X X X X
currency fe X X X X X X X
time fe X X X X X X X
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Table 3. Expected Exchange Rate Returns and Risk Premia

This table presents panel regression estimates based on the following specification

EFXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +� IRDi,t,T +"�,i,t,T ,

where EFXi,t,T is the expected exchange rate return observed at time t for currency i and maturity T � t,
ERP(�)

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
and IRDi,t,T is the interest rate di↵erential between the US and country i at time t for the same currency
pair/maturity, with ↵t and ↵i denoting time and currency fixed e↵ects, respectively. EFXi,t,T is calculated
using exchange rate consensus forecasts whereas ERP(�)

i,t,T is based on S&P 500 and currency options for
di↵erent levels of � and maturities ranging between one month and two years. Standard errors, reported
in parenthesis, are clustered by currency and time (calendar days) dimension. Statistical significance at the
10%, 5%, and 1% levels is denoted by *, **, and ***, respectively. The sample runs at the daily frequency
between January 1996 and December 2020 for a cross-section of 30 currency pairs relative to the US dollar.
Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

� 1 2 3 4 5 6 7

ERP 4.605*** 2.346*** 1.589*** 1.208*** 0.976*** 0.820*** 0.707***
(0.862) (0.453) (0.317) (0.248) (0.207) (0.179) (0.159)

R2 0.334 0.334 0.333 0.333 0.332 0.332 0.332

N 154,876 154,876 154,876 154,876 154,876 154,876 154,876

Panel B: 3-month Maturity

ERP 1.715*** 0.880*** 0.599*** 0.458** 0.372** 0.315** 0.273**
(0.565) (0.301) (0.213) (0.169) (0.142) (0.124) (0.111)

R2 0.329 0.329 0.328 0.328 0.328 0.328 0.327

N 156,635 156,635 156,635 156,635 156,635 156,635

Panel C: 1-year Maturity

ERP 1.516*** 0.834*** 0.606*** 0.491*** 0.420*** 0.372*** 0.336***
(0.456) (0.256) (0.191) (0.157) (0.137) (0.123) (0.113)

R2 0.368 0.368 0.368 0.367 0.367 0.367 0.367

N 156,548 156,548 156,548 156,548 156,548 156,548

Panel D: 2-year Maturity

ERP 1.451*** 0.829*** 0.622*** 0.516*** 0.451*** 0.408*** 0.377***
(0.512) (0.294) (0.222) (0.185) (0.162) (0.146) (0.136)

R2 0.351 0.351 0.350 0.350 0.350 0.350 0.350

N 140,704 140,704 140,704 140,704 140,704 140,704 140,704

IRD X X X X X X X
currency fe X X X X X X X
time fe X X X X X X X
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Table 4. Expected Exchange Rate Returns and Risk Premia –

With Controls

This table presents panel regression estimates based on the following specification

EFXi,t,T = ↵t + ↵i + �� ERP
(�)
i,t,T +� IRDi,t,T +�0Xt + "�,i,t,T ,

where EFXi,t,T is the expected exchange rate return observed at time t for currency i and maturity T � t,
ERP(�)

i,t,T is the expected currency risk premium computed at time t for the same currency pair/maturity,
and IRDi,t,T is the interest rate di↵erential between the US and country i at time t for the same currency
pair/maturity, with ↵t and ↵i denoting time and currency fixed e↵ects, respectively. Xt refers to control
variables, i.e., the year-on-year inflation di↵erential between the US and country i at time t, the realized
covariance of exchange rate changes with the negative reciprocal of the S&P 500 return observable at time
t and computed between times t� T and t, and the dollar basis constructed at time t using the one-month
US dollar interest rate and its synthetic replication based on local currency interest rates and spot/forward
exchange rates. EFXi,t,T is calculated using exchange rate consensus forecasts whereas ERP(�)

i,t,T is based
on S&P 500 and currency options for di↵erent levels of � and maturities ranging between one month and
two years. Standard errors, reported in parenthesis, are clustered by currency and time (calendar days)
dimension. Statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and ***, respectively.
The sample runs at the daily frequency between January 1996 and December 2020 for a cross-section of 30
currency pairs relative to the US dollar. Data are from Bloomberg, FRED, JP Morgan, and OptionMetrics.

Panel A: 1-month Maturity

� 1 2 3 4 5 6 7

ERP 5.099*** 2.393*** 1.477*** 1.013*** 0.732** 0.545** 0.411*
(1.225) (0.642) (0.446) (0.347) (0.287) (0.246) (0.216)

R2 0.337 0.337 0.336 0.336 0.336 0.335 0.335

N 152,627 152,627 152,627 152,627 152,627 152,627 152,627

Panel B: 3-month Maturity

ERP 4.938*** 2.458*** 1.618*** 1.193*** 0.938*** 0.768*** 0.647***
(0.938) (0.503) (0.356) (0.282) (0.236) (0.204) (0.182)

R2 0.341 0.340 0.339 0.338 0.337 0.337 0.336

N 153,827 153,827 153,827 153,827 153,827 153,827 153,827

Panel C: 1-year Maturity

ERP 2.212*** 1.203*** 0.862*** 0.686** 0.577** 0.500** 0.442**
(0.712) (0.408) (0.307) (0.254) (0.221) (0.198) (0.181)

R2 0.388 0.387 0.387 0.386 0.386 0.385 0.385

N 153,740 153,740 153,740 153,740 153,740 153,740 153,740

Panel D: 2-year Maturity

ERP 2.439*** 1.398*** 1.048*** 0.865*** 0.753*** 0.677*** 0.624***
(0.670) (0.391) (0.299) (0.249) (0.218) (0.198) (0.184)

R2 0.373 0.373 0.373 0.372 0.372 0.372 0.372

N 140,570 140,570 140,570 140,570 140,570 140,570 140,570

IRD & controls X X X X X X X
currency fe X X X X X X X
time fe X X X X X X X
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Internet appendix to

“Expected Currency Returns”

(not for publication)

Abstract

This Internet Appendix presents supplementary material and results not included in

the main body of the paper.



A Optimal growth portfolio

A.1 Ambiguity Aversion

The following example builds on the results in Hansen (2007). We consider a robust port-

folio optimization problem for an unconstrained representative agent with log utility, who

penalizes his modeling mistake, i.e. the distance (relative entropy) his subjective belief from

the rational expectation (through the change of measure ⇠T )

max
w

min
⇠T>0,⇠T= dH

dP

Et

"
⇠T log

 
X

i

wiRi,T

!#
� ✓KL(H|P)| {z }

penalty of choosing H

,
X

i

wi = 1.

Hansen’s Ely lecture note (section 6.2) or Hansen and Sargent (2011) shows the optimal

distortion for the minimization problem (assume the portfolio weights are given) should be

the exponential tilting (also called the Esscher transform), ⇠T = R
� 1

✓
mkt,T/Et

h
R

� 1
✓

mkt,T

i
. This

would reduce the robust agent’s problem into a CRRA agent’s portfolio choice problem under

rational expectation

max
w

�Et ✓

 
X

i

wiRi,T

!� 1
✓

,
X

i

wi = 1.

As shown in Section 2.2.1, the growth optimal portfolio is Rg,T = �R✓�1+1
mkt,T . The value of

� = 1 + ✓�1 captures a log agent’s ambiguity aversion, i.e. the higher �, the lower the

ambiguity aversion of the log agent.
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B Ingredients of ERP(�)
i,t

B.1 Estimating the risk-neutral correlation ⇢⇤�,i,t

We measure ⇢�,i,t using a backward-looking sample correlation between daily R�
t and Et over

a window that matches the maturity of the options. Suppose that on day t, for example,

we compute var⇤[ · ] and E
⇤[ · ] using options between t and T . We then calculate ⇢i,� using

daily R�
t and Et between t and t� T .

Since risk-neutral correlations are not observable, we used the realized empirical correlations

instead. This choice is backed by three observations. First, we compare Quanto implied

risk-neutral correlation (thanks to authors of Kremens and Martin (2019) for sharing the

data) and realised correlation, which is the case when � = 1, we find those two are similar in

terms of variation (see Figure A.1 for an example with EURUSD pair). Second, we find the

realised correlations are similar across di↵erent value of �. Third, we run similar regressions

as Kremens and Martin (2019) by using the ERP(1)
i,t that we constructed using the realized

correlations and match the same sample period.

Figure A.1. The correlation ⇢�=1,i,t for i = EURUSDt
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B.2 Risk Neutral Moments

We explain how we compute the two risk neutral variances in details.
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Risk Neutral Moments of Equity Index Returns. To compute the risk neutral vari-

ance of
R�

mkt,T

E
⇤
t [R

�
i,T ]

, we recall the formula

var⇤t

0

@ R�
mkt,T

E
⇤
t

h
R�

mkt,T

i

1

A =
E

⇤
t

h
R2�

mkt,T

i

E
⇤
t

h
R�

mkt,T

i2 � 1 ,

where we could compute the risk neutral momements using the following formula

E
⇤
t [R

✓
mkt,T ] = R✓

f,t +Rf,t

Z Ft,T

0

✓(✓ � 1)

S✓
t

(StRf,t � Ft,T +K)✓�2⌦t,T (K)dK , (A.1)

where Rf,t is the risk free rate from yield curve with maturity T , K is the strike of option,

St is the current level of equity index, and ⌦t,T (K) is the out-of-money option prices with

strike K and maturity T . The formula’s proof could be found in the online appendix (result

9) of Martin (2017).

We take the assumption StRf,t = Ft,T in our computation to ignore the dividend payment,

i.e. we assume the payment of dividends are not reinvested. The formula simplifies to

E
⇤
t [R

✓
mkt,T ] = R✓

f,t +Rf,t

Z Ft,T

0

✓(✓ � 1)

S✓
t

K✓�2⌦t,T (K)dK . (A.2)

Risk Neutral Variances of FX returns. The risk-neutral variance of the gross exchange

rate return between two dates t and T

var⇤t

✓
ei,T
ei,t

◆
= E

⇤
t

✓
ei,T
ei,t

◆2

�
✓
E

⇤
t

ei,T
ei,t

◆2

, (A.3)

is computed by integrating over an infinite range of the strike prices from European call and

put options expiring on these dates as

var⇤t

✓
ei,T
ei,t

◆
=

2

Bt,T e2i,t

 Z Ft,T

0

Pt,T (K)dK +

Z 1

Ft,T

Ct,T (K)dK

!
, (A.4)
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where Pt,T (K) and Ct,T (K) are put and call option prices at time t with strike price K and

maturity date T , respectively. Bt,T is the price of a domestic bond at time t with maturity

date T . The above equation builds on Bakshi and Madan (2000) and Britten-Jones and

Neuberger (2000) and is based on no-arbitrage conditions that require no specific option

pricing model. In our implementation, we follow Jiang and Tian (2005) and use a cubic

spline around the available implied volatility points. This interpolation method is standard

in the literature and has the advantage that the implied volatility smile is smooth between

the maximum and minimum available strikes. We compute the option values using the

Garman and Kohlhagen (1983) valuation formula and solve the integral in Equation (A.4)

via trapezoidal integration.
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