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Abstract

We establish the out-of-sample predictability of monthly exchange rates via machine
learning techniques based on 70 predictors capturing country characteristics, global
variables, and their interactions. To better guard against overfitting in our high-
dimensional and noisy data environment, we make additional adjustments to “off-the-
shelf” implementations of machine learning techniques, including imposing economic
constraints. The resulting forecasts consistently outperform the no-change benchmark,
which has proven difficult to beat. Country characteristics are important for forecast-
ing, once they interact with global variables. Machine learning forecasts also markedly
improve the performance of a carry trade portfolio, especially since the global financial
crisis.
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1. Introduction

The specter of Meese and Rogoff (1983) continues to haunt international finance: despite

an array of theoretical models linking fundamentals to exchange rates, it is difficult to out-

perform the no-change benchmark forecast of the exchange rate on an out-of-sample basis,

especially at short horizons. Of course, it is not surprising that it is difficult to do so, as

developed-country currencies are traded in quite liquid and institutional investor-dominated

markets. Thus, we expect that exchange rate fluctuations will contain only a small pre-

dictable component. However, the same is true for equities, and while we also expect a

small predictable component in equity returns, the apparent consensus is that short-horizon,

out-of-sample stock return predictability exists to a statistically and economically significant

degree (e.g., Rapach and Zhou 2013). In contrast, the empirical evidence for short-horizon,

out-of-sample exchange rate predictability appears considerably weaker and more precarious

(e.g., Kilian and Taylor 2003; Rossi 2013), so that such a consensus does not prevail with

respect to exchange rates.

In this paper, we find that, like equity returns, exchange rates are predictable on an out-

of-sample basis, once we employ appropriate methods. Specifically, we use a rich information

set and machine learning techniques to improve monthly out-of-sample forecasts of US dollar

exchange rates for a group of developed countries.1 The information set is comprised of

ten country characteristics and six global variables. The country characteristics include

various macroeconomic and financial variables, such as inflation, interest rate, unemployment

gap, and valuation ratio differentials, which can be motivated by purchasing power parity

(PPP), uncovered interest parity (UIP), the Taylor (1993) rule, and uncovered equity parity

(UEP), among other theories. The global variables include economic and monetary policy

uncertainty indices (Baker, Bloom, and Davis 2016), a geopolitical risk index (Caldara and

1Machine learning is becoming popular in finance for predicting equity returns with large information
sets (e.g., Rapach, Strauss, and Zhou 2013; Chinco, Clark-Joseph, and Ye 2019; Chen, Pelger, and Zhu 2020;
Freyberger, Neuhierl, and Weber 2020; Gu, Kelly, and Xiu 2020; Han et al. 2021; Dong et al. forthcoming).
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Iacoviello 2018), as well as measures of global foreign exchange (FX) volatility, illiquidity,

and correlation (Menkhoff et al. 2012a; Mueller, Stathopoulos, and Vedolin 2017). In order

to allow for the predictive relationships between the country characteristics and exchange

rate changes to vary with global conditions, we interact the country characteristics with

the global variables, producing a set of 70 predictors. Previous studies typically focus on

a limited number of country characteristics and do not consider interactions with global

variables, which we find to be important. The 70 predictors serve as explanatory variables

in a panel predictive regression framework.

We begin with a linear panel specification for generating out-of-sample forecasts. Given

our high-dimensional setting with 70 predictors, it is vital to guard against overfitting when

estimating the panel predictive regressions. Because monthly exchange rate changes con-

tain an intrinsically large unpredictable component, we need to contend with very noisy

data, creating an even more urgent need to alleviate overfitting. To do so, we estimate the

panel predictive regressions via the elastic net (ENet, Zou and Hastie 2005), a refinement of

the popular least absolute shrinkage and selection operator (LASSO, Tibshirani 1996) from

machine learning. By construction, conventional ordinary least squares (OLS) estimation

maximizes the fit of the model over the estimation (or training) sample, which can lead

to overfitting the model to the training sample and thus poor out-of-sample performance.

The ENet is a penalized regression technique that shrinks the estimated coefficients towards

zero, thereby mitigating overfitting. The penalty term in the ENet includes both an `1

component—as in the LASSO—and an `2 component—as in ridge regression (Hoerl and

Kennard 1970); the former permits shrinkage to zero, so that the ENet also performs vari-

able selection. Instead of conventional cross validation, we use the extended regularization

information criterion (ERIC, Hui, Warton, and Foster 2015), which is a modification of the

Bayesian information criterion (BIC, Schwarz 1978), to select (or tune) the ENet’s shrinkage

hyperparameter (λ). ERIC is a more stringent method for tuning λ, in the sense that it
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tends to select a larger value for λ and thus induce more shrinkage, thereby better guarding

against overfitting in our high-dimensional and noisy data environment.

We further guard against overfitting by imposing economic constraints. After standard-

izing the predictors, we set the intercept terms in the panel predictive regressions to zero,

thereby imposing the economic restrictions that the average exchange rate changes are zero.

These restrictions are consistent with the data and help to guard against overfitting by reduc-

ing the parameter space.2 We also pool the data in our panel framework, which imposes slope

homogeneity restrictions across countries to further reduce the parameter space. Reducing

the number of parameters we need to estimate helps to improve out-of-sample performance

in light of the bias-variance tradeoff. We refer to the forecasts based on OLS and ENet

estimation of the linear panel predictive regressions as the Linear-OLS and Linear-ENet

forecasts, respectively.

In order to permit nonlinearities when predicting exchange rates, we also generate fore-

casts based on deep neural networks (DNNs). DNNs are popular machine learning models

that allow for complex nonlinear predictive relationships via a network architecture with

multiple hidden layers containing neurons activated by predictive signals. In order to ap-

proximate general predictive relationships, DNNs are highly parameterized, which can make

them susceptible to overfitting, especially in our noisy data environment.3 To better guard

against overfitting, we move beyond an “off-the-shelf” implementation of deep learning.

Specifically, we set the intercept terms for the weights to zero. These economic restrictions,

which are analogous to setting the intercept terms in the linear panel predictive regressions

to zero, again help to guard against overfitting by reducing the number of weights we need

to estimate. In addition, we include `1 and `2 penalty components in the objective function

and employ dropout (Hinton et al. 2012; Srivastava et al. 2014) when training the DNNs.

2Kozak, Nagel, and Santosh (2020) impose economically motivated priors in the context of estimating
stochastic discount factor coefficients via the LASSO using equity return data. Nagel (2021) emphasizes the
importance of combining economic insights with machine learning tools for empirical asset pricing.

3The parameters in a DNN are typically referred to as weights.
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We also consider an ensemble forecast that takes the average of the Linear-ENet and DNN

forecasts. The ensemble forecast recognizes that it is difficult to know a priori the best in-

dividual forecast, and it allows us to take advantage of potential complementarities in the

Linear-ENet and DNN forecasts.

Mimicking the situation of a forecaster in real time, we generate monthly out-of-sample

forecasts based on the 70 predictors by recursively estimating the linear panel predictive

regression and DNN models each month. Based on data availability (and after allowing for

a ten-year initial training sample), the out-of-sample period spans 1995:01 to 2020:09. We

compute forecasts for the entire out-of-sample period for the United Kingdom, Switzerland,

Japan, Canada, Australia, New Zealand, Sweden, Norway, and Denmark; for the Euro area,

the out-of-sample period begins in 2000:02. We refer to the exchange rates for these ten

countries as the G10.4 For Germany, Italy, France, and the Netherlands, the out-of-sample

period ends in 1998:12, corresponding to their adoption of the Euro.

We find that the information in the rich set of predictors is useful for outperforming the

stringent no-change benchmark forecast over the 1995:01 to 2020:09 out-of-sample period,

provided we guard against overfitting. As expected, the Linear-OLS forecasts substantially

underperform the no-change benchmark in terms of mean squared prediction error (MSPE)

for all of the countries, a clear manifestation of overfitting. In contrast, the Linear-ENet,

DNN, and ensemble forecasts outperform the no-change benchmark for twelve, 13, and all 14

of the countries, respectively. Based on the Campbell and Thompson (2008) out-of-sample

R2 (R2
OS) statistic, which measures the proportional decrease in MSPE for a competing

forecast vis-à-vis a benchmark, the improvements in forecast accuracy are quantitatively

large in the context of the extensive literature surveyed by Rossi (2013). The improvements

in MSPE vis-à-vis the no-change benchmark are also statistically significant in many cases

4The G11 currencies are the US dollar, Euro, British pound, Swiss franc, Japanese yen, Canadian dollar,
Australian dollar, New Zealand dollar, Swedish krona, Norwegian krone, and Danish krone. With the US
dollar serving as the base currency, we label our set of ten exchange rates the G10.
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according to the Clark and West (2007) test. The ensemble forecasts deliver the best overall

performance: the R2
OS statistics are positive for all of the countries, are above 1% (2%) for

ten (six) countries, and reach as high as 3.12% (for the United Kingdom). The R2
OS statistic

is also a sizable 1.88% (significant at the 1% level) for the entire group of countries taken

together.

Based on the graphical device of Goyal and Welch (2003, 2008), the machine learning

forecasts outperform the no-change benchmark on a reasonably consistent basis over time.

The outperformance is particularly strong during the worst phase of the global financial crisis

in late 2008. Overall, by utilizing a rich information set—while adequately guarding against

overfitting—our machine learning approach makes considerable progress in solving the Meese

and Rogoff (1983) no-predictability puzzle, providing among the best short-horizon exchange

rate forecasts available to date.

In order to glean insight into the relevance of the individual predictors in the models un-

derlying the forecasts, we assess variable importance using the recently developed approach

of Greenwell, Boehmke, and McCarthy (2018), which is based on partial dependence plots

(PDPs, Friedman 2001). PDPs are useful in their own right for exploring the strength of

nonlinearities in fitted models. We find that popular predictors from the literature, such

as inflation and government bill yield differentials, are important in the fitted Linear-ENet

and DNN models when they interact with global FX volatility. In essence, the predic-

tive relationships between the inflation and bill yield differentials and expected US dollar

appreciation accord more closely to the logic of PPP and UIP, respectively, as global FX

volatility increases. The unemployment gap differential and its interactions with a number

of global variables are also important, especially for the DNN. PDPs for the DNN indicate

that nonlinearities are primarily important for more extreme positive or negative values of

the predictors.

We also explore the economic implications of out-of-sample exchange rate predictability

for carry trade investment strategies. The popular carry trade entails going long (short)
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currencies with relatively high (low) interest rates. For a US investor who goes long (short)

the currency for country i (US dollar), based on covered interest parity, we can approximate

the log excess return for the investment as

rxi,t+1 ≈ (ri,t − rUS,t)−∆si,t+1, (1)

where rxi,t is the month-t log currency excess return for country i, ri,t (rUS,t) is the govern-

ment bill yield for country i (the United States), si,t = log(Si,t), and Si,t is the spot exchange

rate expressed as the number of country-i currency units per US dollar. Beginning with

Hansen and Hodrick (1980), Bilson (1981), and Fama (1984), a voluminous literature finds

that UIP does not hold and that the conditional expectation of rxi,t+1 is positive in Equa-

tion (1) when ri,t − rUS,t > 0.5 Compared to a variety of investment strategies, conventional

carry trade portfolios deliver impressive Sharpe ratios prior to the global financial crisis (e.g.,

Burnside, Eichenbaum, and Rebelo 2011; Lustig, Roussanov, and Verdelhan 2011).6 How-

ever, they suffered large losses in late 2008, and their performance has since deteriorated in

the wake of the global financial crisis (e.g., Melvin and Taylor 2009; Jordà and Taylor 2012;

Daniel, Hodrick, and Lu 2017; Melvin and Shand 2017).7

From the perspective of Equation (1), if an investor’s forecast of ∆si,t+1 is zero—in

the spirit of Meese and Rogoff (1983)—then the investor’s forecast of rxi,t+1 is simply the

bill yield differential (ri,t − rUS,t)—in the spirit of the usual carry trade. In this vein, we

construct an optimal portfolio for a mean-variance investor who allocates across available

foreign currencies by relying on bill yield differentials to forecast foreign currency excess

returns. We label this a Basic Optimal (Basic-Opt) carry trade portfolio, as the investor

5See Froot and Thaler (1990), Taylor (1995), and Burnside (2018) for surveys of UIP.
6Studies that explore risk-based explanations for carry trade returns include Burnside et al. (2011), Lustig,

Roussanov, and Verdelhan (2011), Menkhoff et al. (2012a), Dobrynskaya (2014), Jurek (2014), Lettau,
Maggiori, and Weber (2014), and Dahlquist and Hasseltoft (2020).

7Brunnermeier, Nagel, and Pedersen (2009) provide an explanation for carry trade crashes based on
funding-constrained speculators.
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ignores exchange rate predictability when forecasting excess returns. The Basic-Opt portfolio

delivers impressive performance before the global financial crisis. However, it suffers large

losses in late 2008, and its cumulative return is essentially flat thereafter.8

We also construct a Smart Optimal (Smart-Opt) carry trade portfolio, in which the mean-

variance investor augments the bill yield differential with the ensemble forecast of ∆si,t+1

to forecast the currency excess return, thereby attempting to exploit exchange rate pre-

dictability when allocating across currencies.9 The Smart-Opt portfolio provides substantial

economic value to the investor vis-à-vis the Basic-Opt portfolio, generating an annualized

increase in certainty equivalent return of 340 basis points. The superior performance of the

Smart-Opt portfolio is evident both before and after the global financial crisis, although it

is especially apparent starting in late 2008. The Smart-Opt portfolio experiences a smaller

loss than the Basic-Opt portfolio in September of 2008, generates much larger gains in the

last three months of 2008, and performs well subsequently. Consistent with the US dollar’s

safe-haven role during the crisis, the ensemble forecasts predict substantial depreciations for

many foreign currencies in late 2008, which lead to markedly different allocations for the

Smart-Opt vis-à-vis the Basic-Opt portfolio. The Smart-Opt portfolio also generates sub-

stantial alpha both before and after the crisis in the context of the Lustig, Roussanov, and

Verdelhan (2011) currency factor model.

The remainder of the paper is organized as follows. Section 2 describes the data. Section 3

discusses the specification and estimation of the models used to generate the out-of-sample

8Daniel, Hodrick, and Lu (2017) also construct an optimal carry trade portfolio for a mean-variance
investor who uses interest rate differentials to forecast currency excess returns. Our Basic-Opt portfolio
performs similarly to theirs. A conventional carry trade portfolio that sorts currencies based on bill yield
differentials and goes long (short) the fifth (first) quintile performs even worse than the Basic-Opt portfolio.

9The results are similar when the investor uses the Linear-ENet or DNN forecast (as reported in Section 5).
Della Corte, Sarno, and Tsiakas (2009) construct mean-variance optimal portfolios for a US investor who
allocates across US, British, German, and Japanese short-term bonds using a handful of fundamentals to
forecast exchange rates. Jordà and Taylor (2012) use a small number of fundamentals to improve carry
trade strategies (but not in a mean-variance optimal framework). Della Corte, Jeanneret, and Patelli (2020)
consider a mean-variance investor who allocates between US short-term bonds and a Euro-denominated cash
account using a credit-implied risk premium to forecast the exchange rate.
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exchange rate forecasts. Section 4 analyzes forecast accuracy and predictor importance.

Section 5 discusses the construction of the Basic-Opt and Smart-Opt carry trade portfolios

and analyzes their performance. Section 6 concludes.

2. Data

This section describes the data used in our analysis. Section A1 of the Internet Appendix

provides further details on the data sources and construction of the variables.

2.1. Exchange Rates

We begin with daily exchange rate data from Barclays and Reuters via Datastream.

We convert daily spot exchange rates to a monthly frequency using end-of-month values

(e.g., Burnside et al. 2011; Lustig, Roussanov, and Verdelhan 2011). Our sample consists

of the following 14 countries: the United Kingdom, Switzerland, Japan, Canada, Australia,

New Zealand, Sweden, Norway, Denmark, the Euro area, Germany, Italy, France, and the

Netherlands.10 Germany, Italy, France, and the Netherlands are replaced by the Euro area

after the Euro’s introduction in 1999. We refer to the group of ten countries excluding

Germany, Italy, France, and the Netherlands as the G10.

As in Section 1, we use Si,t to denote the month-t spot exchange rate, expressed as the

number of country-i currency units per US dollar (e.g., Lustig, Roussanov, and Verdelhan

2011; Menkhoff et al. 2012a,b). An increase in Si,t thus represents an appreciation of the US

dollar. The country-i log exchange rate change is denoted by ∆si,t, where si,t = log(Si,t).

Table 1 reports summary statistics for the 14 exchange rates. The second column reports

the sample period for each country. With the exceptions of four countries, the sample ends

10Our universe of exchange rates is similar to the sample of developed countries employed in other studies
(e.g., Lustig, Roussanov, and Verdelhan 2011; Menkhoff et al. 2012a), with the exception of Belgium, which
we exclude due to a lack of data availability for the country characteristics in Section 2.2.
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in 2020:09; for France, Germany, Italy, and the Netherlands, the sample ends in 1998:12, the

last month for which these countries had their own currencies. Based on data availability

for the predictors, the sample begins in 1985:01 for all of the countries, with the exception

of the Euro area, where the sample begins in 1999:02, corresponding to the introduction of

the Euro in January of 1999.

Table 1: Summary Statistics

The table reports summary statistics for monthly log exchange rate changes measured against
the US dollar. The country-i log exchange rate change is ∆si,t, where si,t = log(Si,t) and Si,t
is the month-t spot exchange rate for country i (number of country-i currency units per US
dollar). The annualized mean (volatility) in the third (fourth) column is the monthly mean
(standard deviation) multiplied by 12

(√
12
)
.

(1) (2) (3) (4) (5) (6) (7)

Ann. Ann. Excess
Country Sample Period Mean Vol. Skewness Kurtosis Autocorr.

United Kingdom 1985:01–2020:09 −0.30% 9.98% 0.30 2.52 0.06

Switzerland 1985:01–2020:09 −2.90% 11.14% −0.04 0.96 −0.01

Japan 1985:01–2020:09 −2.43% 10.88% −0.35 1.82 0.04

Canada 1985:01–2020:09 0.02% 7.34% 0.48 3.99 −0.04

Australia 1985:01–2020:09 0.39% 11.64% 0.67 2.36 0.04

New Zealand 1985:01–2020:09 −0.92% 12.04% 0.39 1.83 −0.03

Sweden 1985:01–2020:09 −0.01% 10.98% 0.44 1.50 0.10

Norway 1985:01–2020:09 0.08% 11.03% 0.43 1.11 0.02

Denmark 1985:01–2020:09 −1.61% 10.27% 0.19 0.79 0.03

Euro area 1999:02–2020:09 −0.14% 9.55% 0.16 1.13 0.03

Germany 1985:01–1998:12 −4.55% 11.61% 0.32 0.32 0.03

Italy 1985:01–1998:12 −1.13% 11.39% 0.79 2.03 0.09

France 1985:01–1998:12 −3.89% 11.13% 0.42 0.54 0.01

Netherlands 1985:01–1998:12 −4.56% 11.57% 0.28 0.34 0.03

The annualized means in the third column of Table 1 are generally small in magnitude.

In fact, none of the means are significant at conventional levels. The annualized volatilities in
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the fourth column are typically sizable; apart from Canada (7.34%), they range from 9.55%

(Euro area) to 12.04% (New Zealand). With the exceptions of Switzerland and Japan, the

exchange rate changes are positively skewed (fifth column), while all of the exchange rate

changes exhibit excess kurtosis (sixth column). The autocorrelations in the last column

are all relatively small in magnitude. Overall, the summary statistics in Table 1 reflect

well-known empirical features of exchange rates.

2.2. Country Characteristics

We consider ten monthly country characteristics computed using macroeconomic and

financial data from Global Financial Data and the Organization for Economic Cooperation

and Development:

Inflation differential (INFi,t). Difference in consumer price index inflation rates for coun-

try i and the United States.

Unemployment gap differential (UNi,t). Difference in unemployment gaps for country

i and the United States. The unemployment gap is the cyclical component of the

unemployment rate computed using the Christiano and Fitzgerald (2003) band-pass

filter for periodicities between six and 96 months.11

Bill yield differential (BILLi,t). Difference in three-month government bill yields for coun-

try i and the United States.

Note yield differential (NOTEi,t). Difference in five-year government note yields for

country i and the United States.

11We compute the unemployment gap only using data available at the time of forecast formation. The
Hodrick and Prescott (1997) filter is often used to compute output and unemployment gaps. Because we
are interested in out-of-sample forecasting, we use the Christiano and Fitzgerald (2003) band-pass filter, as
it performs better at the right-hand endpoint.
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Bond yield differential (BONDi,t). Difference in ten-year government bond yields for

country i and the United States.

Dividend yield differential (DPi,t). Difference in dividend yields for country i and the

United States.

Price-earnings differential (PEi,t). Difference in price-earnings ratios for country i and

the United States.

Stock market time-series momentum differential (SRET12i,t). Difference in cumula-

tive twelve-month stock market returns for country i and the United States.

Idiosyncratic volatility (IVi,t). Integrated volatility computed using the fitted residuals

for the Lustig, Roussanov, and Verdelhan (2011) two-factor model estimated using

daily data for month t for country-i log currency excess returns.

Idiosyncratic skewness (ISi,t). Integrated skewness computed using the fitted residuals

for the Lustig, Roussanov, and Verdelhan (2011) two-factor model estimated using

daily data for month t for country-i log currency excess returns.

The country characteristics include a variety of macroeconomic and financial measures,

all of which are based on data readily available to FX market participants.12 The inflation

differential relates to PPP, while the inflation and unemployment gap differentials constitute

Taylor (1993) rule fundamentals (e.g., Engel and West 2005; Molodtsova and Papell 2009),

which appear to perform better for exchange rate prediction than fundamentals based on the

traditional monetary model (Frenkel 1976; Mussa 1976). The bill yield differential relates to

the voluminous UIP literature, while longer-term yield differentials are considered by Ang

and Chen (2011) and Chen and Tsang (2013) in the context of yield curves. Hau and Rey

(2006) and Cenedese et al. (2016), among others, employ valuation ratio differentials to

12We account for the publication lag in the consumer price index and unemployment rate, so that INFi,t

and UNi,t correspond to data for month t− 1 that are reported in month t.
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analyze UEP. The other country characteristics represent additional financial measures that

are potentially relevant to market participants.

2.3. Global Variables

We consider six global variables:

Economic policy uncertainty (EPUt). Baker, Bloom, and Davis (2016) economic policy

uncertainty index based on coverage frequencies in ten major US newspapers.

Monetary policy uncertainty (MPUt). Baker, Bloom, and Davis (2016) monetary policy

uncertainty index based on coverage frequencies in ten major US newspapers.

Geopolitical risk (GRt). Caldara and Iacoviello (2018) geopolitical risk index based on

newspaper coverage.

Global FX volatility (GVOLt). Following Menkhoff et al. (2012a), global FX volatility is

the average for the month of the daily cross-sectional averages of the absolute values

of log exchange rate changes.

Global FX illiquidity (GILLt). Following Menkhoff et al. (2012a), global FX illiquidity

is the average for the month of the daily cross-sectional averages of the bid-ask spreads

for the currencies.

Global FX correlation (GCORt). Similarly to Mueller, Stathopoulos, and Vedolin (2017),

we measure global FX correlation as the average of the realized correlations for all cur-

rency pairs computed using daily log currency excess returns for the month.

The global variables capture general economic conditions that potentially affect the predic-

tive ability of the country characteristics.13

13We follow Menkhoff et al. (2012a) and Mueller, Stathopoulos, and Vedolin (2017) by measuring GVOLt,
GILLt, and GCORt as the residuals from fitted first-order autoregressive processes. We only use data avail-
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3. Panel Predictive Regressions

In this section, we specify the linear panel predictive regression and DNN models used

to construct the out-of-sample forecasts.

3.1. Linear Specification

We collect the month-t characteristics for country i and month-t global variables in the

following vectors:

zi,t
(Z×1)

= [ INFi,t UNi,t BILLi,t NOTEi,t BONDi,t DPi,t PEi,t SRET12i,t IVi,t ISi,t ]′, (2)

gt
(G×1)

= [ EPUt MPUt GRt GVOLt GILLt GCORt ]′, (3)

respectively, for i = 1, . . . , N and t = 1, . . . , T , where N (T ) is the number of countries

(time-series observations). The vector of predictors for country i is comprised of the country

characteristics and the characteristics interacted with each global variable:

xi,t
(K×1)

= [ z′i,t h′i,t ]′, (4)

where

hi,t
(ZG×1)

= zi,t ⊗ gt, (5)

⊗ is the Kronecker product, and K = Z(G + 1). Since Z = 10 and G = 6 in Equations (2)

and (3), respectively, we have K = 70 predictors for each country. We standardize each of

able at the time of forecast formation when fitting the autoregressive processes and computing the residuals.
Bakshi and Panayotov (2013) and Filippou and Taylor (2017) use aggregated country characteristics and
global variables to predict conventional carry trade portfolio returns, while we forecast individual exchange
rate changes.
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the country-i predictors using its county-specific mean and variance:

x̃i,t = (xi,t − x̄i·)� σ̂i·, (6)

where

x̄i· =
1

T

T∑
t=1

xi,t, (7)

σ̂i· =

[
1

T − 1

T∑
t=1

(xi,t − x̄i·)2
]0.5

, (8)

� indicates element-wise division, and the power operations in Equation (8) are element-wise.

The panel predictive regression is given by

∆si,t+1 = x̃′i,tb+ εi,t+1 for i = 1, . . . , N ; t = 1, . . . , T, (9)

where b = [ b1 · · · bK ]′ is the K-vector of slope coefficients and εi,t is a zero-mean dis-

turbance term. Observe that Equation (9) does not include an intercept term. Because

the predictors are in deviation form, this means that we effectively impose the economic

restrictions that the country-specific means for ∆si,t for i = 1, . . . , N are zero.14 These

economic restrictions are consistent with the data and reduce the number of parameters we

need to estimate, thereby helping to guard against overfitting. The slope homogeneity re-

strictions inherent in Equation (9) further reduce the parameter space to again guard against

overfitting.

It is convenient to express the panel predictive regression in matrix notation as

∆s = X̃b+ ε, (10)

14In other words, Equation (9) is tantamount to a fixed-effects specification in which the country-specific
means for the log exchange rate changes are all zero.
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where

∆s
(NT×1)

= [ ∆s′1· · · · ∆s′N · ]′, (11)

∆si·
(T×1)

= [ ∆si,2 · · · ∆si,T+1 ]′, (12)

X̃
(NT×K)

= [ X̃ ′1· · · · X̃ ′N · ]′, (13)

X̃i·
(T×K)

= [ x̃i,1 · · · x̃i,T ]′, (14)

ε
(NT×1)

= [ ε′1· · · · ε′N · ]′, (15)

εi·
(T×1)

= [ εi,2 · · · εi,T+1 ]′. (16)

For simplicity, we assume a balanced panel in the notation. When we estimate b in Equa-

tion (10) for our application, we have an unbalanced panel at some points; it is straightfor-

ward to adjust the notation accordingly. Note that we include more predictors than existing

studies of exchange rate predictability, which typically consider a only limited number of

country characteristics. In addition to numerous country characteristics, we include inter-

actions of the country characteristics with a set of global variables. To the best of our

knowledge, such interactions have not been considered in the literature on out-of-sample

exchange rate predictability.

An out-of-sample forecast of ∆si,T+1 based on the panel predictive regression in Equa-

tion (9) and data available through T is given by

∆̂si,T+1|T = x̃′i,T b̂1:T , (17)

15



where b̂1:T is an estimate of b based on data available through T . Because the panel predictive

regression is high dimensional and the unpredictable component in monthly exchange rate

changes is inherently large, conventional OLS estimation of b is susceptible to overfitting.

The ENet (Zou and Hastie 2005), a refinement of the popular LASSO (Tibshirani 1996),

is a machine learning technique based on penalized (or regularized) regression. It mitigates

overfitting by including a penalty term in the objective function for estimating b in Equa-

tion (10):

arg min
b∈RK

1

2NT
‖∆s− X̃b‖22 + λPα(b), (18)

where λ ≥ 0 is a regularization hyperparameter governing the degree of shrinkage,

Pα(b) = 0.5(1− α)‖b‖22 + α‖b‖1, (19)

α is a blending hyperparameter for the `1 and `2 components of the penalty term, and

‖v‖1 =
J∑
j=1

|vj|, (20)

‖v‖2 =

(
J∑
j=1

v2j

)0.5

(21)

are the `1 and `2 norms, respectively, for a generic J-dimensional vector v = [ v1 · · · vJ ]′.

When λ = 0, there is no shrinkage, so that the LASSO and OLS objective functions co-

incide. The ENet penalty term in Equation (18) includes both `1 (LASSO) and `2 (ridge)

components. The `1 component permits shrinkage to zero (for sufficiently large λ), so that

16



the LASSO performs variable selection.15 Following the recommendation of Hastie and Qian

(2016), we set α = 0.5.

Instead of conventional cross validation, we tune the hyperparameter λ via the ERIC

(Hui, Warton, and Foster 2015):

ERIC = NT log

(
SSRλ,α

NT

)
+ dfλ,α log

(
NTσ̂2

λ,α

λ

)
, (22)

where SSRλ,α (dfλ,α) is the sum of squared residuals (effective degrees of freedom) for the

ENet-fitted model based on λ and α, and σ̂2
λ,α = SSRλ,α/(NT ). Equation (22) modifies

the penalty term in the BIC to include λ. Considering a grid of values for λ, we select the

value that minimizes Equation (22). The ERIC is a stringent information criterion that

effectively induces substantive shrinkage, thereby helping to guard against overfitting in our

high-dimensional and noisy data environment.16

3.2. Deep Neural Network

To this point, we permit a degree of nonlinearity in the predictive regressions via the

interaction terms involving the country characteristics multiplied by the global variables;

however, the specification in Equation (9) remains linear in the parameters. In this section,

we allow for more complex predictive relationships by generalizing the linear specification in

15We implement elastic net estimation of the linear model in Equation (9) via the glmnet package in R.
The LASSO is adept at selecting relevant predictors in some settings (e.g., Zhang and Huang 2008; Bickel,
Ritov, and Tsybakov 2009; Meinshausen and Yu 2009). However, it tends to arbitrarily select one predictor
from a group of highly correlated predictors. The ENet alleviates this tendency by including both `1 and `2
components in the penalty term for the objective function.

16Section A2 of the Internet Appendix discusses different validation methods for tuning λ in Equation (18),
including conventional M -fold cross validation. As shown in Table A1 of the Internet Appendix, forecasts
based on the ERIC generally perform better than those based on the different validation methods, as well
as the BIC.

17

https://cran.r-project.org/web/packages/glmnet/
https://www.r-project.org/


Equation (9):

∆si,t+1 = f(x̃i,t) + εi,t+1 for i = 1, . . . , N ; t = 1, . . . , T. (23)

We then model f(x̃i,t) via a DNN, a popular machine learning device.

A feedforward neural network architecture is comprised of multiple layers. The first is

the input layer, which is simply the set of predictors, which we denote by x1, . . . , xK0 . One

or more hidden layers are next. Each hidden layer l contains Kl neurons, each of which takes

predictive signals from the neurons in the previous hidden layer to produce another signal:

h(l)m = g

(
ω
(l)
m,0 +

Kl−1∑
j=1

ω
(l)
m,jh

(l−1)
j

)
for m = 1, . . . , Kl; l = 1, . . . , L, (24)

where h
(l)
m is the mth neuron in the lth hidden layer;17 ω

(l)
m,0, . . . , ω

(l)
m,Kl−1

are weights; and g(·)

is an activation function. The output layer is a linear function that translates the signals

from the last hidden layer into a prediction:

ŷ = ω
(L+1)
0 +

KL∑
j=1

ω
(L+1)
j h

(L)
j , (25)

where ŷ denotes the forecast of the target variable. For the activation function, we use the

leaky rectified linear unit (LReLU) function (Maas, Hannun, and Ng 2013):18

g(x) =

x if x > 0,

0.01x if x ≤ 0.
(26)

17For the first hidden layer, h
(0)
j = xj for j = 1, . . . ,K0.

18The LReLU refines the conventional ReLU (which sets g(x) = 0 if x ≤ 0) to help prevent the DNN from
“dying” during training, meaning that the neurons in the DNN never activate.
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Intuitively, Equation (26) activates a neuronal connection in response to the strength of the

signal, thereby relaying the signal forward through the network.

The following diagram provides a schematic for a relatively simple feedforward neural

network architecture with four predictors and two hidden layers, where the hidden layers

contain three and two neurons, respectively. The diagram shows that the four predictors in

the input layer feed through to provide signals to each of the three neurons in the first hidden

layer; the neurons in the first hidden layer subsequently feed through to provide signals to

each of the two neurons in the second hidden layer. The neurons in the second hidden layer

provide a final set of signals for the output layer.

x1

x2

x3

x4

Input

h
(1)
1

h
(1)
2

h
(1)
3

Hidden(1)

h
(2)
1

h
(2)
2

Hidden(2)

ŷ

Output

Theoretically, a neural network with a single hidden layer and sufficiently large number of

neurons can approximate any smooth function under a reasonable set of assumptions (e.g.,

Cybenko 1989; Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991; Barron

1994). However, neural networks with three or more hidden layers (i.e., DNNs) and a more

limited number of neurons in each layer often perform better than neural networks with one

or two hidden layers (i.e., shallow neural networks) and a larger number of neurons in each

layer (e.g., Goodfellow, Bengio, and Courville 2016; Rolnick and Tegmark 2018). We specify

a DNN containing four hidden layers with 16, eight, four, and two neurons, respectively. Our
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specification of 16 neurons in the first hidden layer is a compromise between two popular

rules of thumb, namely, half or the square root of the number of predictors.

Training a DNN entails estimating the weights. We estimate the weights by minimizing

an objective function based on MSPE for the training sample. To better guard against

overfitting, we augment the objective function with `1 and `2 penalty terms, similarly to

Equation (18). Computationally efficient algorithms based on stochastic gradient descent

(SGD) are available for estimating the DNN weights. We use the recently developed Adam

algorithm (Kingma and Ba 2015).19

Given our noisy data environment, we take additional steps to further guard against

overfitting. First, we set the intercept terms for the weights (ω
(l)
m,0 for m = 1, . . . , Kl; l =

1, . . . , L and ω
(L+1)
0 ) to zero.20 These economic restrictions are analogous to the absence of

an intercept term in the linear panel predictive regression in Equation (9). By setting the

intercept terms for the weights to zero, as in Equation (9), we ensure that the DNN predicts

a value of zero for the exchange rate change when all of the (standardized) predictors are at

their mean value of zero.21 These restrictions substantially reduce the number of weights we

need to estimate, thereby helping to guard against overfitting. Second, we employ dropout

(Hinton et al. 2012; Srivastava et al. 2014), which randomly drops a portion of the neurons

in a hidden layer when training the model via the SGD algorithm. Dropout has been found

to be useful for mitigating overfitting. We use a dropout rate of 0.5 for each of the first three

hidden layers.

19We estimate the DNN using the keras package in R and set the batch size and number of epochs to 32
and 500, respectively. Due to the stochastic nature of the SGD algorithm, the estimated weights depend
on the seed for the random number generator. To reduce the dependency of the DNN forecast on the seed,
we train the model three different times with different seeds and take an average of the forecasts across
the three fitted DNNs. To tune the `1 and `2 regularization hyperparameters for the DNN, we consider a
grid of values for each and use observations for the last 30% of months for the available data at the time of
forecast formation as a validation sample. We select the vector of hyperparameter values that minimizes the
objective function for the validation sample.

20The intercept terms for the weights are typically called “bias” terms in the machine learning literature,
although bias does not have its traditional econometric meaning in this context.

21Note that we continue to pool the data in Equation (23), so that we impose the homogeneity restrictions
that the weights are the same across countries.
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4. Out-of-Sample Performance

In this section, we analyze the accuracy of the out-of-sample exchange rate forecasts. We

also examine the importance of individual predictors in the forecasting models.

4.1. Beating the No-Change Benchmark

Mimicking the situation of a forecaster in real time, we generate exchange rate forecasts

for the 1995:01 to 2020:09 out-of-sample period as follows. Reserving the first ten years

of data for the initial training sample, we estimate the linear panel predictive regression

in Equation (9) and DNN using data from the beginning of the available sample through

1994:12. We then use the fitted models and 1994:12 predictor values for each country to

compute forecasts of exchange rate changes for each available country for 1995:01. Next,

we re-estimate the models using data through 1995:01; we then use the fitted models and

1995:01 predictor values for each country to generate forecasts for each available country for

1995:02. We continue in this fashion through the end of the out-of-sample period, providing

us with a set of exchange rate forecasts for the available countries for each of the 309 months

comprising the out-of-sample period. Each month we compute Linear-OLS and Linear-ENet

forecasts based on OLS and ENet estimation, respectively, of the linear specification in

Equation (9), as well as forecasts based on the DNN. By retraining the forecasting models

each month as new data become available, we update the fitted models in a timely manner.

Note that there is no “look-ahead” bias in the forecasts, as we only use data available at the

time of forecast formation when training the models.22

We also compute an ensemble forecast by taking the average of the Linear-ENet and DNN

forecasts. An ensemble forecast recognizes that we cannot know a priori the best individual

model. Furthermore, it allows us to take advantage of any complementarities between the

22This includes when we standardize the predictors in Equation (6).
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models. To the best of our knowledge, we are the first to employ an ensemble strategy that

combines linear and DNN models for exchange rate prediction.

For Germany, Italy, France, and the Netherlands, there are only 48 monthly forecasts

(1995:01 to 1998:12) available for evaluation, due to the countries joining the Euro area in

1999:01. After imposing a minimum requirement of twelve monthly observations before a

currency is included in the panel predictive regression, there are 248 forecasts (2000:02 to

2020:09) available for the Euro area. For the remaining nine countries, forecasts are available

for the entire 1995:01 to 2020:09 out-of-sample period (309 observations). In addition to

reporting results for each individual country, we report results for the entire collection of

forecasts taken together (4× 48 + 248 + 9× 309 = 3,221 observations).

Figure 1 depicts the Linear-OLS forecasts, while Figures 2 and 3 show the Linear-ENet

and DNN forecasts, respectively. The Linear-OLS forecasts are quite volatile, indicating sub-

stantive overfitting for conventional OLS estimation in our high-dimensional and noisy data

environment. The Linear-ENet forecasts are considerably less volatile, reflecting the strong

shrinkage property of the ENet with ERIC hyperparameter tuning. The DNN forecasts are

also much less volatile than the Linear-OLS forecasts, in line with the steps we take to guard

against overfitting, as described in Section 3.2.

Next, we compare the Linear-OLS, Linear-ENet, DNN, and ensemble forecasts to the

no-change benchmark, which is the most stringent benchmark for exchange rate prediction

(Rossi 2013). We assess the accuracy of the exchange rate forecasts in terms of MSPE. We

can conveniently compare the relative accuracy of a competing forecast to the no-change

benchmark using the Campbell and Thompson (2008) R2
OS statistic:

R2
OS = 1−

∑T2
t=T1+1

(
êCompete
i,t|t−1

)2
∑T2

t=T1+1

(
êBench
i,t|t−1

)2 , (27)
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Figure 1. Linear-OLS forecasts of log exchange rate changes. Each panel depicts
the realized value and Linear-OLS forecast for the monthly log exchange rate change for the
country in the panel heading. Vertical bars delineate business-cycle recessions as dated by
the National Bureau of Economic Research.

where

êCompete
i,t|t−1 = ∆si,t − ∆̂s

Compete

i,t|t−1 , (28)

êBench
i,t|t−1 = ∆si,t − ∆̂s

Bench

i,t|t−1︸ ︷︷ ︸
=0

, (29)

∆̂s
Bench

i,t|t−1 = 0 is the no-change benchmark forecast, ∆̂s
Compete

i,t|t−1 is a competing forecast (Linear-

OLS, Linear-ENet, DNN, or ensemble), T1 is the last observation for the initial in-sample
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Figure 2. Linear-ENet forecasts of log exchange rate changes. Each panel depicts
the realized value and Linear-ENet forecast for the monthly log exchange rate change for
the country in the panel heading. Vertical bars delineate business-cycle recessions as dated
by the National Bureau of Economic Research.

period, and T2 is the last available observation for the out-of-sample period.23 The R2
OS

statistic measures the proportional reduction in MSPE for a competing forecast vis-à-vis

the benchmark. Because the predictable component in monthly exchange rate changes is

intrinsically small, the R2
OS statistic will necessarily be small. Nevertheless, even a seemingly

small degree of monthly exchange rate predictability can be economically meaningful, as we

show in Section 5 below and as is the case for stock return predictability (Campbell and

Thompson 2008). To get a sense of whether the competing forecast provides a statistically

23For our application, T1 and T2 correspond to 1994:12 and 2020:09, respectively.
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significant improvement in MSPE relative to the benchmark, we compute the Clark and West

(2007) adjusted version of the Diebold and Mariano (1995) and West (1996) statistic.24
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Figure 3. Deep neural network forecasts of log exchange rate changes. Each panel
depicts the realized value and DNN forecast for the monthly log exchange rate change for
the country in the panel heading. Vertical bars delineate business-cycle recessions as dated
by the National Bureau of Economic Research.

Table 2 reports R2
OS statistics for the Linear-OLS, Linear-ENet, DNN, and ensemble

forecasts. The R2
OS statistics are all negative in the fourth column of Table 2, so that the

24As shown by Clark and McCracken (2001) and McCracken (2007), the Diebold-Mariano-West statistic
has a non-standard asymptotic distribution when comparing forecasts from nested models (as is the case
for our application). In particular, the Diebold-Mariano-West statistic can be severely undersized when
comparing nested forecasts, meaning that it can have little power to detect a significant improvement in
forecast accuracy.
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Linear-OLS forecasts always fail to outperform the no-change benchmark in terms of MSPE.

The negative R2
OS statistics are often sizable in magnitude for the individual countries, and

the statistic is −9.21% for all of the countries taken together in the last row. The overfitting

in the Linear-OLS forecast suggested by Figure 1 thus translates into poor out-of-sample

performance in terms of forecast accuracy in Table 2.

As shown in the fifth column of Table 2, the Linear-ENet forecasts evince markedly better

out-of-sample performance. The R2
OS statistics are positive for twelve of the 14 countries, and

the reductions in MSPE vis-à-vis the no-change benchmark are significant at conventional

levels for seven of the counties. Eight of the R2
OS statistics for the individual countries are

above 1% and reach as high as 2.88% (Sweden), so that they are sizable in the context of

the literature surveyed by Rossi (2013). For the complete set of countries taken together

in the last row, the R2
OS statistic is 1.48% (significant at the 1% level). According to the

sixth column, the DNN forecasts also perform well. The R2
OS statistics are positive for 13 of

the 14 countries, including all ten of the G10 countries (for which at least 248 out-of-sample

observations are available); the improvements in MSPE are significant for nine of the G10

countries (as well as Italy). The R2
OS statistics for the individual countries are sizable, as

eleven (five) are above 1% (2%). Taking all of the countries together, the R2
OS statistic is

1.85% (significant at the 1% level) in the last row.

By combining the Linear-ENet and DNN forecasts, the ensemble approach in the last

column of Table 2 provides the best overall performance. The R2
OS statistics are positive

for all of the countries, and the improvements in MSPE vis-à-vis the no-change benchmark

are significant at conventional levels for nine of the countries. The R2
OS statistics are also

typically sizable, with ten (six) above 1% (2%) and as large as 3.12% (United Kingdom).

For the entire set of countries taken together, the R2
OS statistic is 1.88% (significant at the

1% level), which is the highest value in the last row of Table 2. Note that the R2
OS statistics

for the ensemble forecasts are often larger or nearly as large as the highest corresponding
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Table 2: R2
OS Statistics (%)

The table reports Campbell and Thompson (2008) R2
OS statistics in percent for forecasts of

monthly log exchange rate changes. The country-i log exchange rate change is ∆si,t, where
si,t = log(Si,t) and Si,t is the month-t spot exchange rate for country i (number of country-i
currency units per US dollar). The R2

OS statistic measures the proportional reduction in
MSPE for the competing forecast in the column heading vis-à-vis the no-change benchmark
forecast; for the positive R2

OS statistics, ∗, ∗∗, and ∗∗∗ indicate that the reduction in MSPE
is significant at the 10%, 5%, and 1% levels, respectively, according to the Clark and West
(2007) test. The Linear-OLS, Linear-ENet, DNN, and ensemble forecasts incorporate the
information in 70 predictors.

(1) (2) (3) (4) (5) (6) (7)

Out-of-Sample Linear- Linear-
Country Period Obs. OLS ENet DNN Ensemble

United Kingdom 1995:01–2020:09 309 −12.08 2.77∗ 2.95∗∗ 3.12∗∗

Switzerland 1995:01–2020:09 309 −13.40 1.03 2.65∗∗ 2.11∗∗

Japan 1995:01–2020:09 309 −11.31 −0.25 1.30∗ 0.75∗

Canada 1995:01–2020:09 309 −19.15 −0.40 0.60 0.42

Australia 1995:01–2020:09 309 −4.30 1.04∗ 1.60∗∗∗ 1.48∗∗

New Zealand 1995:01–2020:09 309 −7.77 1.90∗ 2.16∗∗ 2.16∗∗

Sweden 1995:01–2020:09 309 −3.87 2.88∗∗ 2.57∗∗ 2.86∗∗

Norway 1995:01–2020:09 309 −3.26 2.45∗∗ 1.69∗∗ 2.27∗∗

Denmark 1995:01–2020:09 309 −6.57 2.23∗∗∗ 1.76∗∗∗ 2.18∗∗∗

Euro area 2000:02–2020:09 248 −13.24 1.12∗ 1.48∗∗ 1.75∗∗

Germany 1995:01–1998:12 48 −11.68 0.45 −0.16 0.23

Italy 1995:01–1998:12 48 −13.37 0.24 2.36∗ 1.40

France 1995:01–1998:12 48 −37.73 0.62 1.47 1.18

Netherlands 1995:01–1998:12 48 −20.73 0.88 0.32 0.82

All 1995:01–2020:09 3,221 −9.21 1.48∗∗∗ 1.85∗∗∗ 1.88∗∗∗

statistics in the fifth and sixth columns, pointing to meaningful complementarities in the

linear and nonlinear forecasts.25

25Forecasts generated by estimating models using country-specific data are less accurate than forecasts
based on pooling, so that the parameter homogeneity restrictions improve out-of-sample performance.
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To examine the performance of the Linear-ENet, DNN, and ensemble forecasts over time,

Figure 4 employs the graphical device of Goyal and Welch (2003, 2008). The figure portrays

cumulative differences in squared prediction error for the no-change benchmark vis-à-vis the

Linear-ENet, DNN, and ensemble forecasts (in turn). Each curve conveniently allows for a

comparison of forecast accuracy (in terms of MSPE) for any subsample: we compare the

height of the curve at the beginning and end of the segment corresponding to the subsample;

if the curve is higher (lower) at the end of the segment, then the competing (benchmark)

forecast has a lower MSPE for the subsample. A forecast that always outperforms the

benchmark will thus have a curve with a uniformly positive slope. Of course, given that

exchange rate changes have a large unpredictable component, this ideal is unattainable in

practice. Realistically, we seek a forecast with a curve that is predominantly positively sloped

and does not have extended segments with negative slopes.

According to Figure 4, the curves are positively sloped for much of the time for the

different countries—especially the G10 countries—so that the Linear-ENet, DNN, and en-

semble forecasts outperform the no-change benchmark on a reasonably consistent basis over

time. By blending the Linear-ENet and DNN forecasts, the ensemble approach generally

provides the most consistent out-of-sample gains. The improvements in accuracy provided

by the Linear-ENet, DNN, and ensemble forecasts vis-à-vis the no-change benchmark are

particularly strong during the worst phase of the global financial crisis in late 2008, so that

the information in the predictors becomes especially important during the crisis. Sizable

gains are evident before the crisis in a number of cases, and the gains are quite consistent

for many countries after 2008 through the end of the out-of-sample period. Compared to

the Linear-ENet forecasts, the DNN forecasts substantially improve performance around the

crisis for Switzerland, Japan, and Canada. Overall, Table 2 and Figure 4 indicate that

the information in a rich set of predictors can be used to generate sizable and consistent

improvements in out-of-sample forecasting accuracy, provided we adequately guard against

overfitting in our high-dimensional and noisy data setting.
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Figure 4. Cumulative differences in squared prediction error. Each panel depicts
the cumulative difference in squared prediction error for the log exchange rate change for
the country in the panel heading. The difference is computed for the no-change benchmark
relative to the Linear-ENet, DNN, and ensemble forecasts (in turn). Vertical bars delineate
business-cycle recessions as dated by the National Bureau of Economic Research.

4.2. Which Predictors Matter?

It is of economic interest to know the importance of the individual predictors in the

models underlying the forecasts. To this end, we compute variable importance measures for

the fitted models via the approach of Greenwell, Boehmke, and McCarthy (2018), which

is based on PDPs (Friedman 2001). PDPs themselves are interesting, as they allow us to

investigate the strength of nonlinearities in fitted models.
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A PDP examines the relationship between the expected value of the target variable and

a given predictor for any fitted model, including “black-box” models like DNNs. Let f̂(x)

denote the prediction function for a generic fitted model, where x denotes the vector of

predictors. The PDP for xq is defined as

fq(xq) = ExC(q)

[
f̂
(
xq,xC(q)

)]
=

∫
xC(q)

f̂
(
xq,xC(q)

)
pC(q)

(
xC(q)

)
dxC(q),

(30)

where xC(q) = x \ xq and

pC(q)

(
xC(q)

)
=

∫
xq

p(xq,xC(q)) dxq (31)

is the joint marginal probability density for xC(q). Equation (30) is typically estimated via

Monte Carlo integration using the training data, which in our panel data setting is given by

f̄q(xq) =
1

NT

N∑
i=1

T∑
t=1

f̂
(
xq,xi,t,C(q)

)
. (32)

It is common to plot the PDP for a grid of xq values in the range of training-sample observa-

tions, which we denote by {xq,j}Jj=1. By construction, the PDP is a straight line for a linear

model.

Greenwell, Boehmke, and McCarthy (2018) propose a PDP-based measure of predictor

importance:

I(xq) =


(

1

J − 1

) J∑
j=1

[
f̄q(xq,j)−

1

J

J∑
j=1

f̄q(xq,j)

]2
0.5

. (33)
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Intuitively, Equation (33) uses the sample standard deviation of the PDP to measure its

“flatness.”26 If the expected value of the target does not change as the predictor changes,

then the PDP is flat, so that the variable importance measure is zero. As the variability of

the PDP increases, the importance measure in Equation (33) likewise increases.
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Figure 5. Partial dependence plots. Each panel depicts the partial dependence plot
in Equation (32) for the predictor in the panel heading. Plots are provided for the fitted
models underlying the Linear-ENet, DNN, and ensemble forecasts.

Figure 5 depicts PDPs based on Equation (32) for the fitted Linear-ENet and DNN

models used to generate the final set of forecasts (for 2020:09), so that they are based on

the longest training sample (data through 2020:08). The figure also shows PDPs for the

26We scale the variable importance measures so that they sum to one.
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ensemble forecasts, which are averages of the PDPs for the fitted Linear-ENet and DNN

models.27 Figure 6 depicts corresponding variable importance measures computed using

Equation (33).
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Figure 5 (continued).

For the predictors not selected by the ENet in the linear model, the PDP is a horizontal

line at zero in Figure 5, which corresponds to a zero variable importance measure for these

predictors in the first panel of Figure 6. For the Linear-ENet, eight of the 70 predictors are

selected. According to Figure 6, BILL.GVOL is the most important variable in the Linear-

ENet, followed by IV.GCOR, INF.GVOL, PE.GILL, UN, SRET12.MPU, DP, and PE.EPU.

27We denote predictors that are the interaction between two variables with a period between the two
variables; for example, the interaction between INF and EPU is INF.EPU.
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These predictors are also typically important in the DNN and ensemble in the second and

third panels, respectively, of Figure 6. A number of additional predictors appear relatively

important in the DNN and ensemble, including some of the interaction terms involving UN

(UN.GR, UN.GVOL, and UN.GCOR).
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Figure 5 (continued).

As shown in in Figure 5, for a number of predictors not selected by the Linear-ENet,

the PDPs for the DNN are essentially horizontal lines at zero, which translate into near

zero values for the variable importance measures in Figure 6, so that these predictors are

unimportant in both the Linear-ENet and DNN. For UN, DP, INF.GVOL, BILL.GVOL,

SRET12.MPU, and IV.GCOR, the PDPs for the Linear-ENet and DNN are both essentially

linear, although the slopes for the Linear-ENet are considerably steeper those for the DNN.
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For some other predictors that are relatively important in the DNN, the PDPs are also

close to linear (e.g., UN.GVOL and UN.GCOR). Nonlinearities are more evident for the

DNN for a number of other predictors in Figure 5. In these cases, the nonlinearities often

manifest as stronger predictive relationships for more extreme positive or negative values for

the predictors. Consider, for example, UN.GR. The PDP is essentially flat at zero for a wide

range of values for the predictor, but it becomes more positively sloped for larger negative

values (in magnitude).28

Linear−ENet DNN Ensemble
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Figure 6. Variable importance. Each panel depicts variable importance measures for
the individual predictors in the fitted model underlying the forecast in the panel heading.

28SHAP values (Lundberg and Lee 2017) and corresponding variable importance measures for the Linear-
ENet, DNN, and ensemble are similar to the PDPs and variable importance measures in Figures 5 and 6,
respectively.
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INF and BILL are perhaps the most popular exchange rate predictors in the literature.

Neither variable on its own is selected by the Linear-ENet, and both are of limited importance

in the DNN. However, INF and BILL are quite important when they interact with GVOL,

as INF.GVOL and BILL.GVOL are important predictors in all of the models in Figure 6.

The PDPs for INF.GVOL and BILL.GVOL are positively sloped for both the Linear-ENet

and DNN in Figure 5, so that the expected US dollar appreciation in response to an increase

in INF or BILL becomes larger as GVOL increases. According to PPP, an increase in

INF leads to an increase in expected US dollar appreciation, so that the prediction of PPP

becomes more relevant as GVOL increases. Similarly, UIP predicts that an increase in BILL

corresponds to an increase in expected US dollar appreciation, meaning that the relationship

predicted by UIP holds to a greater degree as GVOL increases (as it does, e.g., during the

global financial crisis). Overall, we find that popular fundamentals matter when they interact

with global variables, especially global volatility.

An emerging literature (e.g., Engel and Wu 2019; Kremens and Martin 2019; Adrian and

Xie 2020; Jiang, Krishnamurthy, and Lustig 2021; Lilley et al. forthcoming) finds evidence

of exchange rate predictability around the global financial crisis using variables related to

the US dollar’s safe-haven status. Based on data availability, these studies use relatively

short samples and/or analyze medium- to long-horizon predictability (horizons of one quar-

ter to multiple years). In contrast, we consider a lengthy out-of-sample period (beginning

well before the global financial crisis and extending to 2020:09) and focus on short-horizon

(monthly) predictability. As discussed in Section A3 of the Internet Appendix, our results

are consistent with exchange rate predictability during the crisis corresponding to the US

dollar’s safe-haven role.
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5. Carry Trade Portfolios

In this section, we analyze the economic value of the Linear-ENet, DNN, and ensemble

forecasts in the context of carry trade portfolios.

5.1. Portfolio Construction

We consider a US investor with mean-variance preferences who allocates monthly across

available foreign currencies. At the end of month T , the investor’s objective function is given

by

max
wT+1|T

w′T+1|T µ̂T+1|T − 0.5γw′T+1|T Σ̂T+1|TwT+1|T , (34)

where

µ̂T+1|T = [ r̂x1,T+1|T · · · r̂xN,T+1|T ]′, (35)

r̂xi,T+1|T = (ri,T − rUS,T )− ∆̂si,T+1|T , (36)

ri,T (rUS,T ) is the government bill yield for country i (the United States), ∆̂si,T+1|T (r̂xi,T+1|T )

is the investor’s exchange rate change (currency excess return) forecast for country i, Σ̂T+1|T

is the investor’s estimate of the covariance matrix for the currency excess returns, wT+1|T =

[ w1,T+1|T · · · wN,T+1|T ]′ is theN -vector of portfolio weights that will be in effect for month

T +1, and γ is the coefficient of relative risk aversion. As is common among practitioners, we

assume that the investor uses an exponentially weighted moving average (EWMA) estimator

for Σ̂T+1|T . We assume that γ = 5; the results are qualitatively similar for reasonable

alternative γ values. In order to keep the portfolio weights in a plausible range, we also

impose the restrictions that −0.5 ≤ wi,T+1|T ≤ 0.5 for i = 1, . . . , N .

36



We consider two cases, which differ with respect to the exchange rate forecast used to

compute r̂xi,T+1|T in Equation (36). In the Smart-Opt case, the investor uses the Linear-

ENet, DNN, or ensemble forecast for ∆̂si,T+1|T in Equation (36), so that they attempt to

exploit exchange rate predictability when allocating across currencies. In the Basic-Opt case,

the investor uses the no-change benchmark forecast (∆̂si,T+1|T = 0) in Equation (36), so that

they ignore exchange rate predictability and simply use the bill yield differential (which is

known at T ) to predict the excess return.

We construct out-of-sample portfolio weights as follows. We first use data through 1994:12

to compute the EWMA estimate of the covariance matrix and Linear-ENet, DNN, or en-

semble exchange rate forecasts for 1995:01. We then solve Equation (34) using the Linear-

ENet, DNN, or ensemble (no-change) exchange rate forecasts to compute the Smart-Opt

(Basic-Opt) portfolio weights for 1995:01. Next, we use data through 1995:01 to gener-

ate the EWMA covariance matrix estimate and Linear-ENet, DNN, or ensemble forecasts

for 1995:02; we then compute the Smart-Opt and Basic-Opt portfolio weights for 1995:02.

We proceed in this fashion through the end of the out-of-sample period, so that we mimic

the situation of an investor in real time.29 By comparing the performance of the Smart-

Opt portfolio—which uses the information in the 70 predictors to forecast exchange rate

changes—to that of the Basic-Opt portfolio—which assumes that exchange rate changes are

not predictable—we can gauge the economic value of exchange rate predictability for an

investor.

In addition to annualized means, volatilities, and Sharpe ratios for the portfolios, we

compute the annualized average utility gain for the investor when they use the Smart-Opt

in lieu of the Basic-Opt portfolio:

Gain = 12
[
rxSmart − 0.5γσ2

Smart −
(
rxBasic − 0.5γσ2

Basic

)]
, (37)

29We obtain similar results when we compute the portfolio excess return using simple (instead of log)
currency excess returns based on the relevant forward and spot rates.
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where rxSmart (rxBasic) and σSmart (σBasic) are the mean and volatility, respectively, for the

monthly Smart-Opt (Basic-Opt) portfolio excess return over the out-of-sample period. Equa-

tion (37) is the annualized increase in certainly equivalent return, which can be interpreted

as the annualized portfolio management fee the investor would be willing to pay to have

access to the Smart-Opt vis-à-vis the Basic-Opt portfolio.

5.2. Portfolio Performance

Table 3 reports annualized means, volatilities, and Sharpe ratios for the Smart-Opt and

Basic-Opt portfolio excess returns, as well as the annualized average utility gain in Equa-

tion (37) when the investor uses the Smart-Opt instead of the Basic-Opt portfolio. In

addition to the full 1995:01 to 2020:09 out-of-sample period, the table reports results for the

1995:01 to 2008:08 and 2008:09 to 2020:09 subsamples. The start of the second subsample

coincides with the bankruptcy of Lehman Brothers on September 15, 2008 at the height of

the global financial crisis.

Panel A of Table 3 reports performance measures for the full out-of-sample period. The

Smart-Opt portfolios based on the Linear-ENet, DNN, and ensemble forecasts all perform

quite well, delivering annualized Sharpe ratios between 0.90 (DNN) and 0.94 (DNN and

ensemble), all of which are significant at the 1% level. The Basic-Opt portfolio, which

ignores exchange rate predictability, also performs well, with an annualized Sharpe ratio

of 0.66 (significant at the 1% level). Nevertheless, as evinced by the average utility gains

in the second column, the Smart-Opt portfolios provide substantive economic value to the

investor vis-à-vis the Basic-Opt portfolio: the investor realizes sizable annualized increases in

certainty equivalent return, ranging from 330 (Linear-ENet) to 340 (ensemble) basis points.30

30For the nine countries for which we have forecasts for the full 1995:01 to 2020:09 out-of-sample period,
we also compute performance measures for Smart-Opt portfolios based on the ensemble forecasts for non-US
domestic investors. As shown in Table A2 of the Internet Appendix, with the exception of Switzerland, the
Smart-Opt portfolio delivers substantial economic value to non-US investors, with annualized average utility
gains typically well above 200 basis points.
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Table 3: Portfolio Performance

The table reports portfolio performance metrics for a mean-variance US investor with a
relative risk aversion coefficient of five who allocates monthly across available foreign cur-
rencies. For the Smart-Opt (Basic-Opt) portfolio, the investor uses the Linear-ENet, DNN,
or ensemble (no-change) exchange rate forecasts when predicting currency excess returns.
The Linear-ENet, DNN and ensemble forecasts incorporate the information in 70 predictors.
The second column reports the annualized increase in certainty equivalent return when the
investor uses the Smart-Opt instead of the Basic-Opt portfolio. Statistical significance for
the Sharpe ratios is based on the Bao (2009) procedure; ∗, ∗∗, and ∗∗∗ indicate significance
at the 10%, 5%, and 1%, levels, respectively.

(1) (2) (3) (4) (5)

Annualized Annualized Annualized Annualized
Portfolio Average Utility Gain Mean Volatility Sharpe Ratio

A: 1995:01 to 2020:09 Out-of-Sample Period

Smart-Opt, Linear-ENet 3.30% 11.52% 12.74% 0.90∗∗∗

Smart-Opt, DNN 3.34% 10.75% 11.39% 0.94∗∗∗

Smart-Opt, Ensemble 3.40% 11.02% 11.76% 0.94∗∗∗

Basic-Opt – 6.73% 10.14% 0.66∗∗∗

B: 1995:01 to 2008:08 Out-of-Sample Period

Smart-Opt, Linear-ENet 0.58% 13.01% 12.28% 1.06∗∗∗

Smart-Opt, DNN 2.10% 13.82% 11.06% 1.25∗∗∗

Smart-Opt, Ensemble 0.93% 12.63% 11.02% 1.15∗∗∗

Basic-Opt – 11.47% 10.61% 1.08∗∗∗

C: 2008:09 to 2020:09 Out-of-Sample Period

Smart-Opt, Linear-ENet 6.27% 9.83% 13.26% 0.74∗∗

Smart-Opt, DNN 4.68% 7.27% 11.71% 0.62∗∗

Smart-Opt, Ensemble 6.09% 9.20% 12.55% 0.73∗∗

Basic-Opt – 1.37% 9.39% 0.15

The results for the Basic-Opt portfolio in Panel A of Table 3 mask stark differences

in the portfolio’s performance over time. For the first subsample in Panel B, the average

return and Sharpe ratio are considerably higher than their values for the full sample, with an

39



annualized average return of 11.47% and Sharpe ratio of 1.08 (significant at the 1% level).

As shown in Panel C, beginning in September of 2008, the average return and Sharpe ratio

decline dramatically, with values of 1.37% and 0.15, respectively (the latter is insignificant

at conventional levels).

In terms of the Sharpe ratio, the Smart-Opt portfolios perform fairly similarly to the

Basic-Opt portfolio for the first subsample in Panel B of Table 3. The annualized Sharpe

ratios for the Smart-Opt portfolios range from 1.06 (Linear-Enet) to 1.25 (DNN), all of which

are significant at the 1% level. The Smart-Opt portfolios still provide additional economic

value to the investor, with annualized average utility gains of 58 (Linear-ENet) to 210 (DNN)

basis points. Differences in performance between the Basic-Opt and Smart-Opt portfolios

become much more marked for the second subsample in Panel C. The Sharpe ratios in

the last column are approximately four to five times higher for the Smart-Opt portfolios

compared to those for the Basic-Opt portfolio, with values ranging from 0.62 (DNN) to 0.74

(Linear-ENet), all of which are significant at the 5% level. The annualized average utility

gains accruing to the Smart-Opt portfolios are especially sizable for the second subsample,

ranging from 468 (DNN) to 627 (Linear-ENet) basis points.31

We also construct a conventional carry trade portfolio that sorts currencies into quintiles

according to interest rate differentials and then takes equally weighted long (short) positions

in the currencies in the fifth (first) quintile. This is tantamount to the carry trade risk factor

in Lustig, Roussanov, and Verdelhan (2011). The conventional carry portfolio generally does

not perform as well as the Basic-Opt portfolio, with annualized Sharpe ratios of 0.33, 0.77,

and −0.08 for the 1995 to 2020:09, 1995:01 to 2008:08, and 2008:09 to 2020:09 out-of-sample

periods, respectively.32

31Providing further evidence of overfitting, when the investor uses the Linear-OLS exchange rate forecast
in Equation (36), the annualized average utility gains are −1.87%, −2.48%, and −1.29% for the 1995:01 to
2020:09, 1995:01 to 2008:08, and 2008:09 to 2020:09 out-of-sample periods, respectively.

32The Sharpe ratio is significant at the 10% (1%) level for the full out-of-sample period (first subsample)
and insignificant at conventional levels for the second subsample.
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Next, we check the extent to which transaction costs affect the results. We compute

portfolio excess returns using bid and ask quotes from Datastream for the relevant forward

and spot rates (e.g., Lustig, Roussanov, and Verdelhan 2011). In this case, the investor is

assumed to pay the bid and ask prices reported in Datastream. A number of studies doc-

ument that the bid-ask spreads offered by Datastream are unrealistically high (e.g., Lyons

2001; Neely, Weller, and Ulrich 2009; Menkhoff et al. 2012b; Neely and Weller 2013). Specif-

ically, investors trade the best quoted price at each point in time, making the full spread

in Datastream considerably higher than the effective spread for FX market participants.33

To more accurately reflect the relevant transaction costs faced by traders, we follow Goyal

and Saretto (2009) and Menkhoff et al. (2012b) and also report results for currency excess

returns computed using 25%, 50%, and 75% of the quoted bid-ask spreads from Datastream.

Table 4 reports portfolio performance measures adjusted for transaction costs for the

1995:01 to 2020:09 out-of-sample period. As expected, the annualized Sharpe ratios decrease

monontonically as we move from Panel A (25% of the bid-ask spread) to Panel D (full bid-

ask spread). Nevertheless, they remain quite sizable for the Smart-Opt portfolios: they are

greater than or equal to 0.80 (0.72) for 25% (50%) of the bid-ask spread in Panel A (B);

for 75% of the bid-ask spread in Panel C, they still are all 0.64.34 The Smart-Opt portfolios

also continue to provide substantive economic value to the investor vis-à-vis the Basic-Opt

portfolio in terms of the annualized average utility gains in the second column. Even for

75% of the bid-ask spread, the gains are all above 300 basis points. In sum, the performance

of the Smart-Opt portfolio—and thus the economic value of out-of-sample exchange rate

predictability—is robust to reasonable assumptions regarding transaction costs.

33The FX market is one of the most liquid markets, with low transaction costs and no natural short-
selling constraints. According to the 2016 Bank for International Settlements Triennial Survey, average
daily turnover in the FX market is five trillion US dollars.

34All of the Sharpe ratios for the Smart-Opt portfolios are significant at the 1% level in Panels A through
C of Table 4.

41

https://www.bis.org/statistics/derstats3y.htm


Table 4: Portfolio Performance with Transaction Costs

The table reports portfolio performance metrics for a mean-variance US investor with a relative risk aversion
coefficient of five who allocates monthly across available foreign currencies for the 1995:01 to 2020:09 out-of-
sample period. Results are reported for different assumptions regarding transaction costs for bid-ask spreads
from Datastream. For the Smart-Opt (Basic-Opt) portfolio, the investor uses the Linear-ENet, DNN, or
ensemble (no-change) exchange rate forecasts when predicting currency excess returns. The Linear-ENet,
DNN, and ensemble exchange rate forecasts incorporate the information in 70 predictors. The second column
reports the annualized increase in certainty equivalent return when the investor uses the Smart-Opt instead
of the Basic-Opt portfolio. Statistical significance for the Sharpe ratios is based on the Bao (2009) procedure;
∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%, levels, respectively.

(1) (2) (3) (4) (5)

Annualized Annualized Annualized Annualized
Portfolio Average Utility Gain Mean Volatility Sharpe Ratio

A: 25% of Bid-Ask Spread

Smart-Opt, Linear-ENet 3.19% 10.40% 12.98% 0.80∗∗∗

Smart-Opt, DNN 3.17% 9.51% 11.56% 0.82∗∗∗

Smart-Opt, Ensemble 3.22% 9.80% 11.98% 0.82∗∗∗

Basic-Opt – 5.59% 10.18% 0.55∗∗∗

B: 50% of Bid-Ask Spread

Smart-Opt, Linear-ENet 3.11% 9.34% 12.98% 0.72∗∗∗

Smart-Opt, DNN 3.11% 8.47% 11.55% 0.73∗∗∗

Smart-Opt, Ensemble 3.14% 8.74% 11.97% 0.73∗∗∗

Basic-Opt – 4.61% 10.17% 0.45∗∗

C: 75% of Bid-Ask Spread

Smart-Opt, Linear-ENet 3.03% 8.28% 12.97% 0.64∗∗∗

Smart-Opt, DNN 3.06% 7.43% 11.53% 0.64∗∗∗

Smart-Opt, Ensemble 3.06% 7.68% 11.96% 0.64∗∗∗

Basic-Opt – 3.63% 10.16% 0.36∗

D: Full Bid-Ask Spread

Smart-Opt, Linear-ENet 2.95% 7.21% 12.96% 0.56∗∗∗

Smart-Opt, DNN 3.00% 6.39% 11.52% 0.55∗∗

Smart-Opt, Ensemble 2.98% 6.61% 11.95% 0.55∗∗∗

Basic-Opt – 2.64% 10.15% 0.26
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To provide additional perspective on relative performance, Figure 7 depicts log cumu-

lative excess returns for the Smart-Opt portfolio based on the ensemble forecasts, as well

as the Basic-Opt and conventional carry trade portfolios.35 The Smart-Opt and Basic-Opt

portfolios perform somewhat similarly through the summer of 2008, although the Smart-Opt

portfolio fares substantially better in the late 1990s and early 2000s in the wake of the Asian

financial and Long-Term Capital Management crises. While both portfolios experience losses

in September of 2008 during the Lehman bankruptcy, their subsequent performances differ

markedly, in line with Panel C of Table 3. The Basic-Opt portfolio suffers more sizable losses

later in 2008 in Figure 7, and its cumulative return essentially “flatlines” thereafter. The

conventional carry portfolio, which is not based on an optimization framework, suffers an

even larger drop in late 2008 compared to the Basic-Opt portfolio and also flatlines subse-

quently. In sharp contrast, the Smart-Opt portfolio makes a strong recovery in late 2008

and continues to produce gains on a consistent basis thereafter.36

The relatively strong performance of the Smart-Opt portfolio in late 2008 in Figure 7

aligns with the large out-of-sample gains accruing to the ensemble forecasts vis-à-vis the

no-change benchmark during that time in Figure 4. The Basic-Opt portfolio simply uses the

bill yield differential to forecast the currency excess return in Equation (36)—in line with the

no-change benchmark forecast—while the Smart-Opt portfolio incorporates the information

in the predictors via the ensemble forecast. The accuracy gains generated by the ensemble

forecasts relative to the no-change benchmark in late 2008 and beyond in Figure 4 translate

into economic gains in the form of improved portfolio performance in Figure 7.

Further evidence on the links between exchange rate predictability and the carry portfo-

lios is furnished by Figure 8, which portrays the currency weights for the Smart-Opt portfolio

35The result are qualitatively similar for the Basic-Opt portfolios based on the Linear-ENet and DNN
forecasts.

36It is interesting to note that the Smart-Opt portfolio also performs considerably better than the Basic-
Opt and conventional carry trade portfolios in Figure 7 near the advent of the COVID-19 crisis in early 2020
through the end of the out-of-sample period.

43



Lehman bankruptcy

0

1

2

2000 2010 2020

Smart−Opt (Ensemble) Basic−Opt Conventional

Figure 7. Log cumulative portfolio excess returns. The figure depicts log cumulative
excess returns for the Basic-Opt portfolio based on the ensemble forecasts, Basic-Opt portfo-
lio, and a conventional carry trade portfolio. Vertical bars delineate business-cycle recessions
as dated by the National Bureau of Economic Research.

based on the ensemble forecasts and the Basic-Opt portfolio. As the figure illustrates, by

incorporating information from the predictors, the ensemble forecasts often lead to substan-

tially different allocations. The differences in allocations produced by the ensemble forecasts

vis-à-vis the no-change benchmark in Equation (34) deliver improved carry trade portfolio

performance in Table 3 and Figure 7.
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Figure 8. Portfolio weights. The figure depicts allocations to foreign currencies for the
Smart-Opt and Basic-Opt portfolios. The Smart-Opt portfolio is based on the ensemble
forecasts. Vertical bars delineate business-cycle recessions as dated by the National Bureau
of Economic Research.

5.3. A Closer Look at Late 2008

Figure 7 indicates that late 2008 is a perilous time for the Basic-Opt portfolio (as well

as the conventional carry portfolio). Figures 9 and 10 provide additional insight into the

sources of the poor performance of the Basic-Opt portfolio in late 2008, as well as how

the Smart-Opt portfolio (based on the ensemble forecasts) improves performance. Figure 9

shows the currency excess return forecasts that serve as inputs in the portfolio optimization

problem in Equation (34), along with the realized excess returns, for September through
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December of 2008. Because the Basic-Opt portfolio uses the no-change benchmark exchange

rate forecast, the benchmark currency excess return forecast in Equation (36) is simply the

bill yield differential; the Smart-Opt portfolio augments the bill yield differential with the

ensemble forecast of the exchange rate change. Figure 10 displays the currency weights for

the portfolios.
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Figure 9. Currency excess returns forecasts. The figure depicts currency excess return
forecasts that serve as inputs for the Smart-Opt and Basic-Opt portfolios for the final four
months of 2008. The Smart-Opt portfolio is based on the ensemble forecasts. The figure
also depicts realized values for the currency excess returns.

For September of 2008, the ensemble and benchmark currency excess return forecasts in

Figure 9 lead to allocations of the same signs (and typically similar magnitudes) in Figure 10

for Switzerland, Canada, Australia, New Zealand, Sweden, Norway, and Denmark. The
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ensemble currency excess return forecasts generate notable differences in allocations for the

other countries: for the United Kingdom and Euro area, the Smart-Opt (Basic-Opt) portfolio

takes short (long) positions; for Japan, the Smart-Opt (Basic-Opt) portfolio takes a long

(short) position. As shown in Figure 9, with the exceptions of Japan and Canada, all of

the realized currency excess returns are negative for September of 2008; the negative returns

are large in magnitude for Australia, New Zealand, Sweden, Norway, Denmark, and the

Euro area. On the basis of the allocations and realized currency excess returns, the excess

return for the Basic-Opt portfolio is −7.57% in September of 2008, while the loss is smaller

(−4.24%) for the Smart-Opt portfolio. The differences in allocations signaled by the ensemble

forecasts—especially for the United Kingdom, Japan, and Euro area—help to limit portfolio

losses in the month of the Lehman bankruptcy.

The currency excess return forecasts diverge more sharply during October of 2008 in Fig-

ure 9: with the exception of Japan, the benchmark currency excess return forecasts are all

positive, while the ensemble forecasts are negative for all ten of the countries. The differences

in currency excess return forecasts give rise to a number of markedly different allocations

during October of 2008 in Figure 10; most notably, the Smart-Opt (Basic-Opt) portfolio

exhibits sizable short (long) positions for the United Kingdom, New Zealand, Norway, Den-

mark, and Euro area. With the exception of Japan, all of the realized currency excess returns

are negative for October of 2008 in Figure 9, and the negative returns are larger in magni-

tude than those for September of 2008.37 The different allocations prompted by the ensemble

forecasts vis-à-vis the no-change benchmark enable the Smart-Opt portfolio to substantively

outperform the Basic-Opt portfolio during October of 2008: the latter suffers a large loss of

−11.60%, while the former enjoys a substantial gain of 17.74%. The situation for November

of 2008 is fairly similar to that for October in terms of the currency excess return forecasts

and allocations in Figures 9 and 10. Because the negative realized currency excess returns

are typically smaller in magnitude, the Basic-Opt realizes an excess return of 1.91% during

37Note the difference in scales for the vertical axes across the top two panels of Figure 9.
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Figure 10. Portfolio weights for late 2008. The figure depicts allocations to foreign
currencies for the Smart-Opt and Basic-Opt portfolios for the final four months of 2008. The
Smart-Opt portfolio is based on the ensemble forecasts.

the month; however, the information in the ensemble forecasts leads to a much larger excess

return of 13.46% for the Smart-Opt portfolio.

The environment appears to normalize to an extent in December of 2008, in the sense

that the discrepancies between the ensemble and benchmark forecasts in Figure 9, as well as

those between the Smart-Opt and Basic-Opt portfolio weights in Figure 10, are more muted.

Nevertheless, important differences remain (e.g., the portfolio weights for Switzerland and

Norway). In addition, with the exception of the United Kingdom, all of the realized currency

excess returns are positive in December of 2008. The Basic-Opt portfolio experiences an
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excess return of 5.64% for the month, while it is more than three times as large (18.48%) for

the Smart-Opt portfolio.38

Figures 9 and 10 help to explain how exchange rate predictability—as captured by the

ensemble forecasts—is especially valuable to an investor during the worst part of the global

financial crisis in late 2008. By anticipating depreciations in many foreign currencies, the

ensemble forecasts lead to sizable negative positions in many currencies, enabling the Smart-

Opt portfolio to avoid the large losses suffered by a basic carry strategy and even realize

large gains. In essence, the Smart-Opt portfolio shorts the traditional carry strategy to a

significant extent during the tumult of the global financial crisis.

5.4. Alphas

Finally, we examine whether the Smart-Opt and Basic-Opt portfolios generate alpha in

the context of the Lustig, Roussanov, and Verdelhan (2011) currency factor model. The

model includes dollar and carry trade risk factors, denoted by MKTFX and HMLFX, respec-

tively. The dollar factor is an equally weighted average of the available currency excess

returns for the month, while the carry trade risk factor is the conventional carry portfolio

defined previously. Table 5 reports factor model estimation results for the Basic-Opt and

Smart-Opt portfolios. We again report results for the full out-of-sample period, as well as

the 1995:01 to 2008:08 and 2008:09 to 2020:09 subsamples.

For the full 1995:01 to 2020:09 out-of-sample period in Panel A of Table 5, the Smart-Opt

portfolios generate large annualized alphas of 9.92%, 9.53%, and 9.61% for the Linear-ENet,

DNN, and ensemble forecasts, respectively, all of which are significant at the 1% level and

substantially larger than that for the Basic-Opt portfolio (4.27%). The Basic-Opt portfolio

evinces considerable exposure to the carry factor (0.77, significant at the 1% level) for the full

38For September through December of 2008, the excess returns for the conventional carry trade portfolio
are −6.33%, −15.00%, −3.06%, and −4.77%, respectively, in line with the sharp drop in the portfolio’s
cumulative excess return in Figure 7.
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Table 5: Alphas

The table reports Lustig, Roussanov, and Verdelhan (2011) factor model estimation results
for the Smart-Opt portfolio based on the Linear-ENet, DNN, and ensemble forecasts, as well
as the Basic-Opt portfolio. For the Smart-Opt (Basic-Opt) portfolio, a mean-variance US
investor with a relative risk aversion coefficient of five allocates monthly across available for-
eign currencies using the Linear-ENet, DNN, or ensemble (no-change) exchange rate forecasts
when predicting currency excess returns. The Linear-ENet, DNN and ensemble exchange
rate forecasts incorporate the information in 70 predictors. For the second through fourth
columns, ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1%, levels, respectively.

(1) (2) (3) (4) (6)

Portfolio Annualized Alpha MKTFX HMLFX Adjusted R2

A: 1995:01 to 2020:09 Out-of-Sample Period

Smart-Opt, Linear-ENet 9.92%∗∗∗ −0.56∗∗∗ 0.47∗∗ 16.97%

Smart-Opt, DNN 9.53%∗∗∗ −0.05 0.38∗∗∗ 9.18%

Smart-Opt, Ensemble 9.61%∗∗∗ −0.29∗∗ 0.42∗∗ 11.58%

Basic-Opt 4.27%∗∗∗ −0.03 0.77∗∗∗ 52.89%

B: 1995:01 to 2008:08 Out-of-Sample Period

Smart-Opt, Linear-ENet 7.63%∗∗∗ −0.47∗∗ 0.87∗∗∗ 46.07%

Smart-Opt, DNN 9.12%∗∗∗ 0.08 0.69∗∗∗ 29.12%

Smart-Opt, Ensemble 7.48%∗∗∗ −0.22 0.79∗∗∗ 41.81%

Basic-Opt 4.85%∗∗∗ 0.18∗∗ 0.95∗∗∗ 63.62%

C: 2008:09 to 2020:09 Out-of-Sample Period

Smart-Opt, Linear-ENet 9.33%∗∗ −0.37∗∗ 0.07 3.29%

Smart-Opt, DNN 7.38%∗∗ 0.02 0.09 −0.54%

Smart-Opt, Ensemble 9.08%∗∗ −0.11 0.06 −0.98%

Basic-Opt 1.71% −0.12 0.64∗∗∗ 45.26%

out-of-sample period. The Smart-Opt portfolios also exhibit sizable exposures to the carry

factor (0.47, 0.38, and 0.42 for the Linear-ENet, DNN, and ensemble forecasts, respectively,

all of which are significant at the 5% or 1% level), but they are about half as large as that

for the Basic-Opt portfolio.
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Panels B and C of Table 5 reveal important differences in performance for the Basic-

Opt portfolio across the two subsamples. For the 1995:01 to 2008:08 subsample in Panel

B, the Basic-Opt portfolio exhibits near unitary exposure to the carry trade factor (0.95,

significant at the 1% level), and it generates a sizable annualized alpha of 4.85% (significant

at the 1% level). Reminiscent of Table 3 and Figure 7, the Basic-Opt portfolio’s performance

deteriorates sharply for the 2008:09 to 2020:09 subsample in Panel C. It continues to display

substantial exposure to the carry factor (0.64, significant at the 1% level), while its annualized

alpha declines to only 1.71% (insignificant at conventional levels). In contrast, the Smart-

Opt portfolios deliver impressive annualized alphas for both subsamples in Panels B and C

of Table 5, all of which are well above 700 basis points and significant at the 5% or 1% level.

An interesting pattern emerges with respect to the exposures of the Smart-Opt portfolios

to the carry factor. The exposures are quite sizable for the first subsample, ranging from

0.69 (DNN) to 0.87 (Linear-ENet), and all are significant at the 1% level. For the second

subsample, the exposures become close to zero, and none are significant at conventional

levels. The information contained in the 70 predictors thus leads the investor to effectively

disconnect fully from a conventional carry strategy in the second subsample.

6. Conclusion

Short-horizon exchange rate prediction has posed an enduring challenge to researchers in

international finance. In this paper, we make considerable progress in resolving the Meese and

Rogoff (1983) no-predictability puzzle by showing that out-of-sample forecasts of monthly US

dollar exchange rates can significantly outperform the no-change benchmark over a lengthy

out-of-sample period for a group of developed countries. Our forecasting approach has two

key elements. First, we consider a rich information set, which includes ten country char-

acteristics and six global variables; after interacting the country characteristics with the

global variables, we have 70 predictors for our panel predictive regressions. It is important
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to consider a large number of potential predictors, rather than only a few fundamentals, as

we cannot know a priori which predictors are the most relevant. Second, we employ ma-

chine learning techniques, including ENet estimation of linear models, which uses penalized

regression to alleviate overfitting in our high-dimensional and noisy data setting, and DNNs,

which allow for complex nonlinear predictive relationships.

For out-of-sample exchange rate prediction, it is important to move beyond off-the-shelf

implementations of machine learning techniques. Monthly exchange rate fluctuations inher-

ently contain a large unpredictable component—which means we are dealing with very noisy

data when training models—so that we need to take additional steps to better guard against

overfitting. With respect to fitting linear panel predictive regressions via the ENet, we use

the ERIC to tune the shrinkage hyperparameter λ. Relative to conventional cross valida-

tion, the ERIC tends to select a larger value of λ and thus induces greater shrinkage, which

better guards against overfitting in our high-dimensional and noisy data environment. We

also set the intercept terms in the linear panel predictive regressions to zero, which imposes

the economic restrictions that the mean exchange rate changes are zero. These restrictions

are consistent with the data and reduce the number of parameters we need to estimate,

further helping to guard against overfitting. For the DNNs, we set the intercept terms for

the weights to zero, which is analogous to setting the intercept terms in the linear panel pre-

dictive regressions to zero. This again helps to alleviate overfitting by reducing the number

of parameters we need to estimate, which is particularly useful given the large number of

weights in DNNs. To further guard against overfitting when training the DNNs, we include

`1 and `2 penalty terms in the objective function and employ dropout. We also consider an

ensemble forecast that takes the average of the Linear-ENet and DNN forecasts. We find

that the ensemble forecast exhibits the best overall performance. Furthermore, we interpret

the fitted models underlying the forecasts by assessing the importance of individual pre-

dictors via the recently developed approach of Greenwell, Boehmke, and McCarthy (2018).

We find that inflation and bill yield differentials—two of the most popular fundamentals in
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the literature—are among the most relevant predictors, once they interact with global FX

volatility.

In addition to improving out-of-sample prediction in terms of MSPE, we show that ex-

change rate forecasts based on machine learning provide substantive economic value to a

US investor. Specifically, the performance of an optimal portfolio for a mean-variance in-

vestor who allocates across foreign currencies improves markedly when the investor utilizes

machine learning forecasts of exchange rate changes for predicting currency excess returns.

The machine learning forecasts are especially valuable to the investor during and after the

global financial crisis. During the worst phase of the crisis in late 2008, the machine learning

forecasts generate substantial improvements in portfolio performance by anticipating sharp

devaluations in many foreign currencies, consistent with heightened uncertainty and the US

dollar’s safe-haven role.

Our fresh evidence of out-of-sample exchange range predictability raises fundamental

issues in international finance. What are the theoretical underpinnings of exchange rate

predictability? To what extent does predictability reflect rational time-varying risk premia

and/or mispricing in the FX market? Do arbitrage frictions play a significant role, even

though transactions costs are relatively small in major currency markets? In light of our

new evidence, we view these questions as important topics for future research.
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