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Canonical models in international finance posit that stochastic discount factors (SDFs) are driven

by global and country-specific shocks.1 The consensus view is that two global factors, dollar and carry,

account for a significant fraction of the systematic variation of exchange rates, see, e.g., Verdelhan

(2018). A common feature of this literature is that global risks are introduced exogenously into the

specification of international SDFs as risks that jointly influence all SDFs across countries. This paper

takes an agnostic approach and develops a new model-free framework to study the nature and source

of global exchange rate factors, in which global risk factors arise endogenously in international asset

markets where investors face various trading frictions.

We theoretically establish a model-free two-factor representation for the cross-section of

international SDFs in global asset markets with frictions. Unlike earlier literature which typically

identifies global factors from the cross-section of currencies alone, we estimate the two factors from a

large cross-section of international asset returns and document that they explain the majority of the

variation of international stock, bond, and currency returns, not just in- but also out-of-sample.2

One common assumption underlying the literature studying global factor structures of exchange

rates is that markets are complete and agents can trade without frictions in global international

markets. Under this assumption, the rate of appreciation of the exchange rate (X) is uniquely

recovered from the ratio of the foreign (Mf ) and the domestic SDF (Md): X = Mf/Md. This identity

is called the asset market view of exchange rates (AMV) and implies that exchange rate shocks always

reflect corresponding foreign or domestic SDF shocks. Validity of the AMV is convenient for studying

global factor structures of exchange rates because of at least two reasons. First, it is well-known that in

order to address the volatility puzzle in exchange rates, international SDFs need to be almost perfectly

correlated when the AMV holds, which gives rise to a strong and parsimonious factor structure.3

Second, if the AMV holds, a factor which explains a significant part of the SDF variation in one

currency is by construction a global factor that explains a significant part of the SDF variation in all

other currencies. Importantly, by triangular arbitrage, such SDF factors will also explain bilateral

exchange rate movements with respect to any currency numéraire.

There are, however, various important aspects to consider when relying on the AMV for

understanding global factor structures of exchange rates. First, as we deviate from the complete

market assumption and allow markets to be incomplete, most domestic and foreign SDFs do not

satisfy the AMV, see, e.g., Backus, Foresi, and Telmer (2001). Second, SDF properties, and hence,

factor structures depend crucially on the underlying assumptions about the menu of assets available

for trading. For example, as we increase the degree of segmentation across countries, SDFs may

become less correlated, and hence the factor structure weaker. In such cases, the importance of

1For example, while exposure to country-specific risk factors can explain the negative coefficient in uncovered interest
rate parity regressions, it cannot explain the cross-section of carry trade returns. Lustig, Roussanov, and Verdelhan (2011)
find that the carry factor, a high minus low interest rate sorted currency portfolio, is a direct measure of a global common risk
factor. This factor can explain two thirds of the cross-sectional variation of exchange rates. Lustig, Roussanov, and Verdelhan
(2014) extend this work and find that US specific exposure to global risk, a dollar factor, is the main driver of currency return
predictability.

2The need to study international asset returns jointly to understand the sources of global factors is highlighted in Koijen
and Yogo (2020) who document significant substitution effects across international stocks, bonds, and currencies.

3Recall from the AMV that (log) exchange rate changes are equal to the difference in (log) foreign and domestic SDFs.
Taking variances on both sides and assuming exchange rate volatilities around 15% per year implies an almost perfect
correlation for international SDFs; see, e.g., Brandt, Cochrane, and Santa-Clara (2006).
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global factors may decrease, whereas local factors may matter more. These issues, however, make

the ensuing global factor structures dependent on ex ante ad hoc assumptions about the degree of

financial market integration, which in most cases may be economically hard to justify. Therefore, in

this paper we study global factor structures of exchange rates using a new model-free methodology,

which allows SDFs to price large cross-sections of international assets, such as stocks, bonds, and

currencies, in presence of real-world frictions and independently of the currency denomination.

Our paper contributes to the literature along at least three main directions. First, by incorporating

market frictions we are able to endogenize the optimal set of assets selected by global investors for

trading, because barriers to trade can induce optimal portfolio weights on some assets to shrink to

zero. This feature produces endogenous international market segmentation effects in our framework,

without imposing ex ante assumptions about international market segmentation.

Second, we theoretically characterize the conditions under which model-free SDFs satisfy the

AMV and are numéraire invariant, even in markets with frictions. In particular, numéraire invariance

makes these SDFs uniquely suited to identify global exchange rate factors. We propose a two-factor

representation of these SDFs with one global and one local currency basket factor. Moreover since

our model-free SDFs satisfy the AMV, exchange rates are spanned by these two factors.

Third, we empirically extract from the cross-section of model-free international SDFs the global

SDF factor and the currency basket factors, showing that they are strongly related to carry and dollar.

This evidence provides model-free support to the model-based evidence in Lustig, Roussanov, and

Verdelhan (2011, 2014) and Verdelhan (2018). Notably, our SDFs are estimated using information

including international stock and bond returns, not only currencies. Therefore, the two-factor

structure proposed in the above papers may have wider appeal beyond just explaining exchange

rates. Indeed, when we price the cross-section of international asset returns using our factors we

find that they substantially improve upon benchmark factor models of exchange rates, especially

out-of-sample, with cross-sectional adjusted R2s up to 75%. Moreover, we avoid the problems of

standard approaches for estimating model-free SDFs from large cross-sections of asset returns, as it is

well-known that they can lead to spurious estimates. For example, Kozak, Nagel, and Santosh (2020)

address this concern using a model-free SDF that shrinks the coefficients of low variance principal

components of characteristics-based factors via machine learning techniques. In contrast, we directly

incorporate various forms of economically motivated international financial market frictions, which

endogenously give rise to more robust model-free SDFs.

Our framework is general, as it can incorporate various forms of frictions, such as proportional

transaction costs, margin or collateral constraints, and short-sell constraints, while at the same time

ensuring that model-free SDFs are consistent with the absence of arbitrage in asset markets with

frictions. It is well-known that in frictionless and arbitrage-free markets, asset prices can be fully

characterized by an SDF that only depends on asset returns, which at the same time prices all assets

exactly; see, e.g., Ross (1978) and Hansen and Richard (1987), among many others. However, in

markets with frictions linear SDF pricing implies in general non-zero pricing errors on some assets,

which directly reflect the underlying structure of market frictions. Earlier literature has often treated

pricing errors as evidence of SDF misspecification, by expressing them in terms of the least squares
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distance between an SDF and the family of SDFs that price correctly all assets. We instead explicitly

work under the assumption of arbitrage-free markets with frictions and the resulting pricing error

structures. In this setting, we characterize model-free SDFs in terms of the optimal portfolios of global

investors constrained by market frictions, which allows us to recover global model-free SDFs from

asset return data alone.

When relaxing the assumptions of complete and frictionless markets, violations of the AMV

arise for the vast majority of international SDFs, which in turn implies a two-factor structure in

international model-free SDFs that is not exact. While this is expected, we theoretically show that

there exists a model-free SDF family – the family of minimum-entropy SDFs – which satisfies the AMV

even in international asset markets with frictions, as long as frictions are internationally symmetric.

Such symmetry requires that the portfolio weight dependent component of frictions is identical

across currency denominations.4 We establish two powerful properties of minimum-entropy SDFs

in markets with symmetric frictions. First, we show that these SDFs are by construction numéraire-

invariant, meaning that an optimal SDF pricing assets well in one currency also prices assets well in

any other currency. Second, optimal portfolios of global investors are independent of the currency

denomination, leading to an exact two-factor structure of international SDFs. Therefore, the family

of minimum-entropy SDFs establishes a benchmark for understanding the nature of global exchange

rate risks and the implications of market friction asymmetries for the properties of these risks.

Using a large cross-section of bonds and equities in developed countries, we explore the global

factor structure of exchange rates by estimating minimum-entropy SDFs under varying transaction

cost features. When we assume that investors can trade internationally the full menu of assets in

frictionless markets, we obtain volatile SDFs satisfying a virtually exact single-factor dynamics with

nearly perfectly correlated SDFs. Here, the numéraire invariant optimal portfolio of global investors

implies positions in single assets that may be hard to maintain in practice, without taking massively

levered long and short positions. When we instead work in settings with symmetric international

market frictions, we already obtain a number of zero optimal portfolio positions on some assets, i.e.,

endogenous segmentation features. Akin to the frictionless case, cross-country correlations between

model-free SDFs are still nearly perfect, reflecting again a very strong factor structure. Moving from

symmetric to asymmetric market settings, we find that SDF volatilities further drop by 20% and that

the ensuing optimal portfolios of global investors become even more sparse. While lower than under

the symmetric market setting, minimum entropy SDF correlations are still very high and common

factor structures very strong.

The optimal portfolios of global investors in markets with frictions further uncover interesting

insights into the global factor composition of international SDFs. We find that global investors always

trade a carry, i.e., they are long high interest rate currencies and short low interest rate currencies, and

are long US equity, while virtually ignoring long-term bonds. While these findings connect to a larger

literature documenting priced systematic dollar and carry risks, our model-free approach extracts

4For instance, when we assume a symmetric market, we can either impose no frictions at all or we can impose the
exact same friction across all countries. Asymmetric markets, on the other hand, imply differences in the portfolio weight
dependent component of frictions of some countries, such as, e.g., lower trade barriers for investing in local assets than in
foreign assets.
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SDFs directly from a broader cross-section of international asset returns and allows us to interpret

global factor compositions economically via the optimal portfolios of global investors.

From the cross-section of estimated international model-free SDFs, we identify the global factor

as the average log SDF across currency denominations and the local currency basket factor as the

average appreciation of a currency relative to the basket of remaining currencies. Using our large

cross-section of bonds and equities, we then study the pricing properties of our two factors, both in-

and out-of-sample. As is well-known, in a frictionless market pricing errors of in-sample model-free

SDFs are zero by construction. Hence, to control for such overfitting effects, out-of-sample analysis

is more meaningful to compare the pricing abilities of SDFs across different market structures. Based

on rolling training periods of ten years for SDF estimation and one year rolling windows for pricing

evaluation, we find that our global factor alone explains up to 98% of the in-sample cross-sectional

variation and more than 70% of the out-of-sample variation in the cross-section of currencies, stock,

and bond returns across all denominations, in a way that is quite robust across different specifications

of market frictions. We also find that market frictions are instrumental to improve the out-of-sample

pricing performance.

Finally, motivated by a large literature in international finance emphasizing the importance

of international capital flows for exchange rate determination, we explore the link between the

factors in our model-free two-factor representation, gross capital flows and financial intermediaries’

constraints.5 To explore this relationship more formally, we run regressions of our global SDF factor

and local currency baskets, on proxies of capital flows and measures of financial intermediaries’

constraints, such as implied volatility (see, e.g., Rey (2015)). Our results indicate that while the global

SDF factor is strongly linked to proxies of intermediary constraints, such as implied volatilities and the

intermediary capital proxy of He, Kelly, and Manela (2017), the local currency basket factors have no

relation with these variables. For capital flows, we find instead the opposite result: While changes in

capital flows induce a significant drop in the local currency basket factor, the global SDF is unaffected

by them.

Our results highlight a strong common factor structure of international asset returns in which

the majority of the variation is driven by one global factor. It is natural to assume that as we

increase the size of frictions, common factors matter less and local factors play a more dominant role.

Frictions typically tighten during crisis periods when capital flows follow a distinct pattern: domestic

capital inflows increase during periods of domestic or global crises (retrenchment) and investors

withdraw capital from foreign markets during periods of foreign crises (fickleness), see, e.g., Forbes

and Warnock (2012), leading to an increase in the home bias in bonds and equities. Moreover, as

noted by Broner, Didier, Erce, and Schmukler (2013), these patterns are difficult to explain in models

without frictions. In our main analysis, we impose average transaction costs observable in stock and

bond markets. It is, however, reasonable to assume that these costs only represent a lower bound to

the true cost associated with international trade. For example, Coeurdacier and Rey (2013) argue that

5For instance, Camanho, Hau, and Rey (2019) study a dynamic portfolio balancing model where exchange rates are
determined by the net currency demand from portfolio balancing motives of global intermediaries. Since our framework
establishes a unique mapping between the optimal portfolios of global investors in markets with frictions and model-free
SDFs, it appears natural to study the links between our estimated SDF factors and international equity and bond flows.
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there could also be hedging costs and informational frictions which are very difficult to observe.

Literature Review: Our paper contributes to a growing literature in international finance studying

global factors. The seminal work of Lustig, Roussanov, and Verdelhan (2011, 2014) and Verdelhan

(2018) documents that two factors, carry and dollar, explain a significant share of the systematic

variation in exchange rates. Panayotov (2020) studies global risk in an extended version of Lustig,

Roussanov, and Verdelhan (2014), in which the US SDF has a larger exposure to global risk than

all other international SDFs. Maurer, Tô, and Tran (2019) extract two principal exchange rate

components from the cross-section of all cross-currency returns related to dollar and carry, in order

to construct country specific SDFs. These SDFs are shown to price international equity returns well

in-sample. Aloosh and Bekaert (2019) reduce the cross-section of currencies by means of currency

baskets that measure the average appreciation of each currency against all other currencies. They

then apply clustering techniques to the cross-section of currency baskets and identify two clusters,

one related to the dollar and another related to the Euro. Lustig and Richmond (2020) model gravity

in the cross-section of exchange rates and find factor structures related to physical, cultural, and

institutional distances between countries. Jiang and Richmond (2019) link trade networks between

countries to exchange rates comovement in order to explain the existence of the global dollar and

carry factors.

Our paper is different from this literature along several dimensions. First, it relies on common

SDF factors that are extracted from a family of model-free, numéraire invariant SDFs, which satisfy

the AMV in arbitrage-free international asset markets with frictions. Second, our methodology allows

us to extract global factors jointly from a cross-section of returns including international equities and

bonds, in addition to exchange rate returns. Third, our factors are directly related to the optimal

portfolios of global investors in international asset markets with frictions, which provide additional

unique insights into the factor composition in terms of the portfolio exposure of these investors

to various international assets. Fourth, the generality of our methodology allows us to incorporate

market frictions leading to endogenous market segmentation and to study the implication for global

factor structures thereof. In this context, we find that our two factors which are extracted from the

cross-section of SDFs are related to carry and dollar, in line with the findings of Lustig, Roussanov,

and Verdelhan (2011, 2014). Finally, we show that our common factors jointly price cross-sections of

returns including international equities and bonds, in addition to exchange rate returns, not just in-

but also out-of-sample.

Our paper is also related to a more recent literature that studies priced risk factors across different

asset classes. For example, Lettau, Maggiori, and Weber (2014) show that the difference between

the unconditional and downside risk market betas can price the cross-section of expected returns

across various asset classes and He, Kelly, and Manela (2017) document that shocks to intermediaries’

equity capital ratio is a priced risk factor. Our paper is different from theirs as we provide a theoretical

framework of how to extract model-free SDFs from large cross-sections of assets in the presence of

frictions and study their pricing ability not just in- but also out-of-sample.

Our work naturally extends an important literature estimating model-free SDFs that minimize

various notions of stochastic dispersion. These SDFs are motivated by a need for powerful diagnostics
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when testing asset pricing models. For instance, Hansen and Jagannathan (1991), Stutzer (1995), and

Almeida and Garcia (2017), among others, propose various such asset pricing bounds, while forcing

exact pricing of all assets. In a different context, Ghosh, Julliard, and Taylor (2019) estimate minimum

Kullback-Leibler divergence SDFs which price exactly all assets in-sample. Using these SDFs, they

introduce a nonparametric empirical asset pricing model that performs better than standard factor

models in pricing low dimensional cross-sections of assets out-of-sample. Our approach significantly

differs from this literature, by allowing for non-zero pricing errors on a subset of assets, where pricing

errors are motivated by the presence of market frictions. In particular, we obtain a mapping between

our model-free SDFs and optimal portfolios in markets with frictions. Moreover, the portfolio

penalizations induced by our approach allow us to accommodate large cross-sections of assets,

using model-free SDFs with a reasonable dispersion that are economically founded in arbitrage-free

markets with frictions. In our empirical analysis, we demonstrate that such penalizations are essential

to obtain an improved pricing accuracy out-of-sample.

Finally, our paper is naturally linked to a smaller but important literature studying model-free

SDFs in markets with frictions. He and Modest (1995) and Luttmer (1996) extend the Hansen

and Jagannathan (1991) minimum variance SDF setting by incorporating various specifications

of sublinear transaction costs that give rise to generalized diagnostics for asset pricing models.

Hansen, Heaton, and Luttmer (1995) provide the econometric tools for the evaluation of asset

pricing models in such settings. An important theoretical finding in this literature is that the pricing

functional sublinearity gives rise to SDFs with non-zero pricing errors, which are tightly constrained

by the given transaction cost structure. Korsaye, Quaini, and Trojani (2018) extend this theory to

address minimum dispersion SDFs resulting from general convex pricing errors structures, which are

uniquely characterized in terms of optimal portfolios of investors in markets with convex transaction

costs. We make use of this theory in order to identify financial market structures that deliver

numéraire invariant model-free SDF families which satisfy the AMV. This result is key to identify

parsimonious global exchange rate factors structures. Second, we exploit the theoretical relation

between numéraire invariant model-free SDFs and the optimal portfolios of investors in markets

with frictions, in order to study economic factor compositions in terms of the SDF exposures to

international asset returns.

Outline of the paper: The rest of the paper is organized as follows. Section 1 provides the theoretical

framework for studying model-free SDFs in international financial markets with frictions. Section 2

presents our main empirical findings as well as some robustness checks and Section 3 concludes.

The Appendix provides proofs and derivations, while the Internet Appendix provides additional

extensions and results omitted from the paper for brevity.

1 Global Stochastic Discount Factors and Market Frictions

In this section, we develop a model-free framework that allows us to study international SDFs in the

presence of various forms of frictions, such as bid-ask spreads, short-selling, margin, or collateral

constraints. We start by obtaining a one-to-one correspondence between minimum-entropy SDFs
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and the optimal portfolio returns of a corresponding portfolio choice problem with penalized

portfolio weights. This mapping between SDFs and optimal portfolio returns allows us to uncover the

optimal portfolios of global investors when there are barriers to trade. We then characterize various

frictions that give rise to families of numéraire invariant model-free SDFs satisfying the AMV. We show

that these SDF families are naturally suited to study global factor structures and detail their tight links

to the cross-section of international asset returns.

1.1 Model-Free SDFs in the Presence of Frictions

We start our analysis by developing a counterpart to the fundamental theorem of asset pricing in the

presence of transaction costs, a result that enables us to characterize the set of stochastic discount

factors in markets with frictions. For the time being, we focus on a single-country setting and drop

all references to particular countries and currencies. We extend our framework to a multi-country

setting in Subsection 1.3, where we study international SDFs.

Consider an economy consisting of n assets indexed by setN = {1, 2, . . . , n}, with payoffs denoted

by z = (z1, . . . , zn) and corresponding prices p = (p1, . . . , pn). While a subset of assets, denoted by

S ⊆ N , can be traded with no transaction costs, we assume that assets in set F = N \ S are subject to

trading frictions. We refer to these assets as frictionless and frictional assets, respectively. Throughout,

we use n and f = n − s to denote the number of frictionless and frictional assets in the economy,

respectively.

We model transaction costs using a closed and sublinear transaction cost function h, which

quantifies the costs associated with any portfolio based on the same common numéraire for payoffs

and prices. More specifically, we assume that implementing a portfolio with vector of portfolio

weights θ = [θ′S θ′F ]′ ∈ Rn entails a cost equal to h(θF ), where θF ∈ Rf denotes the sub-

vector of portfolio weights of frictional assets. The assumption that transaction cost function h is

sublinear has two important implications. First, it implies that the cost of a portfolio implemented

in a single execution is no greater than the cost of implementing the same portfolio in multiple

executions. Second, it implies that the cost of implementing portfolio θ1, which is a multiple of

another portfolio θ2 with a certain factor, is equal to the cost of implementing portfolio θ2 multiplied

by the same factor.6 As we show in subsequent sections, this specification of transaction costs is

general enough to nest the various market frictions relevant for our empirical analysis, including

short-selling constraints, bid-ask spreads, and a general class of proportional transaction costs (such

as leverage constraints).

Given the set of assetsN = S ∪F and transaction cost function h, we define the set of all portfolio

payoffs that can be traded with finite transaction costs as

Ξ = {x = θ′z : h(θF ) <∞, θ ∈ Rn}.

We also define a pricing functional π : Ξ→ R as the minimum cost of replicating a given payoff when

6Formally, sublinearity of h ensures that h(θ1F +θ2F ) ≤ h(θ1F )+h(θ2F ) for all pairs of portfolios θ1F ,θ
2
F ∈ Rf and h(λθF ) =

λh(θF ) for all λ ≥ 0 and portfolios θF ∈ Rf .
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accounting for transaction costs:

π(x) = inf
θ∈Rn

{
θ′p + h(θF ) : x = θ′z

}
.

Finally, as is standard in the literature, we say the pair (Ξ, π) is an arbitrage-free price system if x ≥ 0

with P(x > 0) > 0 implies π(x) > 0.

Our first result, which serves as the foundation of our subsequent analysis, establishes that

absence of arbitrage in a frictional market is equivalent to the existence of SDFs inducing a

corresponding set of closed-form constraints on non-zero pricing errors for frictional assets.

Proposition 1. Price system (Ξ, π) is arbitrage free if and only if there exists a strictly positive stochastic

discount factor M such that

E[MRS ]− 1 = 0 and E[MRF ]− 1 ∈ C, (1)

where

C = {y ∈ Rf : y′θF ≤ h(θF ) for all θF ∈ Rf} (2)

and RF and RS are the vectors of gross returns of frictional and frictionless assets, respectively.

Proposition 1 is akin to the well-known fundamental theorem of asset pricing. It establishes the

existence of strictly positive SDFs in markets with frictions by a standard no-arbitrage condition.

Furthermore, it provides a characterization of the set of all admissible SDFs: according to equation

(1), any such SDF prices all frictionless assets exactly but may result in non-zero pricing errors for

assets subject to trading frictions, where the set of possible pricing errors, C, is uniquely characterized

in definition (2) in terms of transaction cost function h. Intuitively, constraining the pricing error in

set C ensures that the gain induced by mispricing via the SDFs for investing in any portfolio cannot

exceed the transaction cost of implementing such a portfolio.

It is immediate to see that Proposition 1 nests the textbook case of arbitrage-free markets with

no frictions as a special case: when all assets are frictionless, then E[MRk] = 1 for all k ∈ N .

Proposition 1 also extends other results in the prior literature, such as Hansen, Heaton, and Luttmer

(1995) and Luttmer (1996), which study markets with pricing errors constrained by a convex cone.

For example, while Luttmer (1996) focuses on an economy in which h(θF ) ∈ {0,∞}, our more flexible

formulation using a general sublinear transaction cost function allows us to incorporate a wider class

of trading frictions, such as proportional transaction costs, which play a central role in our empirical

application. We next provide a series of examples to illustrate how our setup can incorporate a variety

of market frictions.

Example 1 (Short-sell constraints). As a first example, we show that our framework can incorporate

short-sell constraints in a straightforward manner. Consider the following transaction cost function,

h(θF ) =

{
0 θF ≥ 0

∞ otherwise,
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according to which taking short positions in any of the frictional assets is infinitely costly, while taking

long positions is costless. Under such a specification of transaction costs, Proposition 1 implies that,

under no arbitrage, there exists a strictly positive stochastic discount factor M which induces non-

positive pricing errors for assets subject to short-sell constraints, while pricing all frictionless assets

exactly, i.e.,

E[MRF ]− 1 ≤ 0 and E[MRS ]− 1 = 0.

Example 2 (Bid-ask spreads). A natural way to incorporate bid-ask spreads into our framework is to

consider long positions θ+
F , when one buys an asset at ask price at time 0 and sells it at bid price at

time 1, and short positions θ−F , when one buys an asset at bid price at time 0 and sells at ask price

at time 1. This corresponds to a setting with (i) no short-selling constraints on long position θ+
F and

(ii) no buying constraints on short positions θ−F . Denoting by θF = [θ+
F
′
,θ−F

′
]′ the extended portfolio

vector of long and short position on each asset, we can easily incorporate these market frictions with

following transaction cost function:

h(θF ) =

{
0 θ+

F ≥ 0 , θ−F ≤ 0

∞ otherwise.

Under this specification of transaction costs, Proposition 1 implies that the pricing errors on the long

positions have to be negative, while the pricing errors on short positions have to be positive, with no

pricing errors for assets that are not subject to such constraints. That is,

E[MR+
F ]− 1 ≤ 0 E[MR−F ]− 1 ≥ 0 E[MRS ]− 1 = 0,

where R+
F and R−F are the gross return vectors for long and short positions, respectively.

Example 3 (Proportional transaction costs). As our final example, we consider transaction costs that

are proportional to portfolio positions, such as leverage constraints. We can model a general class of

such frictions by assuming that h(θF ) = λ‖θF ‖ for some norm ‖·‖ and a constant λ ≥ 0. A simple

application of Proposition 1 then implies that, under no arbitrage, there exists a strictly positive SDF

M such that:

‖E[MRF ]− 1‖∗ ≤ λ and E[MRS ]− 1 = 0, (3)

where ‖·‖∗ denotes the dual norm of ‖·‖.7 As a useful special case, consider transaction costs specified

by the l1-norm, that is, h(θF ) = λ
∑

k∈F |θk|. Under such a specification, equation (3) implies that

|E[MRk] − 1| ≤ λ for any asset k ∈ F subject to transaction costs. In other words, proportional

transaction costs impose a maximum bound of λ on frictional assets’ pricing errors. As expected,

this bound also implies that a decrease in transaction cost parameter λ results in a smaller set of

admissible SDFs and smaller pricing errors.8

7The dual of norm ‖·‖ is defined as ‖y‖∗ = sup{θ′y : ‖θ‖ ≤ 1}.
8Note that, unlike our previous examples, transaction cost h(θF ) = λ‖θF ‖may take finite non-zero values. As a result,

transaction costs within this class fall outside the framework studied by Luttmer (1996), who only considers market frictions
in which h(θF ) ∈ {0,∞}.
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We conclude this discussion by noting that it is straightforward to accommodate different types

of trading frictions for different subsets of assets. For example, one could introduce short-sell

constraints for equities, while at the same time impose bid-ask spreads on the carry trade. In such

settings, set C in Proposition 1 simply becomes the Cartesian product of the individual sets reflecting

the trading frictions applied to each subset of assets.

1.2 Minimum-Entropy SDFs

Proposition 1 provides a characterization of the set of admissible SDFs in terms of the transaction

cost function h. In general, however, there may exist multiple strictly positive SDFs that satisfy the

restrictions in Proposition 1. As in frictionless economies, such multiplicity may arise as a result of

market incompleteness. However, in our frictional framework, transaction costs may also be a source

of SDF multiplicity, with a larger set C in equation (2) resulting in larger set of SDFs.

Due to such potential multiplicity, we focus next on a specific SDF, called the minimum-entropy

SDF. As we show in subsequent results, this SDF satisfies a “numéraire-invariance” property, which

plays a central role in our characterization of the factor structure of exchange rates when we extend

our framework to an international setting. We start with the following definition:

Definition 1. Given transaction function h, the minimum-entropy SDF M0 is given by

M0 = arg min
M>0

E[− logM ]

s.t. E[MRS ]− 1 = 0

E[MRF ]− 1 ∈ C,

(4)

where set C depends on the transaction cost function h and is given by equation (2).

As the minimum entropy label suggests, problem (4) picks the SDF with the smallest entropy from

the set of all possible SDFs characterized by absence of arbitrage, while the constraints in (4) ensure

that it respects the pricing constraints induced by the transaction cost function.9 Working directly

with problem (4) is inconvenient as it is an infinite-dimensional constrained optimization problem.

Therefore, using convex duality theory, in the following proposition we characterize the minimum-

entropy SDF with a solution to an unconstrained finite-dimensional optimization problem.

Proposition 2. Given transaction cost function h, the minimum-entropy SDF satisfies

M0 = 1/θ′∗R, (5)

where
θ0 = arg min

θ∈Rn
E[− log(θ′R)] + θ′1 + h(θF ) (6)

and R denotes the vector of asset returns.10

9The minimum-entropy SDF belongs to the family of minimum-dispersion SDFs, which include several other well-
known SDFs such as Hansen and Jagannathan’s (1991) minimum-variance SDF and minimum Kullback-Leibler divergence
SDFs, among many others.

10This statement implicity assumes that the optimization problem (6) has a unique solution θ0.
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This proposition provides a closed-form expression for the minimum-entropy SDF that can be

estimated directly from the data. In particular, it characterizes the minimum-entropy SDF in terms of

the transaction cost function h and the solution of a penalized optimal growth portfolio problem. As

a result, equations (5) and (6) will serve as the basis of our empirical analysis in Section 2.

As an example, consider the proportional transaction costs under the l1-norm specified in

Example 3. It is immediate from the above result that the minimum-entropy SDF can be obtained

in terms of an optimal growth portfolio with a lasso-type penalty. Therefore, as is well known from

the machine learning literature, such lasso penalization gives rise to an optimal portfolio with a sparse

vector of portfolio weights for assets subject to market frictions.

1.3 International SDFs

We now extend our framework to a multi-country setting in which global investors trade assets

internationally in markets with possibly different currency denominations. Formally, consider an

economy consisting of m countries, denoted by {1, . . . ,m}. Investors in country i may have access

to a largest set of n assets — consisting of both local and foreign assets — denominated in country

i’s currency. We use R(i) to denote the vector of asset returns accessible to investors in country i,

denominated in i’s currency. Conversion of returns denominated in currency j to corresponding

returns in currency i may be made accessible to investors in all countries through exchange rate

markets:

R(i) = X(ij)R(j) (7)

for all pairs of countries i and j, whereX(ij) denotes the gross exchange rate return, with the exchange

rate defined as the price in country i currency of one unit of country j’s currency.

As in our single-country framework, a subset of assets F (i) ⊆ N available to investors in country i

is subject to trading frictions, with a sublinear transaction cost function h(i). Note that, in general, the

set of frictional assets and their corresponding transaction costs may differ across countries. However,

one particularly useful special case arises when all transaction cost are assumed to be identical:

Definition 2. International financial markets are symmetric if F (i) = F (j) and h(i) − h(j) is constant

for all i and j.

Irrespective of whether international markets are symmetric or not, Proposition 1 implies that

they are arbitrage free with respect to each currency denomination if there exists a collection of strictly

positive country-specific SDFs {M (i)}mi=1 such that

E[MR
(i)
S ]− 1 = 0 and E[MR

(i)
F ]− 1 ∈ C(i)

for all countries i, where R
(i)
S and R

(i)
F denote the returns of the frictionless and frictional assets in

country i, respectively, and C(i) is the pricing error constraint set for investors in country i, defined

in equation (2). Finally, we can define the country-specific minimum-entropy SDFs {M (i)
0 }mi=1 as

the solutions of optimization problems similar to (4) for each country i. Our next result relates

international SDFs to exchange rates in markets with frictions.
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Proposition 3 (Asset market view of exchange rates). If international financial markets are symmetric,

then

X(ij) = M
(j)
0 /M

(i)
0 (8)

for all pairs of countries i 6= j, where M (i)
0 and M (j)

0 are the minimum-entropy SDFs of country i and j.

The above result establishes that, as long as markets are symmetric, the exchange rate return

between any pair of currencies is uniquely pinned down by the ratio of the two countries’ minimum-

entropy SDFs. While it is well-known that in complete and frictionless markets the rate of

appreciation of the exchange rate has to be equal to the ratio of the two countries’ SDFs, Proposition

3 shows that the same relationship holds for minimum-entropy SDFs under much more general

conditions, irrespective of the extent of market incompleteness and the presence and nature of

transaction costs.

The significance of equation (8), which is known as the asset market view of exchange rates

(AMV), is threefold. First, it implies that, as long as markets are symmetric, the cross-section of

m(m − 1)/2 distinct log exchange rate returns is described exactly by a log linear transformation of

the cross-section of m minimum entropy SDFs. Second, it implies a parsimonious factor structure

of (minimum-entropy) international SDFs. This is a consequence of the fact that, under AMV,

for international SDFs pairs to match the exchange rate volatility, they must be almost perfectly

correlated (Brandt, Cochrane, and Santa-Clara, 2006). Third, the fact that Proposition 3 holds for

any specification of transaction cost function h implies that one can uniquely pin down the factor

structure of exchange rates without explicitly specifying the set of assets available to investors in

each country: one can obtain the factor structure while allowing for the set of traded assets to be

determined endogenously. This is in contrast to the extant literature that estimates factor structures

by imposing a priori assumptions on the set of traded assets, which may lead to different exchange

rate factor representations depending on the specification of the menu of the assets.

We now turn to another important property of international minimum-entropy SDFs, namely

numéraire-invariance, according to which, international SDFs that price the cross-section of

exchange rates are independent of their numéraire. The following corollary to Propositions 2 and

3 formalizes this concept:

Corollary 1. Suppose international financial markets are symmetric. Then,

(a) θ(i)
0 = θ0 for all countries i, where θ(i)

0 is the solution to i’s penalized optimal growth portfolio

problem in (6).

(b) Furthermore, θ′0R
(i) = X(ij)θ′0R

(j) for all pairs of countries i 6= j.

Statement (a) of the above result establishes that the optimal portfolio weights are the same for all

countries. This is a consequence of the functional form of the minimum-entropy SDFs. Statement (b)

then establishes the numéraire-invariance property of minimum-entropy SDFs: the optimal portfolio

return in each country can be converted to the optimal portfolio return of another country via the

corresponding exchange rate return. While a simple consequence of our previous results, Corollary
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1 plays a central role in establishing the parsimonious nature of global factor structures, as we show

next.

We conclude this discussion by noting that when international markets are not symmetric, the

AMV usually does not hold. In general, for an arbitrary choice of a family of minimum-dispersion

SDFs, the AMV may be violated and deviations from it can be captured by a family of Backus, Foresi,

and Telmer (2001) stochastic exchange rate wedges {η(ij)}1≤i,j≤m, defined by:

X(ij) =
M

(j)
0

M
(i)
0

exp(η(ij)). (9)

1.4 The Global Factor Structure of Exchange Rates

Having developed the necessary theoretical framework, we can finally characterize with a model-free

approach the global factor structure of exchange rates. In particular, we establish that, as long as

international financial markets are symmetric—and irrespective of the nature of trade frictions—the

cross-section of minimum-entropy SDFs has a two-factor representation consisting of a global factor

and local currency basket factor. The next theorem formalizes this result:

Theorem 1. Suppose international markets are symmetric and let (w1, . . . , wm) denote a set of weights

such that
∑m

i=1wi = 1. Then, the minimum-entropy SDF of country i satisfies

logM
(i)
0 = G + CB(i), (10)

where

G = −
m∑
j=1

wj log θ
(j)′

0 R(j) and CB(i) = −
∑
j 6=i

wj logX(ij)

denote the global SDF factor and the local currency basket factor of country i, respectively.

Equation (10) thus establishes that every (log) minimum-entropy SDF can be written as the sum of

(i) a common factor given by the average negative log return of the optimal portfolios across currency

denominations and (ii) a currency basket factor CB(i) measuring the average appreciation of currency

i relative to all other currencies j 6= i.

The two-factor decomposition in Theorem 1 will serve as the basis of our empirical analysis

in subsequent sections. In particular, from equation (10), we use the following two-factor

approximation of the local SDF, consisting of both the global and the local currency basket factor:

M
(i)
0 ≈ exp(G + CB(i)) =: M̃

(i)
0 , (11)

which by Theorem 1 is exact with θ(1)
0 = . . . = θ

(n)
0 whenever international markets are symmetric.11

Second, we can also study a one-factor representation of the local SDFs as an approximate global

SDF:

M
(i)
0 ≈ exp(G) =: M̃0. (12)

11The two-factor representation given in (11) is also related to Aloosh and Bekaert (2019) who decompose local SDFs into
a global SDF and a component which is orthogonal to the global SDF. However, different from us, these authors construct
global SDFs from equal-weighted currency baskets of all possible bilateral exchange rates with respect to a base currency.
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We then test how the one- and two-factor approximations in equations (11) and (12) explain the cross-

section of international asset returns.

We conclude by noting that the two-factor representation in equation (10) is closely related to

the models of Lustig, Roussanov, and Verdelhan (2011, 2014) and Verdelhan (2018), who posit that

country-level SDFs are driven by two factors: carry and dollar, where the latter measures the average

appreciation with respect to the dollar. Our representation in Theorem 1 establishes that, in case of

minimum-entropy SDFs in symmetric markets, not only does the cross-section of SDFs consists of

a global factor and a local currency basket factor—akin to the dollar factor in the above-mentioned

papers—but also that there cannot be any other factors. In asymmetric markets, more generally, the

two-factor representation in equation (10) holds approximately, because of the presence of exchange

rate wedges due to asymmetric frictions. Intuitively, the degree of accuracy of the approximation

depends on the extent of the deviations from market symmetry. However, it is an empirical question

how important these deviations are in the data.12

2 Empirical Analysis

Proposition 2 and in particular equation (5) allows us to estimate minimum dispersion international

SDFs directly from returns data in the presence of trading frictions. We study two different market

settings with varying transaction costs in both symmetric and asymmetric markets and explore the

impact of frictions on the properties of SDFs. Using SDFs denominated in different currencies, we

then extract the two global factors from equation (11) in order to price cross-sections of currencies as

well as short- and long-term bonds and stocks.

2.1 Data

In our empirical analysis, we use monthly data between January 1988 and December 2015. We focus

on the following developed markets: Australia, Canada, Euro Area, Japan, New Zealand, Switzerland,

United Kingdom and United States.13 We collect data on exchange rates, short- and long-term interest

rates, and MSCI country equity indices’ prices from Datastream. When we analyze a specific currency

denomination, we treat the corresponding market as the domestic and all other markets as foreign.

Hence, we do not consider bilateral trades but a global economy where global investors can trade all

possible assets.

We also calculate equity and FX volatility from the corresponding returns. To this end, we compute

the standard deviation over one month of daily MSCI price index changes for each currency, and then

the cross-sectional mean of these volatility series. Option-implied volatility on the S&P500, VIX, is

available from the webpage of the CBOE. We also calculate a measure of gross capital flows. To this

end, we follow Avdjiev, Hardy, Kalemli-Özcan, and Servén (2018) and construct measures of in- and

outflows for the countries in our sample using quarterly data from the Balance of Payment (BOP)

data available from the International Monetary Fund. The BOP data captures capital flows in and

12In our empirical analysis, we study various specifications of symmetric or asymmetric frictions in international asset
markets and find that the approximation is very accurate also in asymmetric markets, i.e., stochastic wedges are negligible.

13Before the introduction of the Euro, we take the Deutsche Mark in its place.
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out of a given country. We define inflows into any given country as the sum of direct investment into

equity and debt, portfolio equity and debt, and other investment debt from the liability side. Similarly,

outflows are defined the same way but from the asset side. To construct one variable of gross capital

flows, we take averages across all countries.14 Lastly, we use two variables which capture global risk

aversion and intermediaries’ capital constraints: the “Global Financial Cycle” variable of Miranda-

Agrippino and Rey (2020) and intermediary capital of He, Kelly, and Manela (2017), both available

from the authors’ webpages.

2.2 Market Settings

We study two different market settings, symmetric and asymmetric markets, and in each market

impose different types of transaction costs.

SYMMETRIC MARKETS: For the first symmetric market setting, we assume that global investors can

trade the full menu of assets and there are no frictions to trade. The second symmetric market

setting arises when investors face proportional transaction costs. We assume that investors incur

no transaction costs when trading short-term bonds globally (i.e., investors can borrow and lend at

the short-term interest rate without any frictions) but face transaction costs when trading long-term

bonds and equity. More specifically, we assume that transaction costs, modeled with an l1-norm,

are proportional to their positions and in line with the size of bid-ask spreads.15 To this end, the

proportional transaction cost parameter λ is chosen such that we have comparable pricing errors

implied on the returns based on mid-prices by (i) SDFs in an economy with proportional transaction

costs and by (ii) SDFs in an economy where market frictions are quantified by bid-ask spreads.

ASYMMETRIC MARKETS: In the first asymmetric market setting, we assume that investors face bid-ask

spreads when buying and selling international assets. To this end, we use average bid-ask spreads for

exchange rates directly available from Datastream which are in the order of 2bps. For the long-term

bonds, we also assume average bid-ask spreads of 2bps in line with Adrian, Fleming, and Vogt (2017)

for the US and Bank of International Settlement (2016) for Japan and Germany ten-year bonds. For

equity indices, we impose a 6bps spread.16 The second asymmetric market setting assumes that local

short-term bonds can be traded without any frictions whereas all foreign short-, as well as long-term

bonds and equities face proportional transaction costs which are again consistent with the size of

the bid-ask spread. In these settings the asymmetry is introduced through frictions that differentiate

between home and foreign assets.

14Taking principal components across country-level gross flows and using the first principal component in our analysis
instead leads to qualitatively and quantitatively similar results.

15This is a special case of equation (3), where h(θF ) = λ
∑

k∈F |θk|.
16It is in general impossible to know the exact bid-ask spread of assets. Luttmer (1996) uses bid-ask spreads of around

0.012% which corresponds to the tick size on the NYSE. Andersen, Bondarenko, Kyle, and Obizhaeva (2018) document that
the bid-ask spread on E-Mini Futures on the S&P500, one of top two most liquid exchange traded futures in the world, is
around 0.25 index points.
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2.3 Properties of Model-Free International SDFs

As a first exercise, we study the properties of international SDFs, their comovement, and the

corresponding optimal portfolio weights. To this end, we estimate equation (5) using the different

transaction cost functions discussed before. Table 1 provides summary statistics for SDFs in each

currency denomination for the four market structures.

[Insert Table 1 here.]

While average SDFs are the same across the different market settings, volatilities decrease

significantly as we impose market frictions. For example, while the average volatility in markets with

no frictions is around 0.35, the volatility in asymmetric markets with transaction costs is only around

0.19, a 45% drop. Recall that in asymmetric markets, deviations from the AMV can be captured

by a stochastic wedge. To save space, we relegate summary statistics on stochastic wedges to the

Internet Appendix. We find stochastic wedges to be minuscule and on average to be nearly zero

for all currency pairs echoing the findings in Lustig and Verdelhan (2019) and Sandulescu, Trojani,

and Vedolin (2019). While these authors study stochastic wedges in frictionless markets, we show

that wedges are also small in the presence of frictions. Given that stochastic wedges are small has

immediate consequences for the cross-country correlations of international SDFs and hence factor

structures.

We present cross-country correlations for the four market settings in the lower parts of each panel.

The correlations are almost perfect in symmetric markets. This is intuitive, as under the assumption

of market symmetry the AMV hold, which “enforces” a high correlation among international SDFs;

see Proposition 3. As we move to an asymmetric market setting where transaction costs vary among

the different countries, we notice that the correlations are slightly lower but still all above 90%. This

may be more surprising, given that in this case we have violations of the AMV. The importance of this

finding is twofold. First, the almost perfect correlation even in incomplete markets with asymmetric

frictions implies that stochastic wedges are inconsequential for understanding the key properties of

SDF factor structures. Second, as a consequence a strong factor structure of exchange rates emerges

even in presence of market frictions, which implies that a low number of factors is sufficient to explain

the cross-section of international asset returns.

2.4 Optimal Portfolio Weights

In order to shed more light on the optimal SDFs for different currencies, we now study optimal

portfolios. Our theoretical framework allows us to exactly identify optimal portfolio weights from

agents’ Euler equations. Figure 1 plots the optimal portfolio weights for symmetric markets with no

frictions (upper panel) and symmetric proportional transaction costs (lower panel).

[Insert Figure 1 here.]

Recall that a direct consequence of Proposition 3 is that portfolio holdings have to be identical

in symmetric markets. Therefore, we only plot the USD denominated portfolio weights. We notice
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that whenever investors can trade without frictions, portfolio weights can be very large both long and

short. The larger positions reveal that investors borrow in the lower interest rate currencies such

as JPY, USD, CAD, and EUR and hold long positions in high interest rate countries such as NZD

and AUD. Most positions in long-term bonds are short, with the exception of USD, EUR, and JPY.

Global investors hold large long positions in USD, AUD, and CHF equity indices. The large positions

indicate that without taking large levered positions it may be hard to maintain this portfolio, which

also contributes to the high volatilities documented in Panel A of Table 1.

When we impose symmetric proportional transaction costs on investors, given by an l1-norm,

some weights on assets are zero, portfolio selection is sparse, and the size of the positions shrink,

see the lower panel in Figure 1. More specifically, most portfolio weights on the long-term bonds

are zero. This is not very surprising given that currency risk premia at the long-end of the term

structure are small, see, e.g., Lustig, Stathopolous, and Verdelhan (2019). Investors also drop most

of the equity indices except for a long position in the USD and CHF, and a short position in the JPY.

Interestingly, most of the wealth is held in short-term bonds. In particular, as in the case with no

transaction costs, global investors trade a “carry.” Short positions are in typical funding currencies,

whereas long positions are in investment currencies. Overall, we conclude that even small transaction

costs which restrain investors’ leverage can have significant impacts on the optimal portfolios held by

global investors.

[Insert Figures 2 and 3 here.]

Figures 2 and 3 plot the cases where we assume asymmetric bid-ask spreads and proportional

transaction costs, respectively. Because in asymmetric markets portfolio weights vary across the

different currency denominations, we plot all currencies separately. As in the symmetric proportional

transaction cost case, portfolios are more sparse and investors hold positions that resemble the carry

and long equity. The most sparse portfolio coincides with the case when investors face asymmetric

proportional transaction costs. The sparsity translates directly to the low SDF volatility reported in

Table 1. Even though in asymmetric markets portfolio weights are not enforced to be the same,

positions look almost identical. As in the symmetric market cases investors engage in carry trades:

shorting the US dollar, CAD, EUR or CHF and go long in the NZD and AUD. In addition, investors

trade long USD and CHF equity.

2.5 The Global Factor Structure of Exchange Rates

We now turn to the factor structure of exchange rates, the main forcus of our paper. Different

from earlier literature, which primarily estimates SDF factors from the cross-section of currencies

(or currency portfolios), our framework allows us to estimate the cross-section of international SDFs

from international stock and bond data, in addition to currencies, under different assumptions for

the underlying market frictions.

We leverage our findings thus far by noticing that the almost perfect correlation among

international SDFs across all market settings naturally implies a very parsimonious SDF factor

structure, not just in settings where the AMV holds but also in the presence of asymmetric frictions.
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Indeed, recall that our two-factor representation decomposes each minimum entropy SDF into two

conceptually distinct factors: A global factor given by the average return of a maximum growth

portfolio, which is independent of the currency numéraire, and a local currency basket factor; see

equation (10). Moreover, while equation (10) holds under market symmetry, the almost perfect

correlation we find among international SDFs in asymmetric settings suggests that the resulting AMV

deviations are rather small and that the two-factor approximation is quite accurate in these settings

as well.

2.5.1 Global SDFs and Currency Baskets

Figure 4 plots the time-series of the global SDF risk factors from equation (12) for the four market

settings. While we notice a much higher volatility for the global factor in market settings without any

frictions, especially during crises, there is overall a high comovement among the different SDFs.17

These SDF factors simultaneously increase during bad economic times, such as recessions, or during

times of disruptions in financial markets, such as the dot com bubble burst or the Lehman default.

Interestingly, we notice that global SDFs spike during US specific crisis events. For example, in all

four market settings, we find that global SDFs exhibit a massive spike in August 2011 during the US

downgrade from AAA to AA+ by S&P.

[Insert Figure 4 here.]

Figure 5 plots the time-series of the local currency baskets. While the global SDF is by construction

currency independent, notice that local currency baskets are country specific. The global SDF factor

correlates very differently to the local currency baskets. For example in the asymmetric proportional

transaction cost setting, it correlates negatively to the high interest rate currency baskets, NZD (-43%)

and AUD (-35%), and it positively correlates to typical funding currencies CHF (14%), EUR (25%), and

JPY (31%). Global SDFs are instead almost uncorrelated to USD (5%), GBP (3%) and CAD (1%).

[Insert Figure 5 here.]

2.5.2 Factor Premia: Empirical Framework

We now turn to our main empirical results. To this end, we study the pricing ability of global SDF

factors and local currency basket factors for the cross-section of international asset returns. Recall

from equation (2) that in markets with frictions, minimum entropy SDFs always imply non-zero

pricing errors even in-sample. One might therefore wonder whether there are any implications for

running standard Fama and MacBeth (1973) cross-sectional regressions. To this end, notice that

our setting implies that any vector of excess returns R
(i)
e in currency i has to satisfy the following

decomposition:

E[R(i)
e ] = −Cov

(
R(i)

e ,
M

(i)
0

E[M
(i)
0 ]

)
+ E

[
M

(i)
0

E[M
(i)
0 ]

R(i)
e

]
, (13)

17The average correlation across the four settings is 94%.
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where M (i)
0 is the local SDF. Here, the second term on the RHS represents the vector of pricing errors

induced by SDF M (i)
0 , while the first term represents the expected excess returns that is explained by

a return covariance with this SDF.

The decomposition in equation (13) then gives rise to the following linear beta model for expected

excess returns:

E[R(i)
e −R

(i)
e 1] = λ(i)(β(i) − β(i)

1) + E

[
M

(i)
0

E[M
(i)
0 ]

(R(i)
e −R

(i)
e 1)

]
, (14)

where we denote by y the component-wise average of a vector y, by λ(i) the (scalar) SDF factor

premium and by β the vector of SDF betas:

β(i) =
Cov(R

(i)
e ,M

(i)
0 )

Var(M (i)
0 )

. (15)

Note that in equation (14), the second term in the sum on the RHS is a vector of cross-sectionally

centred pricing errors, which immediately leads to a zero-mean error term for a two-step cross-

sectional analysis of excess returns. However, such an error term may not be cross-sectionally

orthogonal to the vector of SDF betas, as this constraint is not part of the definition of a minimum-

entropy SDF in markets with frictions. Moreover, recall that by construction the factor premium of

SDF M (i)
0 equals:

λ(i) = −Var(M (i)
0 )

E[M
(i)
0 ]

. (16)

Taken together, this implies that the choice of factor premium (16) in linear model (14) may lead to a

suboptimal cross-sectional fit. However, notice that an optimal fit is obtained via the factor premium

estimated by a standard two-step Fama and MacBeth (1973) regression approach:

λ
(i)
FMB :=

(
β(i) − β(i)

1
)′ (

E[R
(i)
e −R

(i)
e 1]

)
(
β(i) − β(i)

1
)′ (

β(i) − β(i)
1
) . (17)

Here, differences between λ
(i)
FMB and λ(i) provide information about the adjustments in SDF factor

premia needed to obtain an optimal cross-sectional fit. Moreover, inference on the precise value of

λ
(i)
FMB is easily feasible with standard methods in a simple single-factor linear model of the form:

E[R(i)
e −R

(i)
e 1] = λ(i)(β(i) − β(i)

1) + ε(i) . (18)

In the following, we therefore estimate factor premia via the standard two-step Fama and MacBeth

(1973) estimator defined in equation (17) and we quantify the in- and out-of-sample pricing accuracy

of international SDFsM (i)
0 , together with the their two- and single-factor approximations in equations

(11) and (12), respectively.

We present regression results both in- and out-of-sample for the cross-section of currencies and

international stocks and bonds both separately and jointly. We focus on results denominated in USD

(unless noted) and relegate results for all other currency denominations to the Internet Appendix.
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2.5.3 Factor Premia: In-Sample Evidence

Tables 2 and 3 summarize in-sample estimated SDF factor premia (17) for the USD denominated

cross-section of currencies (Table 2) and stocks and bonds (Table 3), using two-step Fama and

MacBeth (1973) regressions.18 Column 1 of each table reports the price of risk with respect to the

local minimum entropy SDF M (usd)
0 . Column 2 reports the risk premium relative to the single-factor

SDF approximation M̃0 in equation (12). Column 3 instead reports the results for the two-factor SDF

approximation M̃ (usd)
0 in equation (11).

As by construction pricing errors are zero (i.e., expected asset returns are perfectly matched) in

absence of market frictions, in-sample R2s are 100% for minimum entropy SDFs, which are exactly

reproduced by their two-factor SDF approximation: M (usd)
0 = M̃

(usd)
0 . Moreover, we find that in such

settings, the pricing accuracy provided by the global single-factor SDF is also virtually perfect. As we

introduce market frictions and asymmetry, the in-sample pricing ability of the minimum entropy

SDF intuitively declines. However, we find that such decline is rather limited, with a lowest in-

sample R2 across market settings of about 97% (92%) for currencies (currencies, bonds, and stocks).

All estimated factor risk premia in Tables 2 and 3 are negative and highly statistically significant

for all SDFs and SDF factor specifications. Across all market settings, we find the global SDF

explains virtually the same cross-sectional variation as the local minimum SDF. Using the two-factor

representation instead, i.e., M̃ (usd)
0 , increases the adjusted R2 only marginally relative to the global

SDF for the cross-section of carry trades, while it even decreases the adjusted R2 for the full cross-

section of excess returns.

[Insert Tables 2 and 3 here.]

Overall, we conclude that one single factor can explain the majority of the variation of

international asset returns. This finding is particularly noteworthy for currencies. For example,

while our R2s are similar in size to those reported in the literature, notice that our global SDF is

not calculated from the cross-section of currencies itself, like for example the HML factor in Lustig,

Roussanov, and Verdelhan (2011), the currency volatility factor in Menkhoff, Sarno, Schmeling, and

Schrimpf (2012), or the currency baskets in Aloosh and Bekaert (2019). Moreover, notice that while

these papers price the cross-section of currency portfolios, we price the cross-section of individual

currency returns together with long-term bond, and stock index returns.

It is also worth highlighting that theR2s in Table 3 capture not only with-in asset class variation but

also across asset class variation. To show this, Figure 6 plots the expected excess return as a function

of exposure to the global SDF risk factor M̃0 for the USD denominated economy, together with the

estimated price of risk (dashed line). In all four settings we find that the global factor model captures

the cross asset class variation. Not surprisingly, as market frictions and asymmetry are introduced,

the assets are less aligned across the dashed line compared to the case with no frictions. Moreover,

in presence of asymmetry and market frictions, the variation in the risk exposure increases as can

be gleaned from the x-axis of each figure. For example, while in the case of no transaction costs

18To save space, we only report results for USD denominated assets, as the results for other currency denominations are
both quantitatively and qualitatively the same. We gather results for other numéraires in the Internet Appendix.
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risk exposures vary between -0.05 and 0.01, risk exposures in a setting with asymmetric proportional

transaction costs vary between -0.12 and 0.04. This feature is directly related to the properties

of pricing errors induced by the various SDFs, as tighter pricing error constraints imply a higher

minimum SDF variability and a weaker co-movement with asset excess returns.

[Insert Figure 6 here.]

Finally, we can also compare the pricing ability of the one- versus two-factor SDF representation

across currency denominations different from the US dollar. To this end, we plot in Figure 7 (Figure

8) the cross-sectional R2s for different economies in the symmetric (asymmetric) market settings.

In the case of no transaction costs (upper four panels in Figure 7), adding the currency basket

always leads to R2s which are 100%, independent of the currency denomination and the asset class

priced. This is expected, as in this setting, the two-factor SDF approximation is exact and the local

currency minimum entropy SDFs produce by construction a perfect cross-sectional fit. When we add

symmetric frictions (lower four panels), we notice that while for the cross-section of currencies we still

see a 100% in-sample R2 by construction, differences between the R2s when using the global factor

alone and adding the local currency basket diminish. A similar picture emerges in the asymmetric

market settings, see Figure 8. The global SDF uniformly explains a large fraction of the cross-sectional

variation across all asset classes. The lowest R2 is about 58% for Australian dollar denominated long-

term bonds. One observation worth highlighting is the following. Interestingly, we find that the

local currency basket provides consistent additional explanatory power for the so-called commodity

currencies, AUD, CAD, and NZD. This is the case across different specifications of frictions. This

echoes findings in Aloosh and Bekaert (2019) who document evidence for a priced commodity risk

factor for the cross-section of currencies. We show that this is also true for long-term bonds and

equities more generally.

[Insert Figures 7 and 8 here.]

2.5.4 Factor Premia: Out-Of-Sample Evidence

An economically more interesting question asks whether our SDF factor models are able to price the

cross-section of international assets out-of-sample. To this end, we use a training window of ten-years

of monthly returns up to say, month y, to estimate the optimal weight θ̂y solving problem (6) based

on a maximum Sharpe ratio instead of a maximum expected log utility criterion.19 For the following

twelve monthly return observationsRy+m, we compute the sequence of out-of-sample monthly SDFs

M̂y+m = max{−θ̂′yRy+m, 0}. We then construct the out-of-sample SDF time-series {M̂y+m} in a rolling

window manner, by updating the estimation window at the yearly frequency. Here, the out-of-sample

global SDF is computed using the local out-of-sample SDFs together with equation (12). We finally

evaluate the out-of-sample pricing performance, by calculating out-of-sample cross-sectional R2s

with two-step Fama and MacBeth (1973) regressions.

19While all our in-sample results are derived for the minimum-entropy SDF, we now compute minimum-variance SDFs
to ensure non-negative out-of-sample SDFs, which cannot be guaranteed for out-of-sample minimum-entropy SDFs.
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Tables 4 and 5 present the out-of-sample results for the four market settings. The results are

mixed for the cross-section of FX returns: While estimated SDF factor premia are significant in

specifications with transaction costs, they are insignificant in the no frictions case. This, however,

is not very surprising given the highly volatile nature of the no friction SDFs documented in Table

1 and highlights the need to impose frictions for superior out-of-sample pricing. To see this more

clearly, we can gauge the estimated factor premia in symmetric market settings but with proportional

transaction costs. In this case, we significantly improve on the cross-sectional pricing abilities of

both the local and global SDFs, with significantly increased R2s. We can further improve upon the

pricing performance by imposing asymmetric market settings, as the ensuing SDFs feature more

robust properties, e.g., lower volatilities and lower sensitivities to currency returns. Indeed, when

pricing only the currency returns, proportional transaction costs lead to further improved R2s and

statistical significance in estimating the risk premium. For instance, when we assume that markets are

asymmetric and global investors face proportional transaction costs, the global SDF alone explains

73% of the variation in currency returns, which is about six times theR2 in absence of market frictions.

When pricing the full cross-section of assets, we obtain similarly large R2 of abut 70% for the global

SDFs. Finally, in settings with transaction costs, we find that the SDF currency basket factor is typically

significant and that it adds to cross-sectional pricing accuracy especially when pricing currency

returns.

[Insert Tables 4 and 5 here.]

Figure 9 plots the expected excess return as function of the exposure to out-of-sample global SDF

risk factor for the USD denominated economy. The ability of global SDF alone to capture the variation

within and across asset classes increases as frictions and asymmetry are introduced. Moreover, as in

the in-sample case, the variation of the exposure to the global SDF risk factor increases with market

frictions and asymmetry.

[Insert Figure 9 here.]

2.5.5 Relation To Verdelhan (2018)

In our setting, SDFs are fully characterized by two factors: the average negative log return of global

optimal portfolios and a currency basket measuring the average appreciation relative to all other

currencies. It is natural to ask how these factors relate to the carry and dollar risk factors in Verdelhan

(2018) given that ours are estimated from stock and bond data.

Figure 10 plots the global SDF together with carry (upper panel) and the currency basket risk factor

together with dollar (lower panel) in a symmetric market with proportional transaction costs. The

evidently very high correlation is important for at least two reasons.20 First, recall that in our two-

factor SDF representation from Proposition 1, the decomposition of the SDFs into global SDF and

currency basket is exact under the assumption of symmetric markets whenever we use minimum

20By construction, the dollar factor and our currency basket should be the same, the reason for the less than perfect
correlation is due to the fact that the dollar factor in Figure 10 uses a larger cross-section of currencies than we do.
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entropy SDFs. This implies that, given the global SDF and currency basket factors, there cannot exist

any other factors. Therefore, two factors are sufficient to describe in-sample risk premia not only

for currencies, but also stocks, and bonds. Second, in our framework, global investors can buy and

sell a broad menu of assets, including stocks, as well as short- and long-term bonds. Hence, our risk

factors are not extracted from currencies, as in the case of Verdelhan (2018), but from international

asset prices. Here, the global SDF can be interpreted as a function of the optimal portfolios of these

global investors. Despite these differences, the two factors are highly correlated, implying that the

global factors in Verdelhan (2018) may not just be important drivers of bilateral exchange rates, but

also more broadly of international asset returns.

[Insert Figure 10 here.]

2.6 Capital Flows, International SDFs and Home Bias

A large literature in international finance emphasizes the importance of international capital flows

for exchange rate determination. For example, in the model of Hau and Rey (2006), incomplete

hedging of FX risk of global investors induces capital flows which are key drivers of exchange rates.

More recently, Camanho, Hau, and Rey (2019) study a dynamic portfolio balancing model where

exchange rates are determined by the net currency demand from portfolio balancing motives of

global intermediaries.21 One defining feature of international capital flows is that they are driven by a

low number of global factors, see, e.g., Milesi-Ferretti and Tille (2011), Forbes and Warnock (2012), Rey

(2015), Cerutti, Claessens, and Rose (2017), and Davis, Valente, and van Wincoop (2019). For example,

Rey (2015) shows that gross capital flows are strongly related to measures of option-implied volatility

indexes such as the VIX, which is well-known to capture time-varying risk appetite and uncertainty.

Recall that our framework provides a unique mapping between the optimal portfolios of global

investors trading in markets with frictions and SDFs. It is therefore natural to assume that our

estimated SDFs are linked to equity and bond flows internationally. In the following, we study

the relation between our two factors—global SDF and local CB—and measures of capital flows or

intermediaries’ constraints. To this end, we run regressions from changes in global SDF and local CB

on changes in capital flows, volatilities, global cycle, and He, Kelly, and Manela (2017) intermediary

capital:

∆G or ∆CB(i) = β0 ×∆Xt + εt,

where ∆Xt are either changes in world equity, the Verdelhan (2018) carry or dollar factor, changes in

VIX or FX volatility, changes in the Miranda-Agrippino and Rey (2020) global cycle, changes in our

proxy of capital flows, and changes in intermediary capital.22 The results are presented in Table 6 for

the global SDF (Panel A) and the local CB (Panel B).

We find that changes in carry, VIX and FX volatility lead to positive and significant increases in

the global SDF. This makes intuitively sense since high states of the global SDF coincide with globally
21Relatedly, instead of asset flows, Gabaix and Maggiori (2015) assume that global demand of goods results in capital

flows which are intermediated by global financiers. Since intermediaries’ SDFs are a function of financial constraints, the
tightness of these constraints determine asset prices and exchange rates in equilibrium.

22To make all coefficients comparable, we standardize each variable, meaning we de-mean and divide each variable by its
standard deviation.
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bad times, i.e., times of high global volatility. Miranda-Agrippino and Rey (2020)’s global cycle, on the

other hand, significantly reduces global SDFs. As the authors show, their factor is inversely related

to time-varying risk aversion of heterogeneous global investors. As risk aversion increases, so does

the global SDF. Changes in capital flows, on the other hand, do not have any significant effect on the

global SDF.

Panel B reveals a different picture, as none of the previous factors has a significant coefficient

anymore. Not very surprisingly, dollar is highly statistically significant here, with an associated R2

of 88%. The coefficient on changes in capital flows is now significant and negative, indicating that

a one standard deviation drop in capital flows leads to a 0.2 standard deviation drop in the local

CB factor. Overall, we conclude that the two components of country-level SDFs load differentially

on intermediary constraints and capital flows: while the global SDF is linked to measures of global

volatility and risk aversion, local CB captures changes in capital flows.

[Insert Table 6 here.]

As a last exercise, we use our framework to study home bias in global portfolios. It is well-known

that capital flows follow a distinct pattern during crises: domestic capital inflows increase during

periods of domestic or global crises (retrenchment), while investors withdraw capital from foreign

markets during periods of foreign crises (fickleness), see, e.g., Forbes and Warnock (2012). This

pattern leads to an increase in the home bias in bonds and equities.23 As noted by Broner, Didier, Erce,

and Schmukler (2013), these patterns are difficult to explain in models without frictions. In our main

analysis, we impose average transaction costs observable in stock and bond markets. It is, however,

reasonable to assume that these costs only represent a lower bound to the true cost associated with

international trade. For example, Coeurdacier and Rey (2013) emphasize the potentially important

role of hedging costs and informational frictions, which are very difficult to observe.24

While we can measure transaction costs such as bid-ask spreads, it is harder to quantify other

types of asset trade costs such as the cost to trade via an intermediary or the role of international

taxation. Intangible costs such as information frictions and behavioral biases are even harder to

quantify, see, e.g., Coeurdacier and Rey (2013) for a discussion.25 It is therefore natural to assume that

the observed costs such as bid-ask spreads that we impose to extract international SDFs represent a

lower bound to the true costs of trading foreign assets.

In the following, we can use our framework to estimate the unobservable cost of trading foreign

assets such that portfolio holdings line up with the home bias observed in the data. To this end, we

23For example, French and Poterba (1991) and Lewis (1999), and more recently Camanho, Hau, and Rey (2019), show that
the proportion of domestic stocks invested in portfolios exceeds their country’s relative market capitalization in the world.
This home bias phenomenon extends to bonds and is found to be even more pronounced, see, e.g., Maggiori, Neiman, and
Schreger (2020).

24Most studies that empirically explore the effect on asset trade costs conclude that the costs would need to be
unrealistically high to explain the level of home bias observed in the data. For example, French and Poterba (1991) argue
in a mean-variance framework that these costs must be several hundred basis points. However, a different strand of the
literature argues that if diversification benefits are small across countries, then these costs can be small and still explain
home bias, see, e.g., Martin and Rey (2004) and Bhamra, Coeurdacier, and Guibaud (2014).

25Van Nieuwerburgh and Veldkamp (2009) study a model of home bias with informational frictions in international
markets and link information asymmetry to earning forecasts, investors behavior, or pricing errors.
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incrementally increase foreign transaction costs relative to local transaction costs and study the effect

on the optimal portfolios of model-free SDFs.

[Insert Figure 11 here.]

Figure 11 plots the optimal portfolio weights for each currency assuming that transaction costs

on the foreign assets are six times as big as on the local assets.26 As we note, there is an almost

perfect home bias in equities and long-term bonds for each currency. For nearly all currencies, local

investors short the local long-term bond and have a long position in the local equity index. At the

same time, we notice that across all currency denominations, investors trade the carry. For example,

US investors short the US short-term bond while holding a long position in the Australian short-term

bond. Australian global investors, on the other hand, short the Japanese Yen and buy New Zealand

short-term bonds. This implies that independent of the foreign transaction cost, investors trade carry.

To get a sense of the implied cost to achieve home bias, recall that the average bid-ask spread

is around 2bps in our data sample, which implies that the “hidden” costs are around 14bps. As

mentioned earlier, these costs can include differences in taxation, behavioral or informational costs,

as well as intermediation costs. Therefore, we conclude that even small transaction costs can lead to

highly currency biased portfolios.

2.7 Robustness

The identification of factors describing the cross-section of asset returns and the estimation of their

factor premia may be challenged by several problems, such as model misspecification, small time-

series sample sizes relative to the number of test assets, or poor identification. Our analysis is

unlikely to be plagued by the first two, given that (i) we work with a linear SDF factor model that is by

construction correctly specified (see equation (18)) and (ii) a sufficiently long time-series compared

to the cross-sectional dimension. However, since we jointly price under a single-factor approach

various asset classes (stocks, currencies, and bonds) having different volatilities and potentially

heterogeneous factor structures, one may nevertheless be worried about identification issues. Such a

concern may arise, e.g., when estimated betas in the first step of the two-stage Fama and MacBeth

(1973) methodology do not display enough variation, leading to weak identification of the factor

prices of risk in the second stage, invalid asymptotic properties of the two-stage estimator of the price

of factor risk, and spuriously large cross-sectional adjustedR2s; see, e.g., Kleibergen and Zhan (2020),

among many others.

The cross-section of factor betas is linked to the variance of SDFs via the underlying pricing

constraints satisfied by these SDFs. An excessive SDF variance under exact pricing constraints (as

is for example the case with no frictions) may produce low average SDF correlations with returns

and hence a degenerate or nearly degenerate cross-section of SDF betas. These issues, however,

are naturally mitigated by minimum dispersion SDFs allowing for non-zero pricing errors (as in our

market settings with frictions), because of the lower variance of these SDFs, induced by the less tight

pricing error constraints.

26To save space, we do not present the intermediate figures in the paper.
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To explore a possible weak identification problem in our empirical framework in Section 2.5.2, we

borrow from the recent methodology proposed in Kleibergen and Zhan (2020). Their methodology

includes a simple test of weak identification for Fama and MacBeth (1973) two-step empirical asset

pricing frameworks and an extended Gibbons, Ross, and Shanken (1989) test, which is robust against

weak identification, for jointly testing correct specification and parametric hypotheses for the vector

of factor risk premia.

[Insert Figure 12 here.]

Figure 12 reports the p−values of the Kleibergen and Zhan (2020) test of weak identification for the

various in-sample Fama and MacBeth (1973) settings considered in our analysis. Overall, we never

find evidence of weak identification for all asset pricing frameworks based on model-free SDFs in

markets with frictions, since all p−values for the test are minuscule. In contrast, for the asset pricing

frameworks based on model-free SDFs in frictionless markets, we find that the evidence for the cross-

section of long term bond returns may suffer of a weak identification issue for different currency

denominations. This finding is not very surprising, given our earlier finding that the cross-sectional

distribution of SDF betas for long-term bonds is nearly degenerate in frictionless settings.27

In summary, we conclude that our main empirical findings on the in- and out-of-sample cross-

sectional pricing accuracy of our model-free SDFs in international markets with frictions is not driven

by weak identification issues.

3 Conclusions

This paper develops a theoretical model-free framework that allows us to identify global risk factors

from a large cross-section of international assets, such as stocks, bonds, and currencies when

investors face barriers to trade. Intuitively, limiting the allocation of wealth that is invested into risky

assets leads to more sparse portfolios, endogenously segmented markets, and hence more robust

properties of international SDFs.

Our main theoretical contribution is twofold. First, under the assumption of market symmetry,

we show that we can always uniquely recover the exchange rate appreciation from the ratio of foreign

and domestic SDFs even in the presence of frictions. This result is quite useful when studying the

global factor structure of exchange rates. Intuitively, the fact that the cross-section of (log) exchange

rate changes is exactly reproduced by the cross-section of (log) SDFs, immediately implies that the

factor structure of exchange rates can be described by the factor structure of international SDFs. In

addition, because our SDFs are numéraire-invariant, it does not matter whether exchange rates are

vis-à-vis one currency or another. Second, our main result characterizes international SDFs using a

two factor representation. The first factor, global SDF, is currency-independent and pertains to the

average optimal portfolio return of global investors. The second factor, currency basket, is given by

the average appreciation of a local currency against the foreign currencies.

27We report the same statistics for the out-of-sample Fama and MacBeth (1973) two-step empirical asset pricing estimates
in the Internet Appendix. We again find no evidence of weak identification in markets with frictions.
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We then use this framework to estimate international SDFs from the cross-section of stocks, and

short- and long-term bonds for developed countries. When international agents face no barriers

to trade, SDFs need to exactly price all assets, which leads to volatile SDFs and perfect correlation,

because the AMV holds. Imposing market frictions significantly reduces the SDF volatility, but we

find again correlations to be nearly perfect, the reason being that investors hold almost identical

portfolios. Closer inspection of these portfolios reveals that global investors take their biggest

exposures in the classical carry trade, together with long positions in USD and CHF equities and

short position in JPY equity. Long-term bonds, on the other hand, enter only in relatively small short

positions in international investors’ portfolios.

We analyze the ability of our factor representation to price separately and jointly the cross-section

of currency returns, bonds and equities. Both the in-sample and out-of sample results suggest that

the currency-independent global SDF risk factor alone captures most of the cross-sectional variation

both within and across asset classes. Moreover, introducing market frictions and market asymmetries

is instrumental to generate a better out-of sample fit of the cross-section of international assets.

Indeed, when international investors face asymmetric proportional transaction costs, the ensuing

SDF captures up to 90% of the in- and 75% of the out-of-sample cross-sectional variation across all

denominations. Finally, we link our two factors to variables proposed in the literature and find them

to be strongly related to measures of volatility and capital flows.

In our paper, we explore the source and nature of common factors across international assets

from asset return data alone, but we ignore international portfolio holdings data. Future research

could link the observed prices directly to optimal portfolios held by international investors. For

example, in the demand systems approach of Koijen and Yogo (2020) global factors of stocks, bonds,

and currencies are determined by matching not just asset prices but also holdings data. Moreover, our

framework naturally accommodates the latent demand highlighted in Koijen and Yogo (2020), due to

the presence of wedges in case of asymmetric markets. We leave this exciting research for future work.
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Figures

Figure 1. Optimal Weights: Symmetric Markets. The upper panel plots the portfolio weights in each
asset denominated in USD assuming that investors face no trade barriers. The lower panel plots
the portfolio weights in each asset denominated in USD assuming that investors face symmetric
proportional transaction costs. ST-XXX is the short-term bond for currency XXX, LT-XXX is the long-
term bond for currency XXX, and E-XXX is the equity index for currency XXX. Data is monthly and
runs from January 1988 to December 2015.
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Figure 2. Optimal Weights: Bid-Ask Spreads. This figure plots the portfolio weights in each asset for
all currency denominations assuming that investors face bid-ask spreads. ST-XXX is the short-term
bond for currency XXX, LT-XXX is the long-term bond for currency XXX, and E-XXX is the equity index
for currency XXX. Data is monthly and runs from January 1988 to December 2015.
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Figure 3. Optimal Weights: Asymmetric Proportional Transaction Costs. This figure plots
the portfolio weights in each asset for all currency denominations assuming that investors face
proportional transaction costs. ST-XXX is the short-term bond for currency XXX, LT-XXX is the long-
term bond for currency XXX, and E-XXX is the equity index for currency XXX. Data is monthly and
runs from January 1988 to December 2015.
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Figure 4. Global SDF Factor. This figure plots the numéraire-invariant global SDF risk factor, i.e.,
M̃0 = exp(G), whereG = − 1

m

∑m
j=1 log θ′0R

(j), estimated with no frictions (upper left), with symmetric
proportional transaction costs (upper right), with bid-ask spreads (lower left), and asymmetric
proportional transaction cost (lower right). Gray bars indicate recessions according to NBER. Data
is monthly and runs from January 1988 to December 2015.
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Figure 5. Local Currency Baskets. This figure plots the country-specific currency basket, i.e., the
average appreciation of each local currency with respect to the remaining currencies. Gray bars
indicate recessions according to NBER. Data is monthly and runs from January 1988 to December
2015.
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Figure 6. In-Sample Risk-Return Relationship with Global SDF. The upper panel reports the in-
sample risk-return relation for USD-denominated currencies, bonds, and equities in symmetric
market settings, no transaction costs (left) and symmetric proportional transaction costs (right).
The lower panel corresponds to asymmetric market settings, Bid-Ask spreads (left) and asymmetric
proportional transaction costs (right). The figures report the relation between the expected excess
returns (y-axis) and the risk factor exposures (x-axis), where the factor depends only on the global SDF,
i.e., M̃0 := exp(G), where G = − 1

m

∑m
j=1 log θ′0R

(j). The dashed line corresponds to the coefficient, λ,
in the cross-sectional regression E[Re

USD] = λβUSD + ξ, where the factor loading βUSD is instead the
coefficient in the time series regression Re

USD = β0 + βUSDM̃0 + ε. Data is monthly and runs from
January 1988 to December 2015.
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(a) No Transaction Cost

(b) Symmetric Proportional Transaction Cost

Figure 7. In-sampleR2s Across All Denominations Symmetric Markets. This figure reports the cross-
sectional variation explained in an asymmetric proportional transaction cost setting by a factor model
using only the global factor, M̃0 (black line) and a factor model using both the global factor and the
local currency basket factor, M̃ (i)

0 , (dashed red line). Cross-sectionalR2s are reported when pricing all
assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and international equity
indices (bottom-right). Data is monthly and runs from January 1988 to December 2015.
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(a) Bid-Ask Spread

(b) Asymmetric Proportional Transaction Cost

Figure 8. In-sampleR2s Across All Denominations Asymmetric Markets. This figure reports the cross-
sectional variation explained in an asymmetric proportional transaction cost setting by a factor model
using only the global factor, M̃0 (black line) and a factor model using both the global factor and the
local currency basket factor, M̃ (i)

0 , (dashed red line). Cross-sectionalR2s are reported when pricing all
assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and international equity
indices (bottom-right). Data is monthly and runs from January 1988 to December 2015.
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Figure 9. Out-of-Sample Risk-Return Relationship with Global SDF. The upper panel reports the out-
of-sample risk-return relation for USD-denominated currencies, bonds, and equities in symmetric
market settings, no transaction costs (left) and symmetric proportional transaction costs (right).
The lower panel corresponds to asymmetric market settings, Bid-Ask spreads (left) and asymmetric
proportional transaction costs (right). The figures report the relation between the expected excess
returns (y-axis) and the risk factor exposures (x-axis), where the factor depends on only the global SDF,
i.e., M̃0 := exp(G), where G = − 1

m

∑m
j=1 log θ′0R

(j). The dashed line corresponds to the coefficient, λ,
in the cross-sectional regression E[Re

USD] = λβUSD + ξ, where the factor loading βUSD is instead the
coefficient from the time-series regressionRe

USD = β0 + βUSDM̃0 + ε. Data is monthly and runs from
January 1988 to December 2015.
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Figure 10. Global SDF, Local CB and Verdelhan (2018) Risk Factors. The upper panel plots the global
SDF, M̃0 := exp(G), together with Verdelhan (2018)’s Carry factor. The lower panel plots the local
currency basket together with Verdelhan (2018)’s Dollar factor. Time-series are six-month moving
averages calculated from monthly data running from January 1988 to December 2015.
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Figure 11. Home Bias. This figure plots the optimal portfolio weights in an asymmetric market setting
where transaction costs on foreign assets are six times larger than in local markets. Data is monthly
and runs from January 1988 to December 2015.
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(a) Factor: exp(G)

(b) Factor: exp(G+ CB(i))

Figure 12. In-sample Test of Weak Identification. This figure reports the p-values of Kleibergen and
Zhan (2020) test of weak identification, which tests with a χ2-statistic the null hypothesis β − β = 0
in linear model (18). The null hypothesis is tested for two single-factor models: Panel (a), where the
factor is given by only the global SDF, i.e., M̃0 = exp(G), and Panel (b), where the factor is constructed
from the global factor and the currency basket, i.e., M̃ (i)

0 = exp(G + CB(i)). p-values are reported
when pricing all assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and
international equity indices (bottom-right). Data is monthly and runs from January 1988 to December
2015.
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Table 2. Risk Prices FX: In-Sample

This table reports estimated in-sample risk prices in the two-step Fama and MacBeth (1973) regressions of
USD denominated currency excess returns on estimated factor loadings of (1) the corresponding local SDF

(Musd
0 ), (2) approximation of the latter with the global SDF

(
G = − 1

m

∑m
j=1 log θ′0R

(j)
)

, i.e., M̃0 := exp(G), and

(3) approximation with both the global SDF and the local currency basket factor, i.e., M̃usd
0 := exp(G + CBusd).

The global SDF factor is the average SDF calculated from the cross-section of all local SDFs. The currency basket
factor is the average appreciation of the local currency. Shanken (1992)-corrected standard errors are reported
in brackets. Labels (∗∗) and (∗) denote significance at the 1% and 5% level, respectively. Data runs from January
1988 to December 2015.

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.129∗∗ 100.000 0.000 −0.055∗∗ 100.000 0.000
[0.073] [0.030]

−0.129∗∗ 99.510 0.011 −0.054∗∗ 99.534 0.011
[0.072] [0.029]

−0.129∗∗ 99.991 0.001 −0.055∗∗ 99.991 0.001
[0.073] [0.030]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.079∗∗ 99.370 0.012 −0.053∗∗ 97.187 0.026
[0.044] [0.029]

−0.075∗∗ 99.136 0.014 −0.049∗∗ 97.121 0.026
[0.041] [0.026]

−0.075∗∗ 99.531 0.011 −0.049∗∗ 98.113 0.021
[0.042] [0.027]
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Table 3. Risk Prices All: In-Sample

This table reports estimated in-sample risk prices in the two-step Fama and MacBeth (1973) regressions of USD
denominated currency, bond and equity excess returns on estimated factor loadings of (1) the corresponding

local SDF (Musd
0 ), (2) approximation of the latter with the global SDF

(
G = − 1

m

∑m
j=1 log θ′0R

(j)
)

, i.e., M̃0 :=

exp(G), and (3) approximation with both the global SDF and the local currency basket factor, i.e., M̃usd
0 :=

exp(G + CBusd). The global SDF factor is the average SDF calculated from the cross-section of all local SDFs.
The currency basket factor is the average appreciation of the local currency. Shanken (1992)-corrected standard
errors are reported in brackets. Labels (∗∗) and (∗) denote significance at the 1% and 5% level, respectively. Data
runs from January 1988 to December 2015.

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.129∗∗ 100.000 0.000 −0.061∗∗ 92.059 0.081
[0.050] [0.025]

−0.127∗∗ 99.634 0.017 −0.061∗∗ 93.211 0.074
[0.048] [0.025]

−0.129∗∗ 99.993 0.002 −0.062∗∗ 91.828 0.082
[0.050] [0.025]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.076∗∗ 97.815 0.042 −0.051∗∗ 94.051 0.070
[0.029] [0.020]

−0.072∗∗ 98.144 0.039 −0.048∗∗ 94.963 0.064
[0.028] [0.019]

−0.073∗∗ 97.620 0.044 −0.048∗∗ 93.979 0.070
[0.029] [0.020]
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Table 4. Risk Prices FX: Out-of-Sample

This table reports estimated out-of-sample risk prices in the two-step Fama and MacBeth (1973) regressions
of USD denominated currency excess returns on estimated factor loadings of(1) the corresponding local SDF

(Musd
0 ), (2) approximation of the latter with the global SDF

(
G = − 1

m

∑m
j=1 log θ′0R

(j)
)

, i.e., M̃0 := exp(G), and

(3) approximation with both the global SDF and the local currency basket factor, i.e., M̃usd
0 := exp(G + CBusd).

The global SDF factor is the average SDF calculated from the cross-section of all local SDFs. The currency basket
factor is the average appreciation of the local currency. Shanken (1992)-corrected standard errors are reported
in brackets. Labels (∗∗) and (∗) denote significance at the 1% and 5% level, respectively. Data runs from January
1988 to December 2015.

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

-0.130 13.717 0.117 −0.176∗ 57.589 0.105
[0.239] [0.178]

-0.126 12.621 0.118 −0.176∗ 56.595 0.106
[0.235] [0.176]

-0.158 21.239 0.112 −0.177∗ 64.422 0.096
[0.288] [0.172]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.201∗ 57.622 0.097 −0.187∗∗ 74.664 0.087
[0.218] [0.158]

−0.202∗ 54.134 0.101 −0.184∗∗ 72.942 0.089
[0.212] [0.160]

−0.205∗ 62.858 0.091 −0.179∗∗ 78.922 0.079
[0.217] [0.147]
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Table 5. Risk Prices All: Out-of-Sample

This table reports estimated out-of-sample risk prices in the two-step Fama and MacBeth (1973) regressions
of USD denominated currency, bond and equity excess returns on estimated factor loadings of(1) the

corresponding local SDF (Musd
0 ), (2) approximation of the latter with the global SDF

(
G = − 1

m

∑m
j=1 log θ′0R

(j)
)

,

i.e., M̃0 := exp(G), and (3) approximation with both the global SDF and the local currency basket factor, i.e.,
M̃usd

0 := exp(G + CBusd). The global SDF factor is the average SDF calculated from the cross-section of all
local SDFs. The currency basket factor is the average appreciation of the local currency. Shanken (1992)-
corrected standard errors are reported in brackets. Labels (∗∗) and (∗) denote significance at the 1% and 5%
level, respectively. Data runs from January 1988 to December 2015.

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.111∗∗ 48.375 0.109 −0.106∗∗ 66.376 0.120
[0.165] [0.103]

−0.110∗∗ 48.060 0.109 −0.106∗∗ 65.812 0.121
[0.164] [0.103]

−0.111∗∗ 50.759 0.106 −0.106∗∗ 68.714 0.116
[0.165] [0.099]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Musd
0 M̃0 Musd

0 R2(%) RMSE(%) Musd
0 M̃0 M̃usd

0 R2(%) RMSE(%)

−0.105∗∗ 64.820 0.108 −0.098∗∗ 70.056 0.116
[0.114] [0.088]

−0.105∗∗ 64.170 0.109 −0.096∗∗ 69.183 0.117
[0.115] [0.088]

−0.105∗∗ 66.328 0.105 −0.096∗∗ 71.917 0.112
[0.113] [0.085]
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Table 6. Global SDF and Local CB: Regressions

This table reports estimates of regressions from changes in Global SDF and USD Local CB in symmetric
markets with transaction costs on changes in world equity, Verdelhan (2018)’s Carry and Dollar, FX volatility,
VIX, Miranda-Agrippino and Rey (2020) global cycle, gross capital flows, and He, Kelly, and Manela (2017)
intermediary capital. All variables are standardized, meaning we de-mean and divide each variable by its
standard deviation. Newey and West (1987) adjusted t-statistics are reported in brackets. Labels (∗∗∗), (∗∗),
and (∗) denote significance at the 1%, 5%, and 10% level, respectively. Data is quarterly and runs from January
1988 to December 2015.

Panel A: Global SDF

world equity −0.378∗∗∗

[-3.114]
carry 0.353∗∗

[2.096]
dollar -0.100

[-0.725]
FX vol 0.353∗∗∗

[2.715]
VIX 0.388∗∗∗

[3.223]
global factor −0.270∗∗∗

[-3.405]
capital flow 0.079

[1.196]
intermediary capital −0.311∗∗∗

[-2.682]
R2 (%) 14.273 12.438 1.010 12.483 15.093 7.312 0.629 9.680

Panel B: Local CB

world equity −0.305∗∗∗

[-3.087]
carry 0.145

[1.233]
dollar 0.940∗∗∗

[20.103]
FX vol 0.035

[0.278]
VIX 0.105

[0.914]
global factor -0.050

[-0.434]
capital flow −0.191∗∗

[-2.040]
intermediary capital -0.098

[-0.901]
R2 (%) 9.284 2.100 88.421 0.125 1.108 0.253 3.634 0.968
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Appendix A Proofs

Throughout the proofs, we assume that the vector of payoff z belongs to the space Lq(Ω,F ,P) of

random variables on (Ω,F ,P) with finite q-th moment, for some 1 < q ≤ ∞, and denote the dual

space of Lq by Lp, where 1/p+ 1/q = 1.

Proof of Proposition 1

Sublinearity of the transaction cost function h implies that of the price function, π, and that the set

of payoffs, Ξ, is a convex cone. Hence, by Chen (2001, Theorem 5) and Clark (1993, Theorem 6),

the arbitrage-free condition is equivalent to the no-free-lunch condition (Harrison and Kreps (1979)).

Therefore, by Chen (2001, Theorem 1), there exists a strictly positive, continuous linear functional ψ

defined on Lq, such that ψ|Ξ ≤ π, where |Ξ means “the restriction to Ξ.” On the other hand, by the

Riesz Representation Theorem, there exists a strictly positive element, M , in the dual space of Lq,

i.e. Lp, such that ψ(z) = E[Mz], which implies that E[Mz] ≤ π(z) for all z ∈ Ξ. Consequently, the

definition of the pricing functional, π, implies that

θ′E[Mz] ≤ θ′p + h(θF )

for all θ ∈ Rn, where θF ∈ Rf denotes the sub-vector of portfolio weights of frictional assets. Hence,

θ′FE[MzF ] + θ′SE[MzS ] ≤ θ′FpF + θ′SpS + h(θF ).

Since the above inequality has to hold for all θ ∈ Rn, we have

θ′SE[MzS ] ≤ θ′SpS for all θS ∈ Rs

θ′FE[MzF ] ≤ θ′FpF + h(θF ) for all θF ∈ Rf .

Given that the first inequality has to hold for every θS ∈ Rs, it implies that E[MRS ] = 1, whereas

the second inequality, together with Bauschke and Combettes (2011, Prop. 13.10 (i)) implies that

h∗(E[MzF ] − pF ) ≤ 0, where h∗ is the convex conjugate of the transaction cost function, h. Since

h is closed and sublinear, by Hiriart-Urruty and Lemaréchal (2012, Theorem 3.1.1), it is a support

function of set C defined in (2). Noting the fact that the convex conjugate of a support function of C
is given by the set’s indicator function (i.e., h∗(x) = 0 if x ∈ C and = ∞ otherwise) then implies that

E[MzF ]− pF ∈ C. . We equivalently obtain that E[MRF ]− 1 ∈ C, by considering absence of arbitrage

over the space of returns.

Proof of Proposition 2

Define the linear operator A : Lp → Rn, with A(M) = E[MR] and rewrite the problem in (4) as:

Π = inf
M∈Lp

+

{E[− log(M)] : A(M) ∈ Q} , (A.1)

where Q is a closed and convex set defined as Q = {1NS
} × ({1ND

}+ C), which represents the pricing

constraints. Assuming no arbitrage, Proposition 1 implies that there exists a strictly positive M̃ such
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that E[M̃RS ] − 1 = 0 and E[M̃RF ] − 1 ∈ C. Hence, A(M̃) ∈ ri(A(Lp
+)) ∩ ri(Q), where ri denotes the

relative interior.28 Therefore, by Borwein and Lewis (1992, Theorem 4.2), the following duality relation

then holds:

Π = − min
θ∈Rn

{
E[log(−ATθ)] + δ∗Q(−θ)

}
, (A.2)

where AT is the adjoint map relative to the linear operatorA.29 Since δQ(A(M)) = δ{1s}(A(M)|S) +

δ{1f}+C(A(M)|F ), its convex conjugate by Hiriart-Urruty and Lemaréchal (2012, Theorem 3.1.1) is

given by

δ∗Q(−θ) = −θ′1 + h(−θF ).

The juxtaposition of the above equation with equations (A.1) and (A.2) therefore implies that

inf
M∈Lp

+

{E[− log(M)] : A(M) ∈ Q} = − min
θ∈Rn

{
E[log(−ATθ)]− θ′1 + h(−θF )

}
Therefore, Proposition 2 Korsaye, Quaini, and Trojani (2018) establishes the link between the

solutions of the primal and the dual problems on the two sides of the above equation, which

completes the proof.

Proof of Proposition 3

Let M (i)
0 denote the minimum-entropy SDF in country i. From Definition 1,

M
(i)
0 = arg inf

M∈Lp
+

E[− log(M)]

s.t. E[MR
(i)
S ]− 1 = 0 , E[MR

(i)
F ]− 1 ∈ C,

where C = {y ∈ Rf : y′θF ≤ h(θF ) for all θF ∈ Rf}. The assumption that international financial

markets are integrated as expressed in equation (7) then implies that

M
(i)
0 = arg inf

M∈Lp
+

E[− log(M)]

s.t. E[MX(ij)R
(j)
S ]− 1 = 0 , E[MX(ij)R

(j)
F ]− 1 ∈ C.

Note that solution to the above optimization problem remains unchanged if replace the objective

function with E[− log(M)]− E[logX(ij)]. Consequently,

M
(i)
0 = arg inf

M∈Lp
+

E[− log(MX(ij))]

s.t. E[MX(ij)R
(j)
S ]− 1 = 0 , E[MX(ij)R

(j)
F ]− 1 ∈ C,

which in turn implies that

M
(i)
0 X(ij) = arg inf

M∈Lp
+

E[− log(M)]

s.t. E[MR
(j)
S ]− 1 = 0 , E[MR

(j)
F ]− 1 ∈ C,

Finally, using the fact that the right-hand side of the above equation is the definition of the minimum-

entropy SDF for country j implies that M (i)
0 X(ij) = M

(j)
0 .

28The relative interior of a set A is defined as the interior of the affine hull of set A.
29More specifically, AT : Rn → Lp such that E[AT (θ)M ] = θ′A(M).
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Proof of Corollary 1

Proof of part (a) Let θ(i)
0 denote the solution to country i’s penalized optimal growth portfolio

problem in equation (6), i.e.,

θ
(i)
0 = arg min

θ∈Rn
E[− log(θ′R(i))] + θ′1 + h(θF )

s.t. θ′R(i) > 0

Recall that, by assumption, financial markets are symmetric. Therefore, for any given country j 6= j,

equation (7) implies that

θ
(i)
0 = arg min

θ∈Rn
E[− log(θ′R(j))]− E[logX(ij)] + θ′1 + h(θF )

s.t. X(ij)θ′R(j) > 0.

Since X(ij) > 0, it is immediate that the above can be rewritten as

θ
(i)
0 = arg min

θ∈Rn
E[− log(θ′R(j))] + θ′1 + h(θF )

s.t. θ′R(j) > 0.

The right-hand side of the above equation is equal to θ(j)
0 by definition. Therefore, θ(i)

0 = θ
(j)
0 for all

pairs of countries i 6= j.

Proof of part (b) By Proposition 2, the minimum-entropy SDF of any country i satisfies M (i)
0 =

1/θ′0R
(i), where θ0 is the solution to i’s penalized optimal growth portfolio problem (6) and by part

(a) is independent of the country index i. On the other hand, Proposition 3 guarantees that, when

international markets are symmetric, M (j)
0 = X(ij)M

(i)
0 for all pairs of countries i 6= j. As a result,

θ′0R
(i) = X(ij)θ′0R

(j).

Proof of Theorem 1

Proposition 2 implies that the minimum-entropy SDF of country j satisfies logM
(j)
0 = − log θ′0R

(j),

where θ0 is the solution to j’s penalized optimal growth portfolio problem (6) and by part (a) of

Corollary 1 is independent of the country index i. On the other hand, Proposition 3 guarantees that

logM
(i)
0 = logM

(j)
0 − logX(ij) for all country pairs i 6= j. Putting the above two equations together

therefore implies that

logM
(i)
0 = − log θ′0R

(j) − logX(ij)

for all pairs of countries i 6= j. Multiplying both sides of the above equation by wj , summing over all

j 6= i and using the fact that
∑

j=1wj = 1 implies that

(1− wi) logM
(i)
0 = −

∑
j 6=i

wj log θ′0R
(j) −

∑
j 6=i

wj logX(ij).

Once again, Proposition 2 guarantees that logM
(i)
0 = − log θ′0R

(i). Consequently,

logM
(i)
0 = −

m∑
j=1

wj log θ′0R
(j) −

∑
j 6=i

wj logX(ij),

thus establishing equation (10).
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Internet Appendix:
“The Global Factor Structure of Exchange Rates”∗

This online appendix consists of three sections: Section OA-1 reports summary statistics of
stochastic wedges. Section OA-2 presents in- and out-of-sample risk prices from two-step Fama and
MacBeth (1973) regressions for currency denominations other than USD. And finally section OA-3
reports p-values for the Kleibergen and Zhan (2020) test of weak identification for our out-of-sample
two-step Fama and MacBeth (1973) regressions.

OA-1 Stochastic Wedges

In our paper, we show that in general for an arbitrary choice of a family of minimum dispersion SDFs,
the asset market view may be violated and deviations from it can be captured by a family of Backus,
Foresi, and Telmer (2001) stochastic exchange rate wedges {η(ij)}1≤i,j≤m, defined by:

X(ij) =
M

(j)
0

M
(i)
0

exp(η(ij)). (1)

In Table OA-1, we report summary statistics for stochastic wedges in asymmetric markets for each
currency pair in each currency denomination. We find wedges to be close to zero (taking the log
of each entry) for all currency pairs, highlighting a minuscule role for stochastic wedges even in
asymmetric markets with frictions.

OA-2 In- and Out-Of-Sample Risk Prices Different Currency Denomina-
tions

Recall from Theorem 1 in the main paper that international SDFs admit a two factor representation.
Implying that whenever international markets are symmetric and (w1, . . . , wm) denote a set of weights
such that

∑m
i=1wi = 1. Then, the minimum-entropy SDF of country i satisfies

logM
(i)
0 = G+CB(i), (2)

where

G = −
m∑
j=1

wj log θ
′
0R

(j) and CB(i) = −
∑
j 6=i

wj logX
(ij)

denote the global SDF and the local currency basket of country i, respectively. We estimate prices of
risk for the cross-section of foreign exchange and all assets for each currency denomination i using
equation (2) and a one-factor representation of the local SDFs using only the global SDF factor:

M̃0 = exp(G). (3)

∗Sofonias Alemu Korsaye (email: sofonias.korsaye@unige.ch), Fabio Trojani (email: fabio.trojani@unige.ch), and
Andrea Vedolin (email: avedolin@bu.edu)
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Tables OA-2 to OA-8 report in-sample estimated prices of risk for different currency
denominations. Tables OA-9 to OA-15 report the corresponding out-of-sample estimated prices of
risk.

OA-3 Weak Identification

Figure OA-3 reports the p−values of the Kleibergen and Zhan (2020) test of weak identification for
the various out-of-sample Fama and MacBeth (1973) settings considered in our analysis. The out-of-
sample results align with the in-sample results presented in the main paper. We never find evidence
of weak identification for all asset pricing frameworks based on model-free SDFs in markets with
frictions, since all p−values for the test are minuscule. In contrast, for the asset pricing frameworks
based on model-free SDFs in frictionless markets, we find that the evidence for the cross-section of
long term bond returns may suffer of a weak identification issue for different currency denominations.

OA-4 Tables and Figures

Table OA-1. Stochastic Wedges

This table reports average stochastic wedges with respect to each currency pair in asymmetric markets.
Stochastic wedges are calculated from equation (1) using monthly data running from January 1988 to December
2015.

USD GBP AUD CAD CHF EUR JPY NZD

Bid-Ask Spread

USD 1.0000 1.0008 1.0005 1.0006 1.0003 1.0002 1.0006 1.0011
GBP 1.0004 1.0000 1.0004 1.0003 1.0001 0.9999 1.0003 1.0010
AUD 1.0003 1.0007 1.0000 1.0004 1.0003 1.0001 1.0005 1.0013
CAD 1.0003 1.0004 1.0003 1.0000 1.0000 0.9999 1.0002 1.0009
CHF 1.0004 1.0005 1.0005 1.0004 1.0000 1.0000 1.0004 1.0011
EUR 1.0005 1.0006 1.0006 1.0005 1.0003 1.0000 1.0005 1.0012
JPY 1.0006 1.0006 1.0006 1.0005 1.0003 1.0001 1.0000 1.0012
NZD 0.9997 1.0000 1.0001 0.9998 0.9996 0.9994 0.9998 1.0000

Asymmetric Proportional Transaction Cost

USD 1.0000 1.0018 1.0013 1.0009 1.0006 1.0007 1.0002 1.0022
GBP 1.0012 1.0000 1.0015 1.0011 1.0008 1.0004 1.0005 1.0023
AUD 1.0007 1.0016 1.0000 1.0007 1.0006 1.0005 1.0003 1.0023
CAD 1.0003 1.0012 1.0007 1.0000 1.0002 1.0002 0.9999 1.0018
CHF 1.0005 1.0013 1.0010 1.0006 1.0000 1.0001 0.9999 1.0018
EUR 1.0008 1.0013 1.0012 1.0009 1.0005 1.0000 1.0003 1.0021
JPY 1.0009 1.0018 1.0015 1.0011 1.0007 1.0007 1.0000 1.0023
NZD 1.0000 1.0008 1.0007 1.0001 0.9997 0.9997 0.9994 1.0000
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Table OA-2. Risk Prices: In-Sample (GBP)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(Mgbp

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G), and with both the global SDF and
the local currency basket i.e., M̃gbp

0 := exp(G + CBgbp). The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.120∗∗ 100.000 0.000 −0.051∗∗ 100.000 0.000
[0.059] [0.024]

−0.129∗∗ 99.869 0.006 −0.054∗∗ 99.858 0.006
[0.061] [0.025]

−0.119∗∗ 99.998 0.001 −0.051∗∗ 99.997 0.001
[0.060] [0.024]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.074∗∗ 99.735 0.008 −0.052∗∗ 98.791 0.017
[0.037] [0.027]

−0.075∗∗ 99.465 0.011 −0.049∗∗ 98.535 0.019
[0.036] [0.024]

−0.070∗∗ 99.842 0.006 −0.047∗∗ 99.021 0.015
[0.037] [0.026]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.120∗∗ 100.000 0.000 −0.058∗∗ 92.207 0.080
[0.044] [0.023]

−0.124∗∗ 99.791 0.013 −0.060∗∗ 92.201 0.080
[0.042] [0.022]

−0.120∗∗ 99.996 0.002 −0.057∗∗ 92.167 0.080
[0.045] [0.023]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.071∗∗ 97.729 0.043 −0.051∗∗ 94.714 0.066
[0.027] [0.020]

−0.071∗∗ 97.501 0.045 −0.047∗∗ 94.401 0.068
[0.026] [0.019]

−0.069∗∗ 97.857 0.042 −0.047∗∗ 94.538 0.067
[0.027] [0.019]
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Table OA-3. Risk Prices: In-Sample (AUD)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(Maud

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃aud

0 := exp(G + CBaud) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.121∗∗ 100.000 0.000 −0.049∗∗ 100.000 0.000
[0.097] [0.038]

−0.110∗∗ 99.064 0.011 −0.046∗∗ 99.033 0.011
[0.077] [0.031]

−0.123∗∗ 99.975 0.002 −0.050∗∗ 99.974 0.002
[0.101] [0.039]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Costs

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.071∗∗ 98.824 0.012 −0.046∗∗ 94.402 0.027
[0.054] [0.033]

−0.063∗∗ 97.227 0.019 −0.040∗∗ 92.811 0.031
[0.045] [0.029]

−0.072∗∗ 99.325 0.009 −0.046∗∗ 96.731 0.021
[0.059] [0.040]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.121∗∗ 100.000 0.000 −0.057∗∗ 91.319 0.079
[0.040] [0.021]

−0.116∗∗ 99.099 0.025 −0.054∗∗ 88.406 0.091
[0.042] [0.022]

−0.122∗∗ 99.979 0.004 −0.057∗∗ 91.602 0.077
[0.040] [0.021]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Costs

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.067∗∗ 97.483 0.042 −0.043∗∗ 93.683 0.067
[0.023] [0.016]

−0.065∗∗ 95.756 0.055 −0.043∗∗ 91.304 0.079
[0.024] [0.017]

−0.068∗∗ 97.636 0.041 −0.045∗∗ 94.033 0.065
[0.023] [0.016]
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Table OA-4. Risk Prices: In-Sample (CAD)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(M cad

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃ cad

0 := exp(G + CBcad) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.124∗∗ 100.000 0.000 −0.053∗∗ 100.000 0.000
[0.059] [0.024]

−0.118∗∗ 99.454 0.011 −0.050∗∗ 99.446 0.011
[0.058] [0.024]

−0.125∗∗ 99.987 0.002 −0.053∗∗ 99.987 0.002
[0.059] [0.024]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Costs

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.074∗∗ 99.445 0.011 −0.052∗∗ 98.196 0.019
[0.035] [0.025]

−0.069∗∗ 98.861 0.015 −0.045∗∗ 96.992 0.025
[0.036] [0.026]

−0.074∗∗ 99.572 0.009 −0.049∗∗ 98.472 0.018
[0.035] [0.023]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.124∗∗ 100.000 0.000 −0.060∗∗ 91.369 0.080
[0.040] [0.021]

−0.119∗∗ 99.682 0.015 −0.057∗∗ 91.450 0.080
[0.039] [0.020]

−0.125∗∗ 99.993 0.002 −0.061∗∗ 91.281 0.080
[0.040] [0.021]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.071∗∗ 97.387 0.044 −0.050∗∗ 93.043 0.072
[0.023] [0.017]

−0.067∗∗ 97.337 0.044 −0.045∗∗ 93.484 0.070
[0.023] [0.016]

−0.071∗∗ 97.534 0.043 −0.048∗∗ 93.774 0.068
[0.024] [0.017]
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Table OA-5. Risk Prices: In-Sample (CHF)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(M chf

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃ chf

0 := exp(G + CBchf ) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.126∗∗ 100.000 0.000 −0.054∗∗ 100.000 0.000
[0.078] [0.033]

−0.130∗∗ 99.227 0.014 −0.055∗∗ 99.235 0.014
[0.079] [0.032]

−0.125∗∗ 99.986 0.002 −0.054∗∗ 99.986 0.002
[0.077] [0.032]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.074∗∗ 99.306 0.013 −0.051∗∗ 96.474 0.030
[0.045] [0.030]

−0.076∗∗ 99.340 0.013 −0.050∗∗ 98.151 0.022
[0.045] [0.031]

−0.073∗∗ 99.377 0.013 −0.048∗∗ 97.375 0.026
[0.045] [0.029]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.126∗∗ 100.000 0.000 −0.061∗∗ 92.601 0.080
[0.053] [0.027]

−0.129∗∗ 99.623 0.018 −0.062∗∗ 92.773 0.079
[0.054] [0.028]

−0.125∗∗ 99.993 0.002 −0.061∗∗ 92.510 0.080
[0.053] [0.026]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.070∗∗ 97.728 0.044 −0.049∗∗ 94.347 0.070
[0.030] [0.020]

−0.073∗∗ 97.739 0.044 −0.049∗∗ 94.815 0.067
[0.031] [0.021]

−0.071∗∗ 97.861 0.043 −0.049∗∗ 94.516 0.069
[0.030] [0.021]
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Table OA-6. Risk Prices: In-Sample (EUR)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(Meur

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃eur

0 := exp(G + CBeur) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.130∗∗ 100.000 0.000 −0.056∗∗ 100.000 0.000
[0.064] [0.027]

−0.127∗∗ 99.255 0.013 −0.053∗∗ 99.183 0.013
[0.066] [0.027]

−0.131∗∗ 99.986 0.002 −0.056∗∗ 99.984 0.002
[0.063] [0.027]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.078∗∗ 99.150 0.014 −0.050∗∗ 94.515 0.034
[0.036] [0.023]

−0.074∗∗ 98.953 0.015 −0.048∗∗ 98.209 0.020
[0.038] [0.026]

−0.077∗∗ 99.309 0.012 −0.049∗∗ 96.831 0.026
[0.037] [0.025]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.130∗∗ 100.000 0.000 −0.064∗∗ 92.216 0.080
[0.048] [0.024]

−0.127∗∗ 99.756 0.014 −0.061∗∗ 92.140 0.080
[0.048] [0.023]

−0.131∗∗ 99.995 0.002 −0.064∗∗ 92.178 0.080
[0.048] [0.024]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.075∗∗ 97.581 0.044 −0.052∗∗ 93.452 0.073
[0.027] [0.018]

−0.072∗∗ 97.522 0.045 −0.048∗∗ 94.293 0.068
[0.027] [0.019]

−0.075∗∗ 97.793 0.042 −0.050∗∗ 94.294 0.068
[0.027] [0.019]
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Table OA-7. Risk Prices: In-Sample (JPY)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(M jpy

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃ jpy

0 := exp(G + CBjpy) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.136∗∗ 100.000 0.000 −0.060∗∗ 100.000 0.000
[0.071] [0.030]

−0.136∗∗ 99.673 0.008 −0.057∗∗ 99.624 0.008
[0.086] [0.035]

−0.136∗∗ 99.994 0.001 −0.060∗∗ 99.993 0.001
[0.070] [0.030]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.084∗∗ 99.228 0.012 −0.056∗∗ 95.985 0.027
[0.038] [0.023]

−0.081∗∗ 99.076 0.013 −0.053∗∗ 96.663 0.025
[0.048] [0.031]

−0.082∗∗ 99.416 0.010 −0.055∗∗ 96.990 0.024
[0.039] [0.025]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.136∗∗ 100.000 0.000 −0.067∗∗ 92.717 0.080
[0.054] [0.025]

−0.134∗∗ 99.458 0.022 −0.065∗∗ 93.179 0.077
[0.057] [0.027]

−0.136∗∗ 99.991 0.003 −0.068∗∗ 92.572 0.081
[0.053] [0.025]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.079∗∗ 97.931 0.043 −0.054∗∗ 94.805 0.067
[0.030] [0.019]

−0.076∗∗ 98.116 0.041 −0.051∗∗ 95.091 0.066
[0.032] [0.021]

−0.078∗∗ 97.789 0.044 −0.054∗∗ 94.471 0.070
[0.030] [0.020]
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Table OA-8. Risk Prices: In-Sample (NZD)

This table reports in-sample estimates of risk prices and cross-sectional fit results for FX (top four panels) and
All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local SDF
(Mnzd

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global SDF and
the local currency basket i.e., M̃nzd

0 := exp(G + CBnzd) The global factor is the average SDF calculated from the
cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses. Labels
(∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to December
2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.116∗∗ 100.000 0.000 −0.047∗∗ 100.000 0.000
[0.078] [0.031]

−0.110∗∗ 99.415 0.008 −0.046∗∗ 99.366 0.009
[0.067] [0.027]

−0.117∗∗ 99.985 0.001 −0.047∗∗ 99.983 0.001
[0.081] [0.031]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.071∗∗ 98.591 0.013 −0.047∗∗ 93.092 0.028
[0.044] [0.027]

−0.064∗∗ 97.744 0.016 −0.041∗∗ 93.683 0.027
[0.038] [0.025]

−0.069∗∗ 99.113 0.010 −0.044∗∗ 95.502 0.023
[0.047] [0.031]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.116∗∗ 100.000 0.000 −0.055∗∗ 91.682 0.078
[0.037] [0.019]

−0.117∗∗ 99.450 0.020 −0.055∗∗ 88.666 0.091
[0.038] [0.020]

−0.116∗∗ 99.987 0.003 −0.055∗∗ 92.054 0.076
[0.037] [0.019]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.067∗∗ 97.760 0.041 −0.045∗∗ 93.328 0.070
[0.022] [0.015]

−0.066∗∗ 95.902 0.055 −0.044∗∗ 91.312 0.080
[0.023] [0.016]

−0.065∗∗ 97.800 0.040 −0.043∗∗ 94.516 0.063
[0.021] [0.015]
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Table OA-9. Risk Prices: Out-of-Sample (GBP)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (Mgbp

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃gbp

0 := exp(G + CBgbp) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

-0.282 42.149 0.116 −0.186∗∗ 77.027 0.073
[0.250] [0.137]

-0.295 44.554 0.113 −0.190∗∗ 77.864 0.072
[0.254] [0.138]

-0.303 49.015 0.109 −0.186∗∗ 79.347 0.069
[0.262] [0.139]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.247∗∗ 73.996 0.078 −0.177∗∗ 85.378 0.058
[0.182] [0.127]

−0.244∗∗ 77.560 0.072 −0.171∗∗ 86.300 0.056
[0.178] [0.123]

−0.240∗∗ 79.446 0.069 −0.168∗∗ 86.982 0.055
[0.178] [0.125]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.190∗∗ 69.763 0.121 −0.119∗∗ 77.939 0.103
[0.146] [0.095]

−0.191∗∗ 70.042 0.120 −0.120∗∗ 77.674 0.104
[0.146] [0.096]

−0.190∗∗ 71.987 0.116 −0.119∗∗ 78.577 0.101
[0.151] [0.095]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%) Mgbp
0 M̃0 M̃gbp

0 R2(%) RMSE(%)

−0.139∗∗ 76.923 0.105 −0.109∗∗ 78.913 0.101
[0.108] [0.086]

−0.138∗∗ 77.429 0.104 −0.106∗∗ 79.089 0.100
[0.107] [0.083]

−0.137∗∗ 78.539 0.102 −0.105∗∗ 79.811 0.098
[0.107] [0.082]
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Table OA-10. Risk Prices: Out-of-Sample (AUD)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (Maud

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃aud

0 := exp(G + CBaud) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

-0.200 29.626 0.097 −0.155∗ 65.119 0.068
[0.385] [0.177]

-0.195 30.456 0.097 −0.149∗ 65.258 0.068
[0.360] [0.165]

-0.172 20.734 0.103 −0.158∗ 60.957 0.072
[0.405] [0.198]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.200∗ 68.067 0.065 −0.148∗∗ 78.260 0.054
[0.228] [0.151]

−0.193∗ 66.502 0.067 −0.142∗∗ 76.595 0.056
[0.211] [0.137]

−0.205∗ 61.021 0.072 −0.155∗∗ 74.893 0.058
[0.258] [0.165]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.175∗∗ 71.938 0.103 −0.105∗∗ 74.386 0.099
[0.140] [0.088]

−0.172∗∗ 72.017 0.103 −0.103∗∗ 74.213 0.099
[0.139] [0.087]

−0.177∗∗ 70.025 0.107 −0.108∗∗ 74.373 0.099
[0.139] [0.088]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%) Maud
0 M̃0 M̃aud

0 R2(%) RMSE(%)

−0.120∗∗ 76.449 0.095 −0.090∗∗ 76.060 0.095
[0.096] [0.074]

−0.119∗∗ 75.909 0.096 −0.090∗∗ 74.953 0.098
[0.097] [0.076]

−0.124∗∗ 75.601 0.096 −0.094∗∗ 75.393 0.097
[0.098] [0.077]
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Table OA-11. Risk Prices: Out-of-Sample (CAD)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (M cad

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃ cad

0 := exp(G + CBcad) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

-0.267 38.266 0.114 −0.188∗∗ 77.690 0.068
[0.347] [0.174]

-0.260 38.518 0.114 −0.181∗∗ 76.344 0.070
[0.339] [0.171]

-0.278 39.818 0.112 −0.188∗∗ 78.548 0.067
[0.348] [0.172]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.242∗∗ 77.777 0.068 −0.170∗∗ 86.845 0.053
[0.222] [0.141]

−0.231∗∗ 75.131 0.072 −0.162∗∗ 84.841 0.056
[0.220] [0.144]

−0.242∗∗ 77.715 0.068 −0.168∗∗ 86.945 0.052
[0.219] [0.140]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.181∗∗ 68.474 0.115 −0.113∗∗ 75.257 0.102
[0.142] [0.087]

−0.176∗∗ 68.301 0.116 −0.109∗∗ 74.640 0.103
[0.139] [0.085]

−0.181∗∗ 68.840 0.115 −0.113∗∗ 75.528 0.102
[0.140] [0.086]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%) M cad
0 M̃0 M̃ cad

0 R2(%) RMSE(%)

−0.129∗∗ 75.597 0.101 −0.100∗∗ 76.762 0.099
[0.096] [0.074]

−0.126∗∗ 74.857 0.103 −0.096∗∗ 76.024 0.100
[0.095] [0.073]

−0.130∗∗ 75.671 0.101 −0.100∗∗ 76.876 0.099
[0.096] [0.074]
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Table OA-12. Risk Prices: Out-of-Sample (CHF)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (M chf

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃ chf

0 := exp(G + CBchf ) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.491∗∗ 76.443 0.075 −0.224∗∗ 93.241 0.040
[0.273] [0.148]

−0.507∗∗ 75.238 0.077 −0.233∗∗ 93.521 0.039
[0.290] [0.159]

−0.478∗ 69.537 0.085 −0.233∗∗ 91.638 0.045
[0.254] [0.148]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.295∗∗ 91.901 0.044 −0.193∗∗ 95.858 0.031
[0.191] [0.135]

−0.296∗∗ 93.302 0.040 −0.193∗∗ 96.007 0.031
[0.210] [0.143]

−0.294∗∗ 90.633 0.047 −0.194∗∗ 94.864 0.035
[0.192] [0.134]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.212∗∗ 77.076 0.109 −0.129∗∗ 82.391 0.095
[0.157] [0.094]

−0.217∗∗ 76.843 0.109 −0.132∗∗ 82.535 0.095
[0.162] [0.098]

−0.218∗∗ 75.896 0.112 −0.133∗∗ 81.865 0.097
[0.158] [0.096]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%) M chf
0 M̃0 M̃ chf

0 R2(%) RMSE(%)

−0.149∗∗ 81.709 0.097 −0.115∗∗ 82.696 0.095
[0.109] [0.085]

−0.152∗∗ 82.517 0.095 −0.115∗∗ 83.037 0.094
[0.114] [0.087]

−0.152∗∗ 81.821 0.097 −0.115∗∗ 82.551 0.095
[0.112] [0.085]
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Table OA-13. Risk Prices: Out-of-Sample (EUR)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (Meur

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃eur

0 := exp(G + CBeur) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

-0.280 41.726 0.109 −0.181∗∗ 77.231 0.068
[0.258] [0.132]

-0.289 42.410 0.108 −0.186∗∗ 78.401 0.066
[0.269] [0.137]

-0.268 36.543 0.114 −0.187∗∗ 74.594 0.072
[0.250] [0.133]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.239∗∗ 78.608 0.066 −0.163∗∗ 86.146 0.053
[0.167] [0.113]

−0.245∗∗ 79.147 0.065 −0.167∗∗ 87.241 0.051
[0.172] [0.117]

−0.244∗∗ 74.691 0.072 −0.170∗∗ 84.383 0.056
[0.165] [0.115]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.197∗∗ 74.642 0.109 −0.121∗∗ 79.679 0.098
[0.149] [0.088]

−0.200∗∗ 74.653 0.109 −0.122∗∗ 79.803 0.098
[0.152] [0.090]

−0.201∗∗ 73.548 0.112 −0.124∗∗ 79.321 0.099
[0.150] [0.089]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%) Meur
0 M̃0 M̃eur

0 R2(%) RMSE(%)

−0.142∗∗ 80.484 0.096 −0.108∗∗ 80.623 0.096
[0.101] [0.077]

−0.141∗∗ 80.331 0.096 −0.107∗∗ 80.595 0.096
[0.102] [0.078]

−0.143∗∗ 79.703 0.098 −0.109∗∗ 80.292 0.096
[0.101] [0.077]
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Table OA-14. Risk Prices: Out-of-Sample (JPY)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (M jpy

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃ jpy

0 := exp(G + CBjpy) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

-0.248 38.075 0.107 −0.182∗∗ 72.047 0.072
[0.423] [0.193]

-0.239 34.913 0.109 −0.184∗∗ 70.038 0.074
[0.425] [0.210]

-0.254 43.172 0.102 −0.181∗∗ 74.033 0.069
[0.373] [0.170]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.228∗∗ 71.574 0.072 −0.165∗∗ 83.764 0.055
[0.250] [0.160]

−0.232∗ 69.126 0.075 −0.172∗∗ 82.351 0.057
[0.273] [0.177]

−0.228∗∗ 74.233 0.069 −0.166∗∗ 84.440 0.054
[0.217] [0.143]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.209∗∗ 72.780 0.122 −0.133∗∗ 80.570 0.103
[0.197] [0.112]

−0.210∗∗ 71.794 0.124 −0.134∗∗ 80.067 0.104
[0.200] [0.116]

−0.209∗∗ 75.439 0.115 −0.133∗∗ 81.683 0.100
[0.191] [0.107]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%) M jpy
0 M̃0 M̃ jpy

0 R2(%) RMSE(%)

−0.150∗∗ 79.936 0.104 −0.116∗∗ 81.956 0.099
[0.129] [0.095]

−0.153∗∗ 79.243 0.106 −0.118∗∗ 81.503 0.100
[0.133] [0.099]

−0.151∗∗ 81.422 0.100 −0.116∗∗ 82.809 0.097
[0.124] [0.091]
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Table OA-15. Risk Prices: Out-of-Sample (NZD)

This table reports out-of-sample estimates of risk prices and cross-sectional fit results for FX (top four panels)
and All Assets (bottom four panels) using two-step Fama and MacBeth (1973) procedure corresponding to local
SDF (Mnzd

0 ), approximation of the latter with the global SDF (G), i.e., M̃0 := exp(G),and with both the global
SDF and the local currency basket i.e., M̃nzd

0 := exp(G + CBnzd) The global factor is the average SDF calculated
from the cross-section of all local SDFs. Shanken (1992)-corrected standard errors are reported in parentheses.
Labels (∗∗) and (∗) denote significance at the 1% and 5% level , respectively. Data runs from January 1988 to
December 2015.

Foreign Exchange

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

-0.146 25.002 0.078 −0.124∗ 61.624 0.056
[0.365] [0.175]

-0.148 26.749 0.077 −0.121∗ 63.395 0.054
[0.343] [0.161]

-0.118 16.124 0.082 −0.122∗ 55.774 0.060
[0.386] [0.189]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.163∗ 64.183 0.054 −0.124∗∗ 75.021 0.045
[0.212] [0.143]

−0.158∗ 64.847 0.053 −0.117∗∗ 75.028 0.045
[0.204] [0.136]

−0.158∗ 55.745 0.060 −0.122∗∗ 69.894 0.049
[0.243] [0.161]

All Assets

Panel A: No Transaction Cost Panel B: Symmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.179∗∗ 75.290 0.097 −0.107∗∗ 76.848 0.094
[0.141] [0.087]

−0.177∗∗ 75.514 0.097 −0.106∗∗ 76.734 0.095
[0.140] [0.086]

−0.178∗∗ 73.259 0.101 −0.108∗∗ 76.557 0.095
[0.141] [0.087]

Panel C: Bid-Ask Spread Panel D: Asymmetric Proportional Transaction Cost

Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%) Mnzd
0 M̃0 M̃nzd

0 R2(%) RMSE(%)

−0.126∗∗ 78.845 0.090 −0.095∗∗ 77.371 0.093
[0.099] [0.077]

−0.123∗∗ 78.788 0.090 −0.092∗∗ 77.176 0.094
[0.097] [0.074]

−0.125∗∗ 78.135 0.092 −0.094∗∗ 77.312 0.093
[0.097] [0.075]
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(a) No Transaction Cost

(b) Symmetric Proportional Transaction Cost

Figure OA-1. Out-of-sample R2s Across All Denominations Symmetric Markets. This figure reports
the cross-sectional variation explained in an asymmetric proportional transaction cost setting by a
factor model using only the global factor, M̃0 (black line) and a factor model using both the global
factor and the local currency basket factor, M̃ (i)

0 , (dashed red line). Cross-sectional R2s are reported
when pricing all assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and
international equity indices (bottom-right). Data is monthly and runs from January 1988 to December
2015.
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(a) Bid-Ask Spread

(b) Asymmetric Proportional Transaction Cost

Figure OA-2. Out-of-sample R2s Across All Denominations Asymmetric Markets. This figure reports
the cross-sectional variation explained in an asymmetric proportional transaction cost setting by a
factor model using only the global factor, M̃0 (black line) and a factor model using both the global
factor and the local currency basket factor, M̃ (i)

0 , (dashed red line). Cross-sectional R2s are reported
when pricing all assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and
international equity indices (bottom-right). Data is monthly and runs from January 1988 to December
2015.
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(a) Factor: exp(G)

(b) Factor: exp(G+ CB(i))

Figure OA-3. Out-of-sample Test of Weak Identification. This figure reports the p-values of Kleibergen
and Zhan (2020) test of weak identification, which tests with aχ2-statistic the null hypothesisβ−β = 0
in linear model (18). The null hypothesis is tested for two single-factor models: Panel (a), where the
factor is given by only the global SDF, i.e., M̃0 = exp(G), and Panel (b), where the factor is constructed
from the global factor and the currency basket, i.e., M̃ (i)

0 = exp(G + CB(i)). p-values are reported
when pricing all assets (top-left), currency returns (top-right), long-term bonds (bottom-left), and
international equity indices (bottom-right). Data is monthly and runs from January 1988 to December
2015.
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(a) Factor: exp(G)

(b) Factor: exp(G+ CB(i))

Figure OA-4. In-sample Test of Weak Identification (F−test). This figure reports the p-values of
Kleibergen and Zhan (2020) F−test of weak identification, which tests with a F -statistic the null
hypothesis β − β = 0 in linear model (18). The null hypothesis is tested for two single-factor models:
Panel (a), where the factor is given by only the global SDF, i.e., M̃0 = exp(G), and Panel (b), where
the factor is constructed from the global factor and the currency basket, i.e., M̃ (i)

0 = exp(G + CB(i)).
p-values are reported when pricing all assets (top-left), currency returns (top-right), long-term bonds
(bottom-left), and international equity indices (bottom-right). Data is monthly and runs from January
1988 to December 2015.
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