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Playing with fire? A mean-field game analysis of fire sales
and systemic risk under regulatory capital constraints
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Abstract We analyze the effect of regulatory capital
constraints on financial stability in a large homo-
geneous banking system using a mean-field game
(MFG) model. Each bank holds cash and a tradable
risky asset. Banks choose absolutely continuous trad-
ing rates in order to maximize expected terminal
equity, with trades subject to transaction costs. Cap-
ital regulation requires equity to exceed a fixed mul-
tiple of the position in the tradable asset; breaches
trigger forced liquidation. The asset drift depends
on changes in average asset holdings across banks,
so aggregate de-leveraging creates contagion effects,
leading to an MFG. We discuss the coupled forward-
backward partial differential equation (PDE) system
characterizing equilibria of the MFG and solve the
constrained MFG numerically. Experiments demon-
strate that capital constraints accelerate de-leveraging
and limit risk-bearing capacity. In some regimes,
simultaneous breaches trigger liquidation cascades.
Finally, we discuss several policy mechanisms for
enhancing financial stability.

Résumé Nous analysons l’effet des contraintes de
capital réglementaire sur la stabilité financière dans
un grand système bancaire à l’aide d’une formula-
tion en jeu à champ moyen (JCM). Chaque banque
détient de la liquidité et un actif risqué négociable.
Les banques choisissent des vitesses de négociation
absolument continues afin de maximiser l’espérance
de leur valeur terminale, sous des coûts de
transaction. La régulation impose que les fonds pro-
pres dépassent un multiple fixé de l’actif négociable;
toute violation entraîne une liquidation forcée. La
dérive de l’actif dépend des positions moyenness, de
sorte que le désendettement agrégé engendre des
effets de contagion, menant à un JCM. Nous dis-
cutons le système d’EDP couplées caractérisant les
équilibres du JCM, et nous résolvons le JCM con-
traint numériquement. Les expériences montrent
que les contraintes accélèrent le désendettement et
réduisent la capacité de portage du risque. Dans cer-
tains régimes, des violations simultanées déclenchent
des cascades de liquidation. Enfin, nous étudions
plusieurs mécanismes pour renforcer la stabilité
financière.
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1 Introduction
Contagious interactions between financial institutions play an important role in the amplification of economic
shocks during a financial crisis. A prime example is the 2008–2009 global financial crisis, where comparatively
small losses on the market for US subprime mortgages were magnified by the financial system and caused a
major recession whose repercussions were felt across the world. This has led to a large body of literature on
financial contagion and systemic risk. Most of this work focuses on direct contagion generated by contractual
links between financial institutions such as interbank lending or over-the-counter (OTC) derivatives. Examples
of this line of research include Eisenberg and Noe (2001), Elsinger et al. (2006), Rogers and Veraart (2013),
Glasserman and Young (2016), and Frey and Hledik (2018). Indirect or price-mediated contagion, on the other
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hand, is caused by price effects due to forced de-leveraging, where a distressed financial institution is rapidly
selling some of its risky assets in so-called fire sales in order to stay solvent or to comply with regulatory con-
straints. Typically, these fire sales exhaust demand for risky assets, which pushes asset prices downward and
leads to losses at other financial institutions. The relevance of price-mediated contagion is stressed in many
reports and policy papers on financial regulation. For instance, Daníelsson et al. (2001) discuss the endogeneity
of financial risk and the role of liquidity with the Basel II regulation; contributions dealing with the 2008–2009
financial crisis include Hanson et al. (2011), Braouezec and Wagalath (2019), and several reports by the Basel
committee. In particular, in Basel Committee on Banking Supervision (2014), the Basel committee acknowl-
edges that

at the height of the crisis financial markets forced the banking sector to reduce its leverage in a
manner that amplified downward pressures on asset prices. This de-leveraging process exacerbated
the feedback loop between losses, falling bank capital and shrinking credit availability.

Regulatory capital constraints can significantly amplify price-mediated contagion. In fact, under the Basel
capital adequacy framework, a bank’s risk capital (comprising equity and certain long-term debt instruments)
must exceed a fixed multiple of its risk-weighted assets—a measure of asset size adjusted for risk. Substan-
tial losses can reduce a bank’s capital below the regulatory threshold. Because issuing new equity is typically
costly, banks may resort to fire sales to restore compliance and avoid penalties or liquidation. In a downturn
where many banks face losses simultaneously, these fire sales can propagate distress through price-mediated
contagion, threatening financial stability. This mechanism is widely discussed in the macroprudential regu-
lation literature; see, for example, Hanson et al. (2011). However, only a limited number of mathematical
models explicitly examine the impact of regulatory capital constraints on systemic risk. These contributions
are reviewed in Section 1.1.

In this article, we analyze price-mediated contagion within a model for a large, homogeneous banking sys-
tem. In our setup, a bank may invest in two bank-specific risky assets, a non-tradable asset (e.g., retail loans)
and a tradable asset (e.g., traded credit positions), and cash. The bank aims to maximize the expected value of
its equity at a fixed terminal date. Trading in the tradable risky asset is subject to liquidity constraints, allowing
only absolutely continuous strategies with finite trading rates. Transaction costs increase quadratically with
the trading rate, making rapid portfolio adjustments prohibitively expensive. To capture regulatory capital con-
straints, we assume that a bank’s equity must always exceed a fixed proportion of its asset holdings. Violation
of this constraint triggers regulatory intervention and forced liquidation of the bank’s assets.

Crucially, the expected return (drift) of each bank’s tradable risky asset depends on the rate of change in the
average holdings of the tradable risky assets across the banking system. When banks collectively reduce their
positions—either voluntarily or through liquidation—expected returns decline, leading to price-mediated con-
tagion. This feedback might arise from supply effects (outside investors must absorb greater supply) or informa-
tional effects (investors infer deteriorating fundamentals). Strategic interaction arises in this context because
each bank’s optimal trading rate depends on the drift of its tradable asset, which is itself influenced by the aggre-
gate behaviour of all banks. While each bank is individually small and treats the asset drift as exogenous, in an
equilibrium of the model the perceived drift used in computing the optimal trading strategy must coincide with
the drift induced by the collective trading strategies, which adds a consistency condition. In economic terms,
this corresponds to the notion of a Nash equilibrium, where each bank’s strategy is optimal given the behaviour
of all other banks in the system. Mathematically, the framework of this article corresponds to a mean-field game
(MFG) formulation, where each agent is infinitesimally small and where agents interact through the distribu-
tion of their states (here the equity values and the and asset positions), analogously to mean-field interaction
in statistical physics.

In the absence of capital constraints, the mathematical structure of our model aligns with the MFG frame-
work of Cardaliaguet and LeHalle (2018), who analyze strategic interactions in optimal portfolio execution. As
in their work, the coupled partial differential equation (PDE) system—comprising the dynamic programming
equation for individual banks and the forward equation for the distribution of bank characteristics—can
be reduced to a system of ordinary differential equations (ODEs) with an explicit solution. When capital
constraints are introduced, however, the analysis is substantially more complex. The PDE system becomes a
boundary value problem for which no explicit solution exists, necessitating numerical methods. Solving the
PDE system associated with an MFG is particularly challenging, as it involves both forward and backward
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components and thus requires solving a fixed-point problem. For our MFG model, we employ Picard iterations
combined with a specialized discretization scheme inspired by Achdou and Laurière (2020).

Using this scheme, we study numerically the impact of capital constraints on the stability of the banking
system. We find that banks liquidate their position faster than in the unregulated case, in particular when they
are close to the liquidation boundary. Moreover, they hold, on average, a lower amount of the risky asset, so that
the risk-bearing capacity of the banking system is reduced by the capital constraints. For certain parameter val-
ues, we observe a liquidation cascade, where many banks are violating the risk capital constraints more or less
simultaneously and where the ensuing fire sales have a substantial impact on the drift of the risky assets. These
results strengthen the regulatory literature’s claim that capital constraints can trigger price-mediated conta-
gion. Finally, we assess several macroprudential risk management policies—regulatory tools designed with the
intention to limit the systemic effects of rapid, multi-institution de-leveraging—proposed in the literature (see
Hanson et al. (2011)). Within our framework, the adverse effects of capital constraints vanish when the banking
sector is adequately capitalized. Moreover, financial stability improves if banks breaching capital requirements
are resolved in ways that curb price-mediated contagion, such as transferring assets to a special-purpose vehicle
that is unwound gradually over time.

The remainder of the article is organized as follows. In Section 2, we introduce our setup and the opti-
mization problem of an individual bank. The case without capital constraints, where the MFG has an explicit
solution, is studied in Section 3. In Section 4, we discuss the PDE system for the MFG model with capital
constraints. Numerical experiments studying the implications of capital constraints for financial stability are
discussed in Section 5.

1.1 Literature review
We now review some of the related literature. In the absence of capital constraints, the mathematical struc-
ture of our model aligns with those employed in the analysis of optimal portfolio execution; see, for example,
Cardaliaguet and LeHalle (2018), Casgrain and Jaimungal (2020), or the book Cartea et al. (2015).

Next, we turn to the literature on regulatory capital constraints in formal economic models. Braouezec and
Wagalath (2018) develop a deterministic model of a single bank subject to risk-based capital requirements and
examine its optimal liquidation strategy following an adverse shock to asset values. They show that, when
price impact is present, capital constraints may trigger asset sales that drive an otherwise solvent bank into
default. Crucially, the destabilizing mechanism operates through balance sheet dynamics rather than interbank
contagion. Building on this line of research, Braouezec and Wagalath (2019) analyze a one-period model with
finitely many banks holding a common risky asset. Following an exogenous shock at time 𝑡 = 1, each bank
liquidates the minimum quantity of assets required to satisfy Basel capital requirements. Market illiquidity
renders these fire sales mutually reinforcing, giving rise to a strategic liquidation game. The authors prove
the existence of equilibrium and, using simulations calibrated to the US banking system, demonstrate that
price-mediated contagion can substantially amplify the initial shock. Feinstein (2020) extends this framework
to continuous time with deterministic asset prices; see also Banerjee and Feinstein (2021). In these models,
banks respond passively to capital requirements. By contrast, our approach integrates regulatory constraints
and price-mediated contagion directly into banks’ dynamic portfolio decisions, shaping behaviour even before
liquidation becomes necessary. For further contributions on fire sales and price-mediated contagion, see Cont
and Wagalath (2016), Cont and Schaanning (2019), and the references therein.

We conclude by reviewing mean-field models that address systemic risk. An early contribution in this
direction is Carmona et al. (2015). Further studies closely related to our analysis include Nadtochiy and
Shkolnikov (2019), Hambly et al. (2019), Hambly and Søjmark (2019), Ledger and Søjmark (2020), and
Cuchiero et al. (2023). These works extend the neuron-firing model of Delarue et al. (2015) to a systemic
risk setting, focusing on homogeneous banking networks in which each institution holds a fixed position in
a risky asset and experiences losses whenever another institution’s asset value crosses a default threshold.
The asymptotic behaviour as the number of banks 𝑚 → ∞ is investigated, leading to a characterization in
terms of the associated McKean–Vlasov dynamics, that is, the (stochastic) PDE governing the distribution
of banks’ states. The contagion mechanism underlying these mean-field models is conceptually aligned with
the framework considered in this article, and we draw upon insights from Delarue et al. (2015) and Hambly
et al. (2019) to interpret our numerical results on liquidation cascades.

While the aforementioned papers assume fixed bank positions, recent research investigates the opti-
mal control of such systems from the perspective of a central planner (e.g., a regulator) who may inject
capital into selected banks or influence the drift of their asset values. For example, Cuchiero et al. (2024)
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develop a mean-field model of systemic bank defaults in which a regulator controls the drift of banks’ equity
processes—formulated as a drift-controlled supercooled Stefan problem—to design optimal bailout strategies.
Similarly, Hambly and Jettkant (2023) and Bayraktar et al. (2023) study McKean–Vlasov control problems in
mean-field systemic risk models. From an economic perspective, these works adopt the viewpoint of a central
planner who enforces coordination between banks, whereas the present article focuses on strategic interaction
and Nash equilibria.

The general literature on MFGs is by now large and growing fast. Fundamental contributions include Lasry
and Lions (2006a, 2006b) and Carmona and Delarue (2018). Lasry and Lions (2006a, 2006b) focus on the PDE
approach, whereas Carmona and Delarue (2018) discuss the probabilistic approach based on forward-backward
stochastic differential equations (SDEs). Campi and Fischer (2018) provide first theoretical results on MFGs
with absorption, where the state process of players is stopped upon hitting the boundary of a given set of admis-
sible states—as in the present article. A good general introduction to the PDE approach for MFGs is given in
Cardaliaguet and Porretta (2019).

2 The model
2.1 The banking system
Fix some horizon date 𝑇 and a probability space (Ω,ℱ, Pr). We consider a stylized banking system with a
continuum 𝐼 of identical banks. This model can be interpreted as limit for 𝑁 → ∞ of a finite system with
𝑁 homogeneous banks. Each bank 𝑖 ∈ 𝐼 holds some non-tradable risky asset with value 𝐴𝑖 , for instance, retail
loans. Moreover, it invests into a tradable risky asset 𝑆𝑖, for instance, tradable credit positions, and in cash.
Trading in 𝑆𝑖 is subject to liquidity constraints, allowing only absolutely continuous strategies with finite trad-
ing rate 𝝂 = (𝜈𝑡)0≤𝑡≤𝑇 . Let 𝑄𝑖 = (𝑄𝑖

𝑡)0≤𝑡≤𝑇 denote the inventory process of tradable risky assets held by bank 𝑖,
and let 𝐶𝑖 = (𝐶𝑖

𝑡)0≤𝑡≤𝑇 denote its corresponding cash position. We allow for 𝐶𝑖
𝑡 < 0, representing a net borrow-

ing position—typical for highly leveraged banks—and, for simplicity, assume a zero interest rate, 𝑟 = 0. For a
fixed trading strategy 𝝂, the dynamics of the processes (𝐴𝑖, 𝑄𝑖, 𝑆𝑖) are given by

d𝐴𝑖
𝑡 = 𝜎𝐴d𝑊𝐴,𝑖

𝑡

d𝑄𝑖
𝑡 = 𝜈𝑡d𝑡 + 𝜎𝑄d𝑊𝑄,𝑖

𝑡 (1)

d𝑆𝑖
𝑡 = (𝜇ex + 𝛼𝜇̄𝑡)d𝑡 + 𝜎𝑆d𝑊𝑆,𝑖

𝑡 ,

where 𝛼, 𝜎𝐴, 𝜎𝑆, 𝜎𝑄 > 0, and where W𝑖 = (𝑊𝑄,𝑖,𝑊𝐴,𝑖,𝑊𝑆,𝑖) is a three-dimensional standard Brownian motion.
The Brownian motions W𝑖, 𝑖 ∈ 𝐼 are assumed to be independent. The drift of 𝑆𝑖 consists of two components:
a constant exogenous trend 𝜇ex, and an interaction or contagion term 𝜇̄𝑡. We assume that 𝜇̄𝑡 equals the rate of
change in the average holdings of the tradable risky assets across the banking system so that the drift of 𝑆𝑖

declines when banks collectively reduce their positions in the tradable assets. A mathematical definition of
𝜇̄𝑡 is deferred to equation (10) (for the case without capital constraints) and to (15) (for the case with capital
constraints) since this necessitates some further concepts.

A trading strategy 𝝂 is admissible for bank 𝑖 if it is adapted to the filtration generated by the Brownian motion
W𝑖 and if it satisfies the integrability condition ∫𝑇

0 (𝜈𝑠)
2d𝑠 < ∞. In order to penalize rapid position changes, we

introduce transaction costs and assume that in implementing the strategy 𝝂 a bank incurs instantaneous costs
of size 𝜅𝜈2

𝑡 for some 𝜅 > 0. The cash account finances trading activities including transaction costs and records
proceeds from asset sales. Its dynamics for a given strategy 𝝂 are equal to

d𝐶𝑖
𝑡 = −𝑆𝑖

𝑡d𝑄
𝑖
𝑡 − 𝜅𝜈2

𝑡 d𝑡,

where the first term represents the cost of purchasing assets (for d𝑄𝑖
𝑡 > 0) or the revenue from sales (for d𝑄𝑖

𝑡 <
0), and the second term accounts for transaction costs.

We now discuss the dynamics described in (1) in greater detail. The diffusion term in the dynamics of 𝑄𝑖

reflects the inherent challenges large banks face in precisely managing their holdings of risky assets, because
of factors such as execution delays. Both 𝐴𝑖 and 𝑆𝑖 follow arithmetic Brownian motions and may therefore take
negative values. Although this is a simplification and not fully realistic, it significantly facilitates the analysis.
To further streamline the exposition, the drift of the non-tradable asset 𝐴𝑖 is assumed to be zero; this assumption
can be relaxed without difficulty.
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In our framework, contagion arises through more indirect channels than in standard fire sale models,
where banks typically hold a common asset. Within the context of (1), contagion is primarily driven by
supply-side effects or informational channels. For example, if the banking sector collectively reduces its asset
holdings—either voluntarily or through forced liquidation—external investors must absorb the resulting
excess supply. Additionally, if investors believe that banks possess superior information, collective asset sales
by the banking sector may signal deteriorating fundamentals. Both mechanisms tend to exert downward
pressure on the prices of all tradable assets.

Note, finally, that the Brownian motions W𝑖, 𝑖 ∈ 𝐼, are independent. Thus, banks interact only through the
effect of their trading on the drift term 𝜇̄. Introducing a common noise component into the dynamics of tradable
asset prices—representing global economic shocks—would substantially complicate the model. In such a case,
the distribution of bank characteristics becomes random and is governed by a stochastic partial differential
equation (SPDE). We therefore leave this extension for future work. Systemic risk models of a mean-field type
incorporating common noise include those of Hambly and Søjmark (2019), Ledger and Søjmark (2020), and
Burzoni and Campi (2023).

2.2 The Hamilton–Jacobi–Bellman (HJB) equation
From now on, we omit the superscript 𝑖 since the banks in our system are all identical. The equity value of a
generic bank under the trading strategy 𝝂, defined as the difference between assets and liabilities, is given by

𝑋𝝂
𝑡 = 𝐴𝑡 + 𝑆𝑡𝑄𝝂

𝑡 + 𝐶𝝂
𝑡 .

We assume that each bank selects its trading rate 𝝂 to maximize the expected terminal equity value E
(
𝑋𝝂

𝑇
)

over
all admissible strategies 𝝂.

Next, we derive the dynamic programming or HJB equation for this optimization problem. Using Itô’s prod-
uct formula and the assumption that the Brownian motions are independent, we get the following dynamics
for the process X = (𝑄,𝑋):

d𝑄𝑡 = 𝜈𝑡d𝑡 + 𝜎𝑄d𝑊𝑄
𝑡 ,

d𝑋𝑡 = d𝐴𝑡 + d(𝑆𝑡𝑄𝑡) + d𝐶𝑡 = d𝐴𝑡 + 𝑄𝑡d𝑆𝑡 + 𝑆𝑡d𝑄𝑡 − 𝑆𝑡d𝑄𝑡 − 𝜅𝜈2
𝑡 d𝑡

=
(
𝑄𝑡(𝜇ex + 𝛼𝜇̄𝑡) − 𝜅𝜈2

𝑡
)
d𝑡 + 𝜎𝐴d𝑊𝐴

𝑡 + 𝑄𝑡𝜎𝑆d𝑊𝑆
𝑡 .

Consider a generic bank and assume that the bank takes a deterministic evolution 𝑡↦𝜇(𝑡) of the contagion
term as given. Then, under a constant strategy 𝜈𝑡 ≡ 𝜈, the process X is Markovian with generator

ℒ𝜈
X𝑓 = 𝜈𝜕𝑞𝑓 +

(
𝑞(𝜇ex + 𝛼𝜇(𝑡)) − 𝜅𝜈2)𝜕𝑥𝑓 + 1

2𝜎2
𝑄𝜕

2
𝑞𝑓 + 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑓,

for 𝑓, a twice-differential function on ℝ2. Standard arguments of stochastic control, see for instance
Pham (2009, Chapter 3), give the following HJB equation for the value function 𝑢 of the bank’s optimization
problem:

0 = 𝜕𝑡𝑢 + sup
𝜈∈ℝ

{𝜈𝜕𝑞𝑢 +
(
𝑞(𝜇ex + 𝛼𝜇) − 𝜅𝜈2)𝜕𝑥𝑢 + 1

2𝜎2
𝑄𝜕

2
𝑞𝑢 + 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑢}; (2)

the terminal condition is 𝑢(𝑇, 𝑞, 𝑥) = 𝑥. Moving the non-𝜈-dependent terms out of the supremum in (2) gives
the following equivalent form of the HJB equation:

0 = 𝜕𝑡𝑢 + 𝑞(𝜇ex + 𝛼𝜇(𝑡))𝜕𝑥𝑢 + 1
2𝜎2

𝑄𝜕
2
𝑞𝑢 + 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑢 + sup
𝜈∈ℝ

{
𝜈𝜕𝑞𝑢 − 𝜅𝜈2𝜕𝑥𝑢

}
. (3)

Suppose that (3) has a classical solution. In that case, the optimal trading rate is found by maximizing the last
term in (3) with respect to 𝜈. This yields the feedback control strategy 𝝂∗

𝑡 = 𝜈∗(𝑡, 𝑄𝑡, 𝑆𝑡), where

𝜈∗(𝑡, 𝑞, 𝑥) =
𝜕𝑞𝑢(𝑡, 𝑥, 𝑞)

2𝜅𝜕𝑥𝑢(𝑡, 𝑥, 𝑞)
. (4)

In an equilibrium, 𝜇(𝑡) should coincide with the contagion term 𝜇̄𝑡 resulting from the aggregate trading
behaviour of all banks in the system. This adds the consistency or equilibrium condition 𝜇(𝑡) = 𝜇̄𝑡 to the
model. This condition will be discussed in Sections 3 and 4.
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2.3 Risk capital constraints
Under the Basel capital adequacy framework, a bank’s risk capital must exceed a multiple of its risk-weighted
assets (RWAs). This quantity is essentially a weighted average of asset positions, with weights reflecting risk
levels; see, for example, McNeil et al. (2015). In this article, we consider a simplified representation of this
requirement. First, we model the bank’s risk capital at time 𝑡 as its equity value 𝑋𝑡, which leads to the constraint
𝑋𝑡 > 𝛽𝑅𝑊𝐴𝑡. Second, we assume that 𝑅𝑊𝐴𝑡 consists of two components: a fixed capital charge 𝑅𝑊𝐴A for the
constant position in the non-traded asset 𝐴 representing the banking book, and a position-dependent capital
charge 𝑅𝑊𝐴S

𝑡 for the traded asset 𝑆, so that

RWA𝑡 = RWAA + RWAS
𝑡 .

Following standard risk management practices, the trading book capital charge is computed as the value at risk
VaR𝛼 for a high confidence level 𝛼 of the change in portfolio value over a fixed risk horizon Δ𝑡 (e.g., Δ𝑡 = 10
days), assuming that the position remains unchanged over [𝑡, 𝑡 + Δ𝑡], see McNeil et al. (2015, Chapter 2). This
yields

RWAS
𝑡 = VaR𝛼(𝑄𝑡(𝑆𝑡+Δ𝑡 − 𝑆𝑡)),

where the position 𝑄𝑡 is known at time 𝑡. Under the dynamics of 𝑆 from (1), given 𝑄𝑡, the random variable
𝑄𝑡(𝑆𝑡+Δ𝑡 − 𝑆𝑡) is approximately normally distributed with variance Δ𝑡𝑄2

𝑡 𝜎
2
𝑆 (the mean can be ignored if Δ𝑡 is

small). Hence
RWAS

𝑡 ≈ R̂WA
S
𝑡 =

√
Δ𝑡𝜎𝑆𝑞𝛼|𝑄𝑡|,

where 𝑞𝛼 is the 𝛼 quantile of the standard normal distribution.
In the following formula, we replace RWAS

𝑡 with R̂WA
S
𝑡 . This leads to the following form of the capital

adequacy constraint:

𝑋𝑡 > 𝛽(RWAA + R̂WA
S
𝑡 ) = 𝛽RWAA + 𝛽

√
Δ𝑡𝜎𝑆𝑞𝛼|𝑄𝑡| =∶ 𝛽|𝑄𝑡| + 𝑐 (5)

for suitable constants 𝑐, 𝛽 > 0. We remark that in the derivation of the capital constraint (5) one might use the
expected shortfall or any other positive homogeneous and translation-invariant risk measure instead of VaR𝛼.

We denote the set of acceptable positions by the open set 𝒜 with

𝒜 = {x = (𝑞, 𝑥) ∈ ℝ × ℝ+ ∶ 𝑥 > 𝛽|𝑞| + 𝑐},

and we denote its boundary by 𝜕𝒜. We assume that a bank is liquidated by the regulator at the stopping time
𝜏 = inf{𝑡 ≥ 0 ∶ X𝑡 ∉ 𝒜}, that is, liquidation happens as soon as the bank’s position reaches 𝜕𝒜. Moreover, the
equity holders lose their claim to the bank’s equity in that case. The objective of the bank needs to be modified
accordingly: with capital constraints a bank aims to maximize

E
(
𝑋𝝂

𝑇1{𝜏>𝑇}
)

over all admissible strategies 𝝂. This leads to the additional boundary condition 𝑢 ≡ 0 on 𝜕𝒜 in the HJB
equation. We refer to 𝜏 as the liquidation time of a bank and to 𝜕𝒜 as the liquidation boundary. Note that for
numerical reasons, in Section 4 we consider a slightly relaxed version of the boundary condition on 𝑢.

3 The case without capital constraints
In this section, we derive an explicit solution for the optimal trading strategy and the resulting equilibrium
drift in the absence of capital constraints (the so-called unregulated case). This sets the stage for the subsequent
analysis of the case with capital constraints. Our analysis follows Cardaliaguet and LeHalle (2018), who analyze
a model with similar structure in the context of optimal portfolio execution. We proceed in three steps.

Step 1
In this step, we study the value function for a given drift function drift 𝜇(𝑡). Denote the value function for the
unregulated case by 𝑢unreg. We make the assumption 𝑢unreg(𝑡, 𝑞, 𝑥) = 𝑥 + 𝑣(𝑡, 𝑞). This implies that 𝜕𝑥𝑢unreg = 1
and we get the following HJB equation for 𝑣:

0 = 𝜕𝑡𝑣 + 𝑞(𝛼𝜇(𝑡) + 𝜇ex) + sup
𝜈∈ℝ

{
𝜈𝜕𝑞𝑣 − 𝜅𝜈2}; (6)
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the terminal condition 𝑢unreg(𝑇, 𝑞, 𝑥) = 𝑥 leads to the condition 𝑣(𝑇, 𝑞) = 0 for the function 𝑣. It follows that
the optimal strategy is given by the function

𝜈∗(𝑡, 𝑞) =
𝜕𝑞𝑣(𝑡, 𝑞)

2𝜅 , (7)

in particular, 𝜈∗ is independent of 𝑥. Hence without capital constraints, the MFG model can analyzed purely
in terms of the distribution of the inventory level 𝑄. To determine the solution 𝑣, we make the assumption

𝑣(𝑡, 𝑞) = ℎ0(𝑡) + ℎ1(𝑡)𝑞. (8)

Now sup𝜈∈ℝ
{
𝜈𝜕𝑞𝑣 − 𝜅𝜈2} = (𝜕𝑞𝑣)2∕(4𝜅). Substituting the form of 𝑣 in (8) into the HJB equation (6) gives

0 = ℎ′
0 + ℎ′

1𝑞 + 𝑞(𝛼𝜇(𝑡) + 𝜇ex) +
ℎ2

1
4𝜅 .

This yields the following ODE system for ℎ0 and ℎ1:

ℎ′
1 = −𝛼𝜇(𝑡) − 𝜇ex and ℎ′

0 = −
ℎ2

1
4𝜅 , (9)

with terminal conditions ℎ0(𝑇) = ℎ1(𝑇) = 0. It follows from (7) that the optimal strategy is given by 𝜈∗(𝑡, 𝑞) =
ℎ1(𝑡)∕(2𝜅). Note that this strategy is independent of 𝑞, which is due to the very simple form of the terminal
condition for 𝑢unreg.

Step 2
We next examine the temporal evolution of the inventory-level distribution under the assumption that every
bank employs the optimal trading strategy 𝜈∗(𝑡, 𝑞) and we discuss the contagion term 𝜇̄𝑡. Let 𝑚𝑡(d𝑞) denote the
inventory-level distribution at time 𝑡. For any test function 𝑓 ∶ ℝ → ℝ, define

⟨𝑚𝑡, 𝑓⟩ ∶= ∫
ℝ
𝑓(𝑞) 𝑚𝑡(d𝑞).

Since the Brownian motions driving the inventory dynamics are independent across banks, the measure 𝑚𝑡(d𝑞)
evolves in a fully deterministic fashion. In particular, there is no randomness in the evolution of 𝑚𝑡 despite each
bank’s underlying noise, because these stochastic fluctuations average out in an infinitely large system. In this
context, the average inventory level across the banking system equals ⟨𝑚𝑡, 𝑞⟩, where, with a slight abuse of
notation, we use the symbol 𝑞 to denote the identity map 𝑞↦ 𝑞. Recall that the contagion term 𝜇̄𝑡 is given by
the rate of change of the average inventory level. Using the given notation, we may now give a formal definition
for the case without capital constraints. We put

𝜇̄𝑡 ∶= 𝜕𝑡⟨𝑚𝑡, 𝑞⟩ = 𝜕𝑡 ∫
ℝ
𝑞 𝑚𝑡(d𝑞). (10)

Denote by ℒ𝑄 the generator of 𝑄 given that the bank uses the feedback strategy 𝜈∗(𝑡, 𝑄𝑡), that is,

ℒ𝑄𝑓 = 𝜈∗(𝑡, 𝑞)𝜕𝑞𝑓 + 1
2𝜎2

𝑄𝜕
2
𝑞𝑓.

For 𝑓 in the domain of ℒ𝑄, the weak form of the forward equation for the evolution of the flow of measures
𝑚𝑡(d𝑞) is

𝜕𝑡⟨𝑚𝑡, 𝑓⟩ = ⟨𝑚𝑡, ℒ𝑄𝑓⟩. (11)

If 𝑚𝑡(d𝑞) admits a density, that is, if 𝑚𝑡(d𝑞) = 𝑚(𝑡, 𝑞)d𝑞 for all 𝑡, the classical forward equation for the den-
sity 𝑚(𝑡, 𝑞) can be derived from (11) via integration by parts. However, this equation is not required in the
unregulated case.

Next, we give an alternative representation for 𝜇̄𝑡. Using the weak form of the forward equation and the fact
that ℒ𝑄𝑞 = 𝜈∗, we get that

𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩ = ⟨𝑚𝑡, ℒ𝑄𝑞⟩ = ⟨𝑚𝑡, 𝜈∗(𝑡, ⋅)⟩. (12)

That is, without capital constraints, the contagion term 𝜇̄𝑡 is equal to the average trading rate of the banks.
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8 of 22 TRAXLER AND FREY

This relation warrants a discussion. In their study of MFGs for trade crowding, Cardaliaguet and
LeHalle (2018) adopt the definition 𝜇̄𝑡 = ⟨𝑚𝑡, 𝜈∗(𝑡, ⋅)⟩. This is consistent with the literature on optimal
portfolio execution, where the dependence of asset prices on trading rates is known as permanent price
impact. In this paper, we use the definition 𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩, as this definition extends to the case with
capital constraints. This point is further discussed in Section 4.2.1. Relation (12) also helps us to posi-
tion our framework within the broader literature on MFGs. The definition 𝜇̄𝑡 = ⟨𝑚𝑡, 𝜈∗(𝑡, ⋅)⟩ yields, in
the unregulated case, a formulation as a mean-field game of controls (MFGC), where agents interact
through the joint distribution of their states and controls; this is the viewpoint taken in Cardaliaguet and
LeHalle (2018). In contrast, the definition 𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩ corresponds to an MFG in which agents interact
through the distribution of their states only. However, the coupling is non-standard, since the interaction
at time 𝑡 depends on the measure flow 𝑚𝑠 for 𝑠 in a neighbourhood of 𝑡, thus creating the need to compute
𝜕𝑡⟨𝑚𝑡, 𝑞⟩.

Step 3
Finally, we close the system and identify the equilibrium drift. Using (12), we get that

𝜇̄𝑡 = ⟨𝑚𝑡, 𝜈∗(𝑡, ⋅)⟩ = 1
2𝜅ℎ1. (13)

Recall that in equilibrium, the drift 𝜇(𝑡) used in the computation of the optimal strategy should coincide with
the actual drift resulting from banks’ trading activities; that is, we have the condition 𝜇(𝑡) = 𝜇̄𝑡. Using (9) and
the relation (13), we therefore obtain the following ODEs for ℎ0 and ℎ1:

ℎ′
1 = − 𝛼

2𝜅ℎ1 − 𝜇ex and ℎ′∗
0 = −

ℎ2
1

4𝜅 ,

with terminal condition ℎ0(𝑇) = ℎ1(𝑇) = 0. This leads to the following explicit solution:

ℎ0(𝑡) =
𝜅𝜇2

ex

𝛼3 [𝛼(𝑇 − 𝑡) + 𝜅(𝑒
𝛼
𝜅
(𝑇−𝑡) − 4𝑒

𝛼
2𝜅

(𝑇−𝑡) + 3)],

ℎ1(𝑡) =
2𝜅𝜇ex

𝛼 (𝑒
𝛼
2𝜅

(𝑇−𝑡) − 1),

and, using the assumption for 𝑣,

𝑣(𝑡, 𝑞) =
𝜅𝜇2

ex

𝛼3 [𝛼(𝑇 − 𝑡) + 𝜅(𝑒
𝛼
𝜅
(𝑇−𝑡) − 4𝑒

𝛼
2𝜅

(𝑇−𝑡) + 3)] +
2𝜅𝜇ex

𝛼 (𝑒
𝛼
2𝜅

(𝑇−𝑡) − 1)𝑞.

Remark 1. The special form of the terminal condition for 𝑢unreg implies that the optimal strategy of a bank
does not depend on its inventory. It follows that the contagion term is independent of the measure flow
𝑚𝑡(d𝑞), and the forward equation drops from the equation system for the equilibrium. If we consider a slightly
more general objective of the form max𝝂 E

(
𝑋𝝂

𝑇 − 𝛾(𝑄𝝂
𝑇)

2), the function 𝑣(𝑡, 𝑞) becomes quadratic in 𝑞 and the
equilibrium of the MFG is characterized in terms of a forward-backward ODE system, see Cardaliaguet and
LeHalle (2018).

4 The case with capital constraints
4.1 The PDE system for an equilibrium
In this section, we derive the coupled PDE system for an equilibrium under regulatory capital constraints.

4.1.1 HJB equation and optimal strategy
With capital constraints, the assumption 𝑢(𝑡, 𝑞, 𝑥) = 𝑥 + 𝑣(𝑡, 𝑞) is inconsistent with the boundary condition for
𝑢 on 𝜕𝒜. Moreover, we expect that the optimal trading rate depends on 𝑞 and𝑥, since banks reduce their position
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A MEAN-FIELD GAME ANALYSIS OF SYSTEMIC RISK UNDER CAPITAL CONSTRAINTS 9 of 22

close to the boundary of 𝒜 in order to avoid liquidation. Hence, we need to work with the two-dimensional state
price process X = (𝑄,𝑋) and with the full HJB equation (3).

To complete the description of the HJB equation in the case with capital constraints, we need to give a precise
description of the terminal and boundary conditions that we impose on 𝑢. At 𝑇, we assume that 𝑢(𝑇, 𝑥, 𝑞) = 𝑥.
Prior to 𝑇, we would like to impose the boundary condition 𝑢 ≡ 0 on 𝜕𝒜. However, this leads to a discontinuity
as 𝑡 → 𝑇 as 𝑥 = 𝛽|𝑞| + 𝑐 > 0 on 𝜕𝒜 and hence to problems in the numerics. Hence, we introduce a modified
boundary condition as follows: Consider for fixed 0 < 𝜖 < 𝑇 a smooth function 𝑘 ∶ [0, 𝑇] → ℝ (a regularizer)
with the following properties: 𝑘(𝑇) = 1; 𝑘(𝑡) is non-decreasing for all 𝑡 ≤ 𝑇; 𝑘(𝑡) = 0 for all 𝑡 ≤ 𝑇 − 𝜖. In the
following, we assume that

𝑢(𝑡, 𝑞, 𝑥) = 𝑘(𝑡) ⋅ (𝛽|𝑞| + 𝑐), (𝑡, 𝑞, 𝑥) ∈ [0, 𝑡) × 𝜕𝒜. (14)

Condition (14) ensures that 𝑢 = 0 on 𝜕𝐴 for 𝑡 < 𝑇 − 𝜖 and that at time 𝑇, the boundary and terminal conditions
are consistent. If a smooth solution 𝑢 of the HJB equation (3) with the boundary condition (14) exists, the
optimal trading rate is by (4) equal to 𝜈∗(𝑡, 𝑞, 𝑥) = 𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
(𝑡, 𝑥, 𝑞).

4.1.2 The pre-liquidation distribution

Denote by X𝝂∗
the state process given that banks use the strategy 𝝂∗ and that the contagion term 𝜇̄𝑡 is equal to a

known deterministic function 𝜇(𝑡). Recall the definition of the liquidation time 𝜏 (see Section (2.3)) and define
for 0 ≤ 𝑡 ≤ 𝑇 the pre-liquidation distribution 𝑚𝑡(d𝑞, d𝑥) of X𝝂∗

𝑡 on 𝒜 by

⟨𝑚𝑡, 𝑓⟩ = ∫
𝒜
𝑓(𝑞, 𝑥)𝑚𝑡(d𝑞, d𝑥) = 𝔼

(
𝑓
(
X𝝂∗

𝑡

)
1{𝑡<𝜏}

)
,

where 𝑓 ∶ 𝒜 → ℝ is an arbitrary bounded measurable function. Note that ⟨𝑚𝑡, 1⟩ = ℙ(𝜏 > 𝑡) gives the pro-
portion of non-liquidated or active banks at time 𝑡. It follows that for 𝑡 > 0, ⟨𝑚𝑡, 1⟩ < 1, that is, 𝑚𝑡 is a sub-
probability. Denote by ℒX the generator of X𝝂∗

. For a function 𝑓 in the domain of ℒX with 𝑓 = 0 on 𝜕𝒜, the
weak form of the forward equation for 𝑚𝑡(d𝑞, d𝑥) is

𝜕𝑡⟨𝑚𝑡, 𝑓⟩ = ⟨𝑚𝑡, ℒX𝑓⟩.

Integration by parts and the boundary condition 𝑚(𝑡, 𝑞, 𝑥) ≡ 0 on 𝜕𝒜 give the forward equation for the density
𝑚(𝑡, 𝑞, 𝑥) of 𝑚𝑡. It holds that 𝜕𝑡𝑚(𝑡, 𝑞, 𝑥) = ℒ∗

X𝑚(𝑡, 𝑞, 𝑥), where ℒ∗
X is the adjoint operator of ℒX. More explicitly,

one has

𝜕𝑡𝑚 − 1
2𝜎2

𝑄𝜕
2
𝑞𝑚 − 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑚 + 𝜕𝑞(𝜈∗𝑚) + 𝜕𝑥
((
𝑞(𝜇ex + 𝛼𝜇(𝑡)) − 𝜅(𝜈∗)2)𝑚

)
= 0.

The initial condition is 𝑚(0, ⋅) = 𝑚0 for a given initial density 𝑚0 on 𝒜 with 𝑚0 ≡ 0 on 𝜕𝒜.

4.1.3 Contagion term and PDE system
We may now give a formal definition of the contagion term when capital constraints are imposed.
Denote—with a slight abuse of notation—the function (𝑞, 𝑥)↦ 𝑞 by 𝑞. Then

𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩ = 𝜕𝑡 ∫
𝒜
𝑞 𝑚𝑡(d𝑞, d𝑥). (15)

Note that in (15), we implicitly assume the existence of the derivative 𝜕𝑡⟨𝑚𝑡, 𝑞⟩; this property is nontrivial, see
Section 4.2.2 for details.

Substituting the relation 𝜈∗(𝑡, 𝑞, 𝑥) = (𝜕𝑞𝑢)∕(2𝜅𝜕𝑥𝑢)(𝑡, 𝑥, 𝑞) into the forward equation and using that in
equilibrium 𝜇̄𝑡 and 𝜇(𝑡) must coincide, we get the following system of coupled PDEs for an equilibrium of the
model under capital constraints:
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0 = 𝜕𝑡𝑢 + 𝑞(𝜇ex + 𝛼𝜇(𝑡))𝜕𝑥𝑢 + 1
2𝜎2

𝑄𝜕
2
𝑞𝑢 + 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑢 +
(
𝜕𝑞𝑢

)2

4𝜅𝜕𝑥𝑢
(HJB)

0 = 𝜕𝑡𝑚 − 1
2𝜎2

𝑄𝜕
2
𝑞𝑚 − 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑚 + 𝜕𝑞(
𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
𝑚)

+ 𝜕𝑥((𝑞(𝜇ex + 𝛼𝜇(𝑡)) −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 )𝑚) (forward)

𝜇(𝑡) = 𝜕𝑡 ∫
𝒜
𝑞 𝑚(𝑡, 𝑞, 𝑥)d𝑞d𝑥 (equilibrium)

𝑢(𝑇, 𝑞, 𝑥) = 𝑥 (terminal)

𝑚(0, 𝑞, 𝑥) = 𝑚0(𝑞, 𝑥) (initial)

𝑢(𝑡, 𝑞, 𝑥) = 𝑘(𝑡) ⋅ (𝛽|𝑞| + 𝑐) on 𝒜𝑐 (boundary)

𝑚(𝑡, 𝑞, 𝑥) = 0 on 𝒜𝑐 (boundary).

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎬
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎭

(16)

4.2 Discussion of the PDE system
Next we describe qualitative properties of solutions to (16), assuming that a classical solution of the system
exists. Moreover, we discuss some of the challenges that arise in the mathematical analysis of the PDE sys-
tem (16). In this article, we do not provide formal results on existence and uniqueness; in Section 5, we instead
use numerical methods to study solutions to the MFG equations (16) from an economic perspective.

4.2.1 Contagion term
We begin with a discussion of the contagion term 𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩. Intuitively, there are two sources for conta-
gion: first, the average trading rate of the active banks at 𝑡 and, second, the amount of assets that are sold in
a forced liquidation as banks reach the boundary 𝜕𝒜. We now give a—somewhat heuristic—mathematical
derivation of this decomposition. Suppose that 𝑚(𝑡, 𝑞, 𝑥) is a classical solution of the forward equation that
decays exponentially as |x| → ∞. Denote by n = (𝑛1, 𝑛2)′ the outer normal to 𝜕𝒜 and by Γ(d𝑥, d𝑞) the sur-
face element of 𝜕𝒜. We have, using first the forward equation for 𝑚 and second integration by parts and the
Gauss–Green theorem (see, for instance, Evans (2010, Appendix C.2)) together with the boundary condition
𝑚 ≡ 0 on 𝜕𝒜, that

𝜕𝑡⟨𝑚𝑡, 𝑞⟩ = ∫
𝒜
𝑞 𝜕𝑡𝑚(𝑡, 𝑞, 𝑥) d𝑞d𝑥 = ∫

𝒜
𝑞 ℒ∗

X𝑚(𝑡, 𝑞, 𝑥) d𝑞d𝑥

= ∫
𝒜
𝑚(𝑡, 𝑞, 𝑥)ℒX𝑞 d𝑞d𝑥 + 1

2 ∫
𝜕𝒜

𝑞
(
𝜎2
𝑄𝑛1𝜕𝑄𝑚 + (𝜎2

𝐴 + 𝑞2𝜎2
𝑆)𝑛2𝜕𝑋𝑚

)
(𝑡, 𝑞, 𝑥) Γ(d𝑞, d𝑥).

Note that in its standard form, the Gauss–Green theorem is valid for compact domains. However, it can be
extended to our case using the assumed exponential decay of 𝑚(𝑡, x).

Recall that ℒX𝑞 = 𝜈∗(𝑡, x). Hence we get, as 𝜇̄𝑡 = 𝜕𝑡⟨𝑚𝑡, 𝑞⟩,

𝜇̄𝑡 = ⟨𝑚𝑡, 𝜈∗⟩ + 1
2 ∫

𝜕𝒜
𝑞
(
𝜎2
𝑄𝑛1𝜕𝑄𝑚 + (𝜎2

𝐴 + 𝑞2𝜎2
𝑆)𝑛2𝜕𝑋𝑚

)
(𝑡, 𝑞, 𝑥) Γ(d𝑞, d𝑥).

The first term is the average trading rate of the active banks, similar to the contagion term in the unregulated
case, see (12). The second term gives a mathematical expression for the instantaneous amount of assets that are
sold in a forced liquidation. This term is a weighted average of the amount of assets at the liquidation boundary
𝜕𝒜, with weight function given by

𝑤(𝑡, 𝑞, 𝑥) = 1
2
(
𝜎2
𝑄𝑛1𝜕𝑄𝑚 + (𝜎2

𝐴 + 𝑞2𝜎2
𝑆)𝑛2𝜕𝑋𝑚

)
(𝑡, 𝑞, 𝑥).
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Note that 𝑤 depends on the generator ℒX only via the diffusion part of X and not via the drift. Economically,
this implies that once a bank is sufficiently close to 𝜕𝒜, it cannot reduce the probability of liquidation through
trading, since the trading rate affects only the drift of the state process. We now provide an interpretation of the
form of 𝑤. Fix (𝑞̄, 𝑥̄) ∈ 𝜕𝒜. As shown in Duffie and Lando (2001, Section 2.3), the term

1
2 (𝜎2

𝐴 + 𝑞2𝜎2
𝑆)𝑛2 𝜕𝑋𝑚(𝑡, 𝑞̄, 𝑥̄)

represents the instantaneous flow through the hyperplane 𝐻 = {(𝑞, 𝑥̄) ∶ 𝑞 ∈ ℝ}. Multiplication by 𝑛2 selects
the component of this flow in the direction of the outward unit normal n to 𝜕𝒜 at (𝑞̄, 𝑥̄), that is, the portion of
the flow exiting the domain. An analogous interpretation applies to the term (1∕2)𝜎2

𝑄𝑛1 𝜕𝑄𝑚(𝑡, 𝑞̄, 𝑥̄).

4.2.2 Mathematical challenges
Next we discuss mathematical challenges arising in the analysis of the system (16). We begin with the existence
of a smooth density of X. If we combine the forward equation for 𝑚 and the equilibrium condition, we get the
following nonlinear and nonlocal differential equation for 𝑚:

𝜕𝑡𝑚 − 1
2𝜎2

𝑄𝜕
2
𝑞𝑚 − 1

2
(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)𝜕2

𝑥𝑚 + 𝜕𝑞(
𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
𝑚) + 𝜕𝑥((𝑞(𝜇ex + 𝛼𝜕𝑡⟨𝑚𝑡, 𝑞⟩) −

(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 )𝑚) = 0.

This is the so-called McKean–Vlasov equation for 𝑚. The existence of a smooth solution to this equation is
not guaranteed. The main problem is the contagion term. If the weight 𝛼 of the contagion term is relatively
large or if many banks are close to the liquidation boundary, the feedback effects due to contagion can lead
to a liquidation cascade, where a substantial part of the banking system is liquidated simultaneously, so that
the mapping 𝑡↦⟨𝑚𝑡, 𝑞⟩ has a jump and the contagion term is no longer defined. In the terminology of Nad-
tochiy and Shkolnikov (2019), this constitutes a systemic risk event. In a slightly simpler setting, where 𝑋 is an
uncontrolled one-dimensional process, the existence of solutions to the McKean–Vlasov equation is studied
in detail by Delarue et al. (2015) and Hambly et al. (2019). Based on the results obtained in these papers, we
conjecture that for 𝛼 sufficiently large, there will be a systemic risk event, whereas for 𝛼 sufficiently small,
the McKean–Vlasov equation has a smooth solution; this is also in line with the findings from our numerical
experiments. Note however, that our setup is more complicated than the models from Delarue et al. (2015) or
Hambly et al. (2019) and that the parameters 𝜇ex and 𝜅 and the volatility of 𝑋 and 𝑄 play a role as well.

Finally, we comment on the existence of an equilibrium for the MFG, assuming that the McKean–Vlasov
equation has a smooth solution. Here, we expect positive results in two cases: a) if the initial distribution 𝑚0
has very little mass close to the liquidation boundary, in other words, if the banking system is well capitalized,
the system behaves essentially like the unregulated system for which we have the existence of results; b) if
𝛼, 𝜅−1, and 𝑇 are not too large, we expect existence of a unique solution due to general results on the small-time
asymptotics for MFGs. These conjectures are supported by our numerical experiments; a formal analysis is,
however, relegated to future research. The work of Burzoni and Campi (2023) might be a good starting point
for this.

4.3 Numerical methods for the MFG
In order to solve the coupled PDE system resulting from our MFG numerically, it is necessary to discretize the
respective equations. This can be done via finite difference schemes. To solve the resulting discrete system, we
use an iterative scheme that consists of Picard iterations. Loosely speaking, one starts with a guess 𝑚(0) for the
flow of measures, and one computes the associated contagion term 𝜇̄(0). Then one computes the corresponding
solution 𝑢(1) and the corresponding strategy 𝝂(1) of the HJB equation backward in time, using 𝜇̄(0) as input, and
then one determines the dynamics of the corresponding state process X(1) = X𝝂(1)

. The measure flow 𝑚(1) is
then given as the solution of the forward equation for X(1). From this solution, one computes 𝜇̄(1), then 𝑢(2),
and so on, until some convergence criterion is met. Refinements of this approach are discussed in Achdou and
Laurière (2020) and in Achdou and Kobeissi (2021).

In Appendix A, we present details of our numerical methodology: we explain how to discretize the system
(16) and we give pseudo-code that explains how we implement the Picard iteration. To test our implementation,
we compared the theoretical solution for the unregulated case derived in Section 3 to the numerical solution
obtained via our implementation of the Picard iteration. The errors obtained were very small; therefore, we feel
confident in applying the method to the case with capital constraints as well.
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12 of 22 TRAXLER AND FREY

Table 1: Parameter values for the numerical experiments.

Scenario 𝑚0 𝛼 𝛼active 𝛼liq

1 𝒩(( 5
60

), (0.1 0
0 15)) 1

2 𝒩(( 5
70), (

0.1 0
0 15)) 1

3 𝒩(( 5
60), (

0.1 0
0 15)) 1 0.2

Figure 1: Graph of the optimal strategy (top) and of the value function (bottom) for fixed 𝑞 and several time
points. In the left panels the case with boundary conditions; in the right panels the unregulated case. Parameters
are as in Scenario 1 of Table 1. The liquidation boundary for 𝑞 = 7, 𝑐 = 5, and 𝛽 = 3 lies at 𝑥 = 26.

5 Numerical experiments for the case with capital constraints
In this section, we report results from numerical experiments. In these experiments, we study how capital con-
straints affect the trading rate of individual banks and the stability of the banking system. Moreover, we study
the effectiveness of two macroprudential risk-management policies, namely (i) increasing the capitalization of
the banking system, and (ii) improving the resolution mechanism for banks that violate the capital constraints.

For the numerical solution, we used 𝑁𝑘 = 1000 time steps, 𝑁𝑄 = 50 steps in the 𝑞-direction and 𝑁𝑋 = 150
steps in the 𝑥-direction. We fix the parameters 𝜎𝑄 = 1.4, 𝜎𝑆 = 2, 𝜎𝐴 = 0.1, 𝛽 = 3, 𝑐 = 5, 𝜅 = 20, 𝜇ex = −1.6, and
𝑇 = 1. This parameter setting corresponds to a recession scenario where the assets of all banks trend downward
(𝜇ex = −1.6). Such a scenario is particularly relevant in the context of systemic risk. The remaining parameter
values vary across experiments in order to best illustrate certain economic effects and are therefore reported in
Table 1.
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A MEAN-FIELD GAME ANALYSIS OF SYSTEMIC RISK UNDER CAPITAL CONSTRAINTS 13 of 22

Figure 2: Graph of the optimal strategy (top) and of the value function (bottom) in equilibrium for fixed 𝑥 and
several time points. In the left panels the case with boundary conditions; in the right panels the unregulated
case. Parameters are as in Scenario 1 of Table 1.

Figure 3: Contour plot of the (sub-)density 𝑚(𝑡, 𝑞, 𝑥) at 𝑡 = 0 and at 𝑡 = 𝑇 for the unregulated case (left) and
the regulated case (right); acceptance region 𝒜 in green, parameters as in Scenario 1 of Table 1.
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14 of 22 TRAXLER AND FREY

Figure 4: Summary of the banking system. Parameters are as in Scenario 1 of Table 1. Note, in particular, the
spike in the liquidation intensity starting at 𝑡 = 0.9.

Remark 2. Our model is highly distorted, so that we have not made an attempt to calibrate parameters to
the balance sheet of real banks; instead, we have chosen values with the intention to illustrate the qualitative
properties of our model.

5.1 Properties of the optimal trading rate and the value function
In Figure 1, we plot sections of the optimal strategy 𝜈∗(𝑡, 𝑞, ⋅) and of the value function 𝑢(𝑡, 𝑞, ⋅) for varying
𝑥 and fixed 𝑞 = 7 for various 𝑡. The other parameters are given in the first line of Table 1. Note that 𝜈∗ < 0
in the unregulated case, as 𝜇ex < 0. The left panel corresponds to the case with capital constraints, the right
panel gives the solution in the unregulated case. We see that in the presence of capital constraints, for 𝑥 close
to the liquidation boundary, the value function is nonlinear (essentially concave) in 𝑥. The optimal trading
rate displays an interesting behaviour: for large 𝑥, it is constant and slightly lower than the optimal trading
rate in the unconstrained case; as 𝑥 decreases, 𝜈∗ decreases substantially because the bank wants to reduce its
inventory to avoid liquidation.

In Figure 2, we plot sections of the optimal strategy 𝜈∗(𝑡, ⋅, 𝑥) and of the value function 𝑢(𝑡, ⋅, 𝑥) for varying
𝑞 and fixed 𝑥 = 32 for various 𝑡. If 𝑞 is far away from the liquidation boundary, the optimal strategy is constant
in the regulated and in the unregulated cases and the value function is linear in both cases. We see that for 𝑞
close to the liquidation boundary, banks are de-leveraging to avoid liquidation.

5.2 Stability of the banking system
Next we study the impact of capital constraints on the stability of the banking system. The parameters used are
given in Scenario 1 of Table 1. In this scenario, at 𝑡 = 0, a large fraction of the banking system is close to the
liquidation boundary, due to the low value E(𝑋0) = 60 for the mean of the initial distribution of banks’ equity.
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A MEAN-FIELD GAME ANALYSIS OF SYSTEMIC RISK UNDER CAPITAL CONSTRAINTS 15 of 22

Figure 5: Summary of the banking system with higher initial capital (𝔼[𝑋0] = 70); other parameters as in
Figure 4. Parameters as in Scenario 2 of Table 1.

Figure 3 shows contour plots of the (sub-)density 𝑚(𝑡, 𝑞, 𝑥) at 𝑡 = 0 and 𝑡 = 𝑇. Due to the negative drift
𝜇ex = −1.6, the density curve is transported to the left over time (the average equity value decreases), as we
would expect in a recession scenario.

Figure 4 presents a summary of the evolution of the banking system. We observe that there is a strong spike
in the liquidation intensity (the change in the proportion of liquidated banks per unit of time) and a strong
decrease in 𝜇̄𝑡 at 𝑡 ≈ 0.9, that is, the system is close to a systemic crisis. In fact, if we increase the parameter
𝛼, the Picard iterations cease to converge. Further, the plots show that in the regulated case, the risk-bearing
capacity of the banking system (the average number of risky assets held by the system) and the mean book
value of equity are lower than in the case without capital constraints.

5.3 Macroprudential policy measures
Finally, we analyze the impact of two macroprudential policy measures.

5.3.1 Higher capitalization
It is often argued that a sufficient amount of equity capital in the banking system helps in stabilizing the system,
see for instance Admati and Hellwig (2013) or Hanson et al. (2011). We therefore study how a higher level of
initial equity relative to the liquidation boundary affects the evolution of the system. In Figure 5, we plot the
banking system for the same parameters as in Figure 4 except that we now assume that the mean of the initial
equity distribution is 𝔼(𝑋0) = 70 (Scenario 2 of Table 1) and thus substantially higher than in Figure 4. We
observe that now the behaviour of the system is very similar to the unregulated case; in particular, the spike in
the liquidation intensity starting at 𝑡 = 0.9 has almost disappeared. This clearly supports regulatory efforts to
ensure that banking systems are well capitalized.
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16 of 22 TRAXLER AND FREY

Figure 6: Liquidation intensity with a smaller liquidation impact parameter 𝛼liq. Parameters are given in Sce-
nario 3 of Table 1.

5.3.2 Improving the resolution mechanism
The relatively low values for the average trading rate suggest that a systemic risk event is mostly due to the
immediate liquidation of banks that breach the capital constraints and less due to the trading behaviour of
the active banks. This suggests that financial stability is enhanced if banks violating the capital constraints are
resolved in a way that mitigates price-mediated contagion, for instance, by parking the assets of these banks
in a special-purpose vehicle that is unwound only gradually over time. A simple way to test this conjecture
in our framework is to work with a coefficient 𝛼active for the impact of the trading of active banks and with a
smaller coefficient 𝛼liq for the impact of the liquidation. In Figure 6, we let 𝛼active = 1 and 𝛼liq = 0.2 (Scenario 3
of Table 1). Figure 6 shows the corresponding liquidation intensity. We see that now the spike in the liquida-
tion intensity disappears. This result supports prudent resolution mechanisms for banks breaching the capital
constraints, such as the creation of a special-purpose vehicle where the assets of these banks are parked and
sold gradually over time.

Data sharing
No data were analyzed in this article.
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A Details on the numerical implementation
A1 Overview and notation
Our goal is to numerically solve the coupled PDE system (16) by first discretizing it and then using Picard
iterations, where the value function and density describing the system are updated until convergence. The main
challenges in solving the system numerically are (i) the coupling between the HJB and the forward equation,
(ii) the fact that the HJB equation goes backward in time while the PDE describing the evolution of the density
goes forward in time, (iii) the natural requirement for the density to be nonnegative and mass-preserving, and
(iv) the nonlinearity of our system with respect to various partial derivatives. One common approach from
the literature to overcome the first three challenges is to use a special finite-difference scheme consisting of
a combination of right- and left-sided differences combined with Picard iterations until convergence of the
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system. We briefly describe how we tackle the last challenge mentioned, which arises from the structure of our
PDE system. For completeness, let us start by introducing some standard notation needed for the discretization
of the system.

For positive integers 𝑁𝑇,𝑁𝑄, and 𝑁𝑋 , we define the time step size as

Δ𝑡 = 𝑇
𝑁𝑇

,

and the step size related to the state variables 𝑄 and 𝑋 as

Δ𝑞 =
𝑄max − 𝑄min

𝑁𝑄
,

and

Δ𝑥 =
𝑋max − 𝑋min

𝑁𝑋
,

respectively. The set of discrete time steps on our grid is then 𝔗 = {𝑡𝑘 = 𝑘Δ𝑡, 𝑘 = 0, … ,𝑁𝑇} and the grid corre-
sponding to the state variable isℌ = {ℎ𝑖𝑗 = (𝑞𝑖, 𝑥𝑗) = (𝑄min + 𝑖Δ𝑞, 𝑋min + 𝑗Δ𝑥), 𝑖 = 0, … ,𝑁𝑄, 𝑗 = 0, … ,𝑁𝑋}. We
aim to approximate 𝑢(𝑡𝑘, ℎ𝑖,𝑗) and 𝑚(𝑡𝑘, ℎ𝑖,𝑗) by 𝑢𝑘

𝑖,𝑗 and 𝑚𝑘
𝑖,𝑗 , respectively, through solving the discrete approx-

imations of the coupled PDE system. We define the following finite-difference operators for some function
𝑦 ∶ 𝔗 × ℌ → ℝ:

𝐷𝑡𝑦𝑘
𝑖,𝑗 =

𝑦𝑘+1
𝑖,𝑗 − 𝑦𝑘

𝑖,𝑗

Δ𝑡 , [Discrete time derivative]

𝐷𝑞𝑦𝑘
𝑖,𝑗 =

𝑦𝑘
𝑖+1,𝑗 − 𝑦𝑘

𝑖−1,𝑗

2Δ𝑞 , [Central difference operator in 𝑞]

𝐷𝑅
𝑞 𝑦𝑘

𝑖,𝑗 =
𝑦𝑘
𝑖+1,𝑗 − 𝑦𝑘

𝑖,𝑗

Δ𝑞 , [Right difference operator in 𝑞]

𝐷𝐿
𝑞𝑦𝑘

𝑖,𝑗 =
𝑦𝑘
𝑖,𝑗 − 𝑦𝑘

𝑖−1,𝑗

Δ𝑞 , [Left difference operator in 𝑞]

𝐷𝑥𝑦𝑘
𝑖,𝑗 =

𝑦𝑘
𝑖,𝑗+1 − 𝑦𝑘

𝑖,𝑗−1

2Δ𝑥 , [Central difference operator in 𝑥]

Δ𝑞𝑦𝑘
𝑖 = − 1

Δ𝑞2

(
2𝑦𝑘

𝑖,𝑗 − 𝑦𝑘
𝑖+1,𝑗 − 𝑦𝑘

𝑖−1,𝑗

)
, [Central second order difference in 𝑞]

Δ𝑥𝑦𝑘
𝑖,𝑗 = − 1

Δ𝑥2

(
2𝑦𝑘

𝑖,𝑗 − 𝑦𝑘
𝑖,𝑗+1 − 𝑦𝑘

𝑖,𝑗−1

)
, [Central second order difference in 𝑥]

Δ𝑞𝑥𝑦𝑘
𝑖,𝑗 =

𝐷𝑞𝑦𝑘
𝑖,𝑗+1 − 𝐷𝑞𝑦𝑘

𝑖,𝑗−1

2Δ𝑥

=
𝑦𝑘
𝑖+1,𝑗+1 − 𝑦𝑘

𝑖−1,𝑗+1 − 𝑦𝑘
𝑖+1,𝑗−1 + 𝑦𝑘

𝑖−1,𝑗−1

Δ𝑞Δ𝑥 . [Mixed second order difference]

By definition of these operators, at boundary nodes, the grid needs to be extended by one layer. We extend
both the value function and the density linearly, that is, by assuming 𝑢(𝑞 + Δ𝑞, 𝑥) = 𝑢(𝑞, 𝑥) + (𝑢(𝑞, 𝑥) − 𝑢(𝑞 −
Δ𝑞, 𝑥)), 𝑢(𝑞, 𝑥 + Δ𝑥) = 𝑢(𝑞, 𝑥) + (𝑢(𝑞, 𝑥) − 𝑢(𝑞, 𝑥 − Δ𝑥)), and assuming about 𝑚 similarly. Before discretizing
our equation system, we also need to rewrite some terms. Note that

𝜕𝑞(
𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
𝑚) = 𝜕𝑞(

𝜕𝑞𝑢
2𝜅𝜕𝑥𝑢

)𝑚 +
𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
𝜕𝑞𝑚 = 1

2𝜅
𝜕2
𝑞𝑢𝜕𝑥𝑢 − 𝜕𝑞𝑢𝜕𝑞𝜕𝑥𝑢

(𝜕𝑥𝑢)
2 𝑚 +

𝜕𝑞𝑢
2𝜅𝜕𝑥𝑢

𝜕𝑞𝑚
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and

𝜕𝑥((𝑞(𝜇ex + 𝛼𝜇) −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 )𝑚) = 𝑞(𝜇ex + 𝛼𝜇)𝜕𝑥𝑚 − 𝜕𝑥(
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 )𝑚 −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 𝜕𝑥𝑚

= 𝑞(𝜇ex + 𝛼𝜇)𝜕𝑥𝑚 − 1
4𝜅

𝜕𝑥(𝜕𝑞𝑢)2 ⋅ (𝜕𝑥𝑢)2 − (𝜕𝑞𝑢)2 ⋅ 𝜕𝑥(𝜕𝑥𝑢)2

(𝜕𝑥𝑢)4 𝑚 −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 𝜕𝑥𝑚

= 𝑞(𝜇ex + 𝛼𝜇)𝜕𝑥𝑚 − 1
4𝜅

2𝜕𝑞𝑢𝜕𝑥𝜕𝑞𝑢 ⋅ (𝜕𝑥𝑢)2 − (𝜕𝑞𝑢)2 ⋅ 2𝜕𝑥𝑢𝜕2
𝑥𝑢

(𝜕𝑥𝑢)4 𝑚 −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 𝜕𝑥𝑚.

A2 Discretization
In what follows, with regards to the discretization of the system, we follow the idea proposed by Achdou and
Laurière (2020), who use a mix of right- and left-sided difference operators for the discretization in order to
be able to overcome the challenges (i)–(iii). A numerical Hamiltonian is used that is non-increasing in the
right-sided differences and non-decreasing in the left-sided differences of the state variable.

However, we need to modify this idea due to the complexity of our model. In our PDE system, there are
terms whose monotonicity with respect to derivatives in different dimensions is not clear, as they depend on
derivatives with respect to both 𝑞 and 𝑥. We therefore use central difference operators in 𝑥, but distinguish
between left- and right-sided difference operators in the dimension of 𝑞 in order to overcome challenge (iv).
Thereby, we can achieve better stability of our algorithm. Specifically, we choose the numerical Hamiltonian
such that it is non-increasing in the right-sided difference 𝐷𝑅

𝑞 and non-decreasing in the left-sided difference 𝐷𝐿
𝑞 .

We discretize the term
(𝜕𝑞𝑢)2

4𝜅𝜕𝑥𝑢

in the HJB as

max

⎧
⎪

⎨
⎪
⎩

[(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−]2

4𝜅𝐷𝑥𝑢𝑘
𝑖,𝑗

,
[
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)+
]

2

4𝜅𝐷𝑥𝑢𝑘
𝑖,𝑗

⎫
⎪

⎬
⎪
⎭

.

For the forward equation, we discretize the term

𝜕𝑞(
𝜕𝑞𝑢

2𝜅𝜕𝑥𝑢
𝑚) = 1

2𝜅
𝜕2
𝑞𝑢𝜕𝑥𝑢 − 𝜕𝑞𝑢𝜕𝑞𝜕𝑥𝑢

(𝜕𝑥𝑢)
2 𝑚 +

𝜕𝑞𝑢
2𝜅𝜕𝑥𝑢

𝜕𝑞𝑚

as

1
2𝜅

Δ𝑞𝑢𝑘
𝑖,𝑗𝐷𝑥𝑢𝑘

𝑖,𝑗 − {max [
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]

+ min [
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]}

(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2 𝑚𝑘
𝑖,𝑗

+ 1
2𝜅𝐷𝑥𝑢𝑘

𝑖,𝑗

[
max

{
(𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗)

+(𝐷𝐿
𝑞𝑚𝑘

𝑖,𝑗)
+, (𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗)

−(𝐷𝑅
𝑞𝑚𝑘

𝑖,𝑗)
−
}

+ min
{
(𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗)

+(𝐷𝐿
𝑞𝑚𝑘

𝑖,𝑗)
−, (𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗)

−(𝐷𝑅
𝑞𝑚𝑘

𝑖,𝑗)
+
}]
,

and the term

𝜕𝑥((𝑞(𝜇ex + 𝛼𝜇) −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 )𝑚)

= 𝑞(𝜇ex + 𝛼𝜇)𝜕𝑥𝑚 − 1
4𝜅

2𝜕𝑞𝑢𝜕𝑥𝜕𝑞𝑢 ⋅ (𝜕𝑥𝑢)2 − (𝜕𝑞𝑢)2 ⋅ 2𝜕𝑥𝑢𝜕2
𝑥𝑢

(𝜕𝑥𝑢)4 𝑚 −
(𝜕𝑞𝑢)2

4𝜅(𝜕𝑥𝑢)2 𝜕𝑥𝑚,
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as
𝑞(𝜇𝑒𝑥 + 𝛼𝜇𝑘 + 𝛿)𝐷𝑥𝑚𝑘

𝑖,𝑗

− 1
4𝜅

2
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2
{max [

(
𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]

+ min [
(
𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]}

(𝐷𝑥𝑢𝑘
𝑖,𝑗)4

𝑚𝑘
𝑖,𝑗

+ 1
4𝜅

max {
[(

𝐷𝑅
𝑞 𝑢𝑘

𝑖,𝑗

)−]2
, [
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)+
]

2
} ⋅ 2𝐷𝑥𝑢𝑘

𝑖,𝑗Δ𝑥𝑢𝑘
𝑖,𝑗

(𝐷𝑥𝑢𝑘
𝑖,𝑗)4

𝑚𝑘
𝑖,𝑗 − max

⎧
⎪

⎨
⎪
⎩

[(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)−]2

4𝜅
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2 ,
[
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+
]

2

4𝜅
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2

⎫
⎪

⎬
⎪
⎭

𝐷𝑥𝑚𝑘
𝑖,𝑗.

To shorten the notation, we define

𝐹𝑖𝑗(𝑢𝑘,𝑚𝑘) ∶= 1
2𝜅

⎛
⎜
⎜
⎝

Δ𝑞𝑢𝑘
𝑖,𝑗𝐷𝑥𝑢𝑘

𝑖,𝑗
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2

−
max [

(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
] + min [

(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]

(𝐷𝑥𝑢𝑘
𝑖,𝑗)2

⎞
⎟
⎟
⎠

𝑚𝑘
𝑖,𝑗

+ 1
2𝜅𝐷𝑥𝑢𝑘

𝑖,𝑗

[
max

{
(𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗)

+(𝐷𝐿
𝑞𝑚𝑘

𝑖,𝑗)
+, (𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗)

−(𝐷𝑅
𝑞𝑚𝑘

𝑖,𝑗)
−
}

+ min
{
(𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗)

+(𝐷𝐿
𝑞𝑚𝑘

𝑖,𝑗)
−, (𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗)

−(𝐷𝑅
𝑞𝑚𝑘

𝑖,𝑗)
+
}]

+ 𝑞(𝜇𝑒𝑥 + 𝛼𝜇𝑘 + 𝛿)𝐷𝑥𝑚𝑘
𝑖,𝑗

−

2
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2
⋅ {max [

(
𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]

+ min [
(
𝐷𝐿

𝑞 𝑢𝑘
𝑖,𝑗

)−(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)+
,
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+(
Δ𝑞𝑥𝑢𝑘

𝑖,𝑗

)−
]}

4𝜅(𝐷𝑥𝑢𝑘
𝑖,𝑗)4

𝑚𝑘
𝑖,𝑗

+
max {

[(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)−]2
, [
(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)+
]

2
} ⋅ 2𝐷𝑥𝑢𝑘

𝑖,𝑗Δ𝑥𝑢𝑘
𝑖,𝑗

4𝜅(𝐷𝑥𝑢𝑘
𝑖,𝑗)4

𝑚𝑘
𝑖,𝑗 − max

⎧
⎪

⎨
⎪
⎩

[(
𝐷𝐿

𝑞𝑢𝑘
𝑖,𝑗

)−]2

4𝜅
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2 ,
[
(
𝐷𝑅

𝑞 𝑢𝑘
𝑖,𝑗

)+
]

2

4𝜅
(
𝐷𝑥𝑢𝑘

𝑖,𝑗

)2

⎫
⎪

⎬
⎪
⎭

𝐷𝑥𝑚𝑘
𝑖,𝑗,

which leads to the following discretized PDE system.

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

𝐷𝑡𝑢𝑘
𝑖,𝑗 + 𝑞𝑖(𝜇ex + 𝛼𝜇𝑘)𝐷𝑥𝑢𝑘

𝑖,𝑗 + 1
2
𝜎2
𝑄Δ𝑞𝑢𝑘

𝑖,𝑗 + 1
2

(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2
𝑖
)
Δ𝑥𝑢𝑘

𝑖,𝑗

+ max
⎧

⎨
⎩

[(
𝐷𝑅
𝑞 𝑢𝑘

𝑖,𝑗

)−]2

4𝜅𝐷𝑥𝑢𝑘
𝑖,𝑗

,
[
(
𝐷𝐿
𝑞 𝑢

𝑘
𝑖,𝑗

)+
]

2

4𝜅𝐷𝑥𝑢𝑘
𝑖,𝑗

⎫

⎬
⎭

= 0,

𝐷𝑡𝑚𝑘
𝑖,𝑗 − 1

2
𝜎2
𝑄Δ𝑞𝑚𝑘

𝑖,𝑗 − 1
2

(
𝜎2
𝐴 + 𝜎2

𝑆𝑞
2)Δ𝑥𝑚𝑘

𝑖,𝑗 + 𝐹𝑖,𝑗(𝑢𝑘,𝑚𝑘) = 0

𝜇𝑘 = 𝐷𝑡(
∑
𝑖

∑
𝑗
𝑞𝑖𝑚𝑘

𝑖,𝑗Δ𝑥Δ𝑞),

𝑢(𝑇, 𝑞𝑖, 𝑥𝑗) = 𝑥𝑗 − 𝛾𝑞2
𝑖 ,

𝑚(0, 𝑞𝑖, 𝑥𝑗) = 𝑚0(𝑥𝑖, 𝑞𝑗),
𝑢(𝑡𝑘, 𝑞𝑖, 𝑥𝑗) ≡ 𝑘(𝑡𝑘) ⋅ (𝛽𝑞𝑖 + 𝑐) on 𝒜𝑐,
𝑚(𝑡𝑘, 𝑞𝑖, 𝑥𝑗) ≡ 0 on 𝒜𝑐.
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A3 Picard iteration
The discretized PDE system can now be used to update initial guesses of the value function 𝑢 (backward in
time) and the density 𝑚 (forward in time) iteratively, until a convergence criterion is met.

We implement these Picard iterations in R. The following pseudo code shows the structure of the algorithm.

Iterative Solvers

function iterateu(u,m) iteration of u
for 𝑘 = 𝑁𝑇 − 1, … , 1 backward iteration

𝑙 = 0
𝑢0 = 𝑢
𝜇𝑘 = 𝐷𝑡

(∑
𝑖
∑

𝑗 𝑞𝑖𝑚𝑘
𝑖,𝑗Δ𝑥Δ𝑞

)
drift

while error > tolerance
𝑙 = 𝑙 + 1 iteration step

𝑢𝑘,𝑙
𝑖𝑗 = 𝑢𝑘+1,𝑙

𝑖𝑗 + Δ𝑡 ⋅
⎡
⎢
⎢
⎣

𝑞𝑖(𝜇ex + 𝛼𝜇𝑘)𝐷𝑥𝑢
𝑘,𝑙
𝑖,𝑗 + 1

2
𝜎2

𝑄Δ𝑞𝑢
𝑘,𝑙
𝑖,𝑗 updated value function

+ 1

2

(
𝜎2

𝐴 + 𝜎2
𝑆𝑞

2
𝑖

)
Δ𝑥𝑢

𝑘,𝑙
𝑖,𝑗 + max

⎧

⎨
⎩

[(
𝐷𝑅
𝑞 𝑢𝑘,𝑙

𝑖,𝑗

)−]2

4𝜅𝐷𝑥𝑢
𝑘,𝑙
𝑖,𝑗

,
[
(
𝐷𝐿
𝑞 𝑢

𝑘,𝑙
𝑖,𝑗

)+
]

2

4𝜅𝐷𝑥𝑢
𝑘,𝑙
𝑖,𝑗

⎫

⎬
⎭

⎤
⎥
⎥
⎦

if regulated = TRUE 𝑢𝑘,𝑙
𝑖𝑗 [𝒜𝑐] = 𝑘(𝑡𝑘) ⋅ (𝛽𝑞𝑖 + 𝑐) boundary condition

error = mean(abs(𝑢𝑘,𝑙
𝑖𝑗 − 𝑢𝑘,𝑙−1

𝑖𝑗 )) error between guesses
return 𝑢

function iteratem(u,m) iteration of m
for 𝑘 = 1, … ,𝑁𝑇 − 1 forward iteration

𝑝 = 0
𝑚0 = 𝑚
while error > tolerance

𝜇𝑘,𝑝 = 𝐷𝑡

(∑
𝑖
∑

𝑗 𝑞𝑖𝑚
𝑘,𝑝
𝑖,𝑗 Δ𝑥Δ𝑞

)
drift

𝑝 = 𝑝 + 1 iteration step
𝑚𝑘+1,𝑝

𝑖𝑗 = 𝑚𝑘,𝑝
𝑖𝑗 − Δ𝑡

[
− 1

2
𝜎2

𝑄Δ𝑞𝑚
𝑘,𝑝
𝑖,𝑗 − 1

2

(
𝜎2

𝐴 + 𝜎2
𝑆𝑞

2)Δ𝑥𝑚
𝑘,𝑝
𝑖,𝑗 + 𝐹𝑖𝑗(𝑢𝑘,𝑝,𝑚𝑘,𝑝)

]
updated density

if regulated = TRUE𝑚𝑘+1,𝑝
𝑖𝑗 [𝒜𝑐] = 0 boundary condition

error = mean(abs(𝑚𝑘+1,𝑝
𝑖𝑗 − 𝑚𝑘+1,𝑝−1

𝑖𝑗 )) error between guesses
return m

Picard Iteration

𝑢 = 𝑢𝑇 , 𝑚 = 𝑚0 initialization
𝑛 = 0 iteration step
while error > tolerance iteration on whole grid

𝑛 = 𝑛 + 1 iteration step
𝑢 = iterateu(u,m) iteration of u
𝑚 = iteratem(u,m) iteration of m
error =

[
mean(abs(𝑢𝑘,𝑛

𝑖𝑗 − 𝑢𝑘,𝑛−1
𝑖𝑗 )) + mean(abs(𝑚𝑘,𝑛

𝑖𝑗 − 𝑚𝑘,𝑛−1
𝑖𝑗 ))

]
∕2 error between guesses
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