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OUTLINE

▶ Part I: Unemployment in Italy – Spatio-Temporal Clustering (Mozdzen et al., 2022)

▶ Part II: Partial Clustering for EU Agricultural Subsidies (Mozdzen et al., 2024, major update incoming)

▶ Part III: Repulsive Mixture Weights and the Sparsity-Inducing Partition Prior (Mozdzen et al., 2025)
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PANEL REGRESSION

Model the relationship between a response variable
y and k = 1, ..,K explanatory variables in x :

y = β0 + xβ + ϵ, ϵ ∼ N
(
0, σ2)

observing i = 1, ...,N areal units (states, provinces):

yi = β0 + xiβ + ϵi , ϵi ∼ N
(
0, σ2)

for t = 1, ...,T years:

yi,t = β0 + xi,tβ + ϵi,t , ϵi,t ∼ N
(
0, σ2)

→ collection of time series of areal units


yi,1

yi,2
...

yi,T

=


x1,i,1 x2,i,1 . . . xK ,i,1

x1,i,2 x2,i,2 . . . xK ,i,2
...

x1,i,T x2,i,T . . . xK ,i,T



β1

β2
...
βK

+

ϵi,1

ϵi,2
...

ϵi,T



yi,t

β σ2

xi,t

i=1,...,N t=1,..,T
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CONDITIONAL AUTOREGRESSIVE (CAR) DISTRIBUTION

How can we incorporate the spatial and temporal structure?

CAR distribution:
▶ Random effects of neighbours are correlated, while non-neighboring areas are modeled as

independent, conditionally on the remaining w
▶ Define precision Q according to Leroux et al. (2000) as a weighted average of spatially dependent

and independent correlation structures:

Q(ρ,W ) = ρ(diag(W1)− W ) + (1 − ρ)IN

where ρ is a spatial autoregressive parameter

wt |wt−1 ∼ NI
(
diag(ξ)wt−1, τ

2Q(ρ,W )−1), t = 2, . . . ,T

▶ The joint distribution p(w) is Gaussian,
▶ Depends only on its neighbors

→ Sparse Gaussian Markov Random Field (GMRF)
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ADDING THE SPATIO-TEMPORAL RANDOM EFFECTS

Adding wi,t we obtain the following model:

yi,t = β0 + xi,tβ + wi,t + ϵi,t

Together with wi,t we added:
▶ spatial autoregressive parameter ρ
▶ temporal autoregressive parameter ξ
▶ scale parameter τ2

How to estimate all these parameters?

yi,t σ2xi,t

wi,t

ξ βρ

τ2

i=1,...,N t=1,..,T
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BAYESIAN HIERARCHICAL MODEL

Typical priors:

σ2, τ2 ∼ InverseGamma(3, 2)

ρ ∼ Gamma(6, 1)

wt |wt−1, ξ, τ
2, ρ ∼ N

(
ξwt−1, τ

2Q(ρ,W )−1)
w1|τ2, ρ ∼ N

(
0, τ2Q(ρ,W )−1)

β ∼ N
(
0, IK

)
ξ ∼ Beta

(
1, 1
)

yi,t σ2xi,t

wi,t

ξ βρ

τ2

i=1,...,N t=1,..,T
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MOTIVATION: ITALIAN UNEMPLOYMENT RATES
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There appears to be potential to cluster the regressors (including the intercept) as well as the temporal
effects!
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THE CHINESE RESTAURANT PROCESS (CRP)

▶ Customers enter and choose a table, their seating pattern defines a partition π[n].

P(customer i joins table k |π[n]) =
{ nk,−i

α+n−1 if k ∈ π[n],
α

α+n−1 otherwise.

Figure adopted from Gershman and Blei (2012)
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THE CHINESE RESTAURANT PROCESS (CRP)

▶ Each table k is associated with a cluster and a cluster parameter θk drawn from prior G0

▶ Since the partition π[n] is random, the CRP defines a distribution on partitions

π[N] ∼ CRP(α,N)

P(π[N]) =
αK

α(N)

∏
k∈π[N]

(|k | − 1)!, α(N) := α(α+ 1) . . . (α+ N − 1)

▶ We can use the CRP to define a mixture model:

π[N] ∼ CRP(α,N)

θk |π[N] ∼ G0 for k ∈ π[N]

yi |θ, π[N] ∼ F (θk) for k ∈ π[N], i ∈ k

▶ The CRP distribution is invariant to ordering (probability only depends on the size of the clusters and
α) → exchangeability property

What is the random measure underlying the CRP?
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THE DIRICHLET PROCESS (DP)

The DP is a completely random measure with

▶ atoms ϕk drawn from a base distribution G0:

ϕk
i.i.d .∼ G0 k = 1, 2, ...

▶ weights wk drawn according to the
stick-breaking process by Sethuraman (1994).

G =
∞∑

k=1

wkδϕk

Ferguson (1973) defined the DP as random
measure G ∼ DP(α,G0) that satisfies:

(G(A1), ...G(AK )) ∼ D(αG0(A1), ...αG0(AK ))

▶ α is the concentration parameter
▶ G0 is the base measure Draws from a DP for small, medium and high α
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THE COMPLETE MODEL

New Model:

σ2, τ2 ∼ InverseGamma(3, 2)

ρ ∼ Gamma(6, 1)

wt |wt−1, ξ, τ
2, ρ ∼ N

(
ξwt−1, τ

2Q(ρ,W )−1)
w1|τ2, ρ ∼ N

(
0, τ2Q(ρ,W )−1)

G ∼ DP(α,P0)

α ∼ Gamma(3, 1)

P0 = N (µ0,Σ0)× Beta(α0, β0) ,

β, ξ ∼ G

yi,t σ2xi,t

wi,t

ξ βρ

τ2

Gα G0

i=1,...,N t=1,..,T

k=1,...,K
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NAVIGATING A COMPLEX CLUSTERING LANDSCAPE

How to choose a single partition from our posterior draws s(1), ..., s(M)?
▶ Variable number of clusters and label switching pose challenges for posterior analysis
▶ Past solutions include

• Using identifiability constraints (Frühwirth-Schnatter, 2001; Richardson & Green, 1997)
• Reordering algorithms (Papastamoulis & Iliopoulos, 2010; Rodríguez & and, 2014)

Decision-theoretic approach
▶ Summarize posterior by minimizing suitable loss function L

s⋆ = argmin
ŝ

E (L(s, ŝ) | X ) ≈ 1
M

M∑
h=1

L(s(m), ŝ | X )

where M is the number of MCMC iterations, s(m) a sample of the allocation vector
▶ Prominent choices for L include the Binder loss (Binder, 1978) and the Variation of Information

(Meilă, 2007) as well as generalizations therof (e.g., Dahl et al., 2022)
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ITALIAN UNEMPLOYMENT DATA

Data
▶ Obtained from the Italian National Institute of Statistics (ISTAT)
▶ Areal units: Italian provinces (i.e., I = 110)
▶ Time period from 2005 to 2017 (i.e., T = 13)
▶ Quantity of interest: unemployment rate

Covariates:
▶ agri : employment in agriculture sector
▶ ind : employment in industrial sector
▶ serv : employment in service sector
▶ cons: employment in construction sector
▶ popdens: population density
▶ partrate: indicator of willingness to work
▶ empgrowth: employment growth
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SOME RESULTS
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Posterior means of the regression coefficients β within each cluster conditional
on the chosen cluster allocation

Cluster (size) intercept agri ind cons serv partrate empgrowth lpopdens
Cluster 1 (55) -0.282 -0.402 -0.947 -0.201 -0.784 -0.090 -0.056 0.057
Cluster 2 (22) 0.056 0.433 0.620 0.157 0.755 0.022 -0.030 -0.002
Cluster 3 (9) -0.536 -0.150 -0.092 0.036 -0.050 0.764 -0.212 0.114
Cluster 4 (9) 1.924 0.042 0.590 -0.226 0.459 0.633 -0.171 0.130
Cluster 5 (9) 2.786 0.119 0.299 0.067 0.318 1.034 -0.166 -0.251
Cluster 6 (1) 1.268 -1.710 -0.108 0.227 0.491 -0.064 -0.314 -1.448
Cluster 7 (5) 0.481 -0.687 -1.151 -0.344 -1.021 0.658 -0.163 -0.319
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SPATIO-TEMPORAL RANDOM EFFECTS
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Figure. Average estimated spatio-temporal random effects (left panel) and the estimated time series for each
province (right panel). The yellow and orange outlines on the map delineate the northern and southern Italian
provinces, respectively.
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MODEL COMPARISON

Out-of-sample MAE of the competing models and the Bayesian spatio-temporal clustering model

Model 2009 2010 2011 2012 2013 2014 2015 2016 2017 Average
Pooled 0.957 0.865 0.775 0.428 0.386 0.524 0.450 0.477 0.482 0.594
IFE 0.254 0.238 0.196 0.474 0.554 0.578 0.400 0.373 0.421 0.387
Pooled-SAR 0.403 0.369 0.327 0.672 0.712 0.756 0.523 0.557 0.513 0.537
IFE-SAR 0.371 0.280 0.254 0.498 0.524 0.502 0.320 0.328 0.345 0.380
PS-ANOVA 0.287 0.241 0.216 0.463 0.379 0.317 0.306 0.334 0.329 0.319
PS-ANOVA-SAR 0.287 0.241 0.216 0.463 0.379 0.317 0.306 0.334 0.329 0.319
ST.CARar 0.295 0.268 0.323 0.617 0.730 0.832 0.264 0.267 0.596 0.466
BSTC 0.237 0.232 0.216 0.499 0.350 0.356 0.239 0.241 0.284 0.295

Logarithms of the one-step-ahead predictive likelihoods, their sum and the WAIC of the Bayesian models

Model 2009 2010 2011 2012 2013 2014 2015 2016 2017 Sum WAIC
ST.CARar -63 -54 -43 -89 -134 -181 -70 -86 -140 -861 2013
BSTC -56 -37 -42 -172 -66 -125 -63 -69 -107 -737 -737
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INFINITE VS. FINITE MIXTURE MODELS

Computationally powerful representations:
▶ Chinese Restaurant Process
▶ Pólya Urn Model (Blackwell & MacQueen, 1973; Sethuraman, 1994)

Paving the way for a myriad of efficient sampling algorithms:
▶ Conjugate sampler (Escobar & West, 1995; Lo, 1984; Neal, 2000)
▶ No-Gaps Sampler by MacEachern and Müller (1998)
▶ Neal’s Algorithm 8 (Neal, 2000)

Infinite vs. finite, in a nutshell:
▶ Miller and Harrison (2014) showed DPM’s inconsistency (the number of clusters in a DPM does not

concentrate around the truth)
▶ Ascolani et al. (2023) and Giordano et al. (2023) showed that the DPM is consistent when a suitable

prior is placed on the concentration parameter α
▶ Miller and Harrison (2018) translated the BNP algorithms into the framework of mixtures of finite

mixtures
▶ Frühwirth-Schnatter and Malsiner-Walli (2019) showed similarities between finite and infinite

mixtures
→ Here, we try to be agnostic and go nonparametric only for computational convenience
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INFINITE VS. FINITE MIXTURE BSTC

For our model (even though the prior distributions for the number of clusters are not identical, cf.
Frühwirth-Schnatter & Malsiner-Walli, 2019), we tend to get similar results
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Barplots for K̂I obtained from the 50 simulated datasets for the BSTC-MFM (left) and BSTC (right) models. The true
value for the simulated data is K = 7.
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PART II: PARTIAL CLUSTERING

1 The Multinomial Logit Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Pooling and Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Partial Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Application to EU Land-Use Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

19 / 61



MOTIVATION

▶ The Common Agricultural Policy (CAP) is the EU’s largest budget item (roughly C50B annually),
aiming to balance:
• Agricultural productivity
• Environmental sustainability
• Rural development

▶ Highly heterogeneous across Europe: Varies by region, climate, farm structure, socio-economic
context (Kuemmerle et al., 2016; Levers et al., 2018; Reidsma et al., 2006)
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LAND-USE DECISIONS AND ENVIRONMENTAL TRADE-OFFS

▶ Land-use decisions are compositional: increasing one land type reduces others
• CAP subsidies often favor arable expansion, sometimes at the expense of grasslands or

forests (Giannakis & Bruggeman, 2015; Overmars et al., 2013; Rega et al., 2019)
• Example: maintaining land for sheep farming vs. converting it to forests for carbon

sequestration (O’Neill et al., 2020)
▶ Multinomial Logit models naturally model such compositional outcomes

• Widely used in land-use analysis (Debella-Gilo & Etzelmüller, 2009; Hao et al., 2015; Temme &
Verburg, 2011)

▶ Satellite data from Land Use and Coverage Area Frame Survey and the Corine Land Cover
databases
• N = 912 EU regions (NUTS-3) across 21 countries
• T = 10 years from 2008 to 2018
• Consolidated into J = 5 defined land-use categories Cropland, Grassland, Forest, Urban, Other

Natural Land
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BAYESIAN ESTIMATION FOR THE MULTINOMIAL LOGIT MODEL

▶ Observations Yit· can be seen as a sample from a J-dimensional multinomial distribution with
probabilities pitj , j = 1, . . . , J

Yit· ind∼ Multinomial(1, pit1, . . . , pitJ)

▶ Probabilities link covariates X and regression parameters β with the log odds

log

(
pitj∑J
j=1 pitj

)
= X T

it·βi·j → pitj =
exp(X T

it·βi·j)∑J
j=1 exp(X T

it·βi·j)

▶ No direct conjugacy exists for the logit model due to the nonlinearity of the logistic link
▶ Early strategies (Frühwirth-Schnatter & Frühwirth, 2007; Held & Holmes, 2006; Scott, 2011) used a

utility representation (McFadden, 1974)
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POSTERIOR SAMPLING USING PÓLYA-GAMMA VARIABLES

Polson et al. (2013) propose a breakthrough via Pólya-Gamma augmentation:
▶ Let ω ∼ PG(b, 0), with b > 0, then

(eψ)a

(1 + eψ)b = 2−beκψ
∫ ∞

0
e−ωψ2/2 p(ω) dω

where κ = a − b/2 for all a ∈ R
▶ Applied to the likelihood of a logistic regression:

p(yi | β) =

(
exp(X T

it·βi·j)
)yi

1 + exp(X T
it·βi·j)

∝ exp
(
κiX T

it·βi·j
) ∫ ∞

0
exp

{
−ωi

(
X T

it·βi·j
)2

/2
}

p (ωi | 1, 0) dωi

⇒ p(y | β, ω) ∝ exp

{
−1

2
(z − Xβ)TΩ(z − Xβ)

}
where z = (κ1/ω1, . . . , κn/ωn) and Ω = diag (ω1, . . . , ωn)

▶ Transforms the logistic likelihood into a conditionally Gaussian form
▶ Enables Gibbs sampling without utility latent variables
▶ Choi and Hobert (2013) show corresponding Markov chain is uniformly ergodic

Further improvement: Zens et al. (2024)
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MULTINOMIAL LOGISTIC REGRESSION

▶ Held and Holmes (2006) write the likelihood conditional on β−j

p(Y··j | β−j) =
N∏

i=1

T∏
t=1

(
exp(ηitj)

1 + exp(ηitj)

)yitj
(

1
1 + exp(ηitj)

)1−yitj

ηitj = X T
it·βi·j − Citj Citj = log

∑
l ̸=j

expX T
it·βi·l

→ desired binary logistic form

p(Y··j | ω,X ,β) ∝
T∏

t=1

N∏
i=1

exp
{ωitj

2
(ηitj − κitj/ωitj)

2
}

∝
T∏

t=1

exp

{
−1

2

(
X T·t·β··j − C·tj − ztj

)T
Ωtj
(
X T·t·β··j − C·tj − ztj

)}
where

κitj = Yitj −
1
2
, ztj = (κ1tj/ω1tj , . . . , κNtj/ωNtj) , Ωtj = diag (ω1tj , . . . , ωNtj) .

→ Straightforward Gaussian posterior for β··j
→ requires sampling categories j in a loop
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TO POOL OR NOT TO POOL?

▶ Krisztin et al. (2022):
• Spatial multinomial logit with autoregressive dependence
• Spatial structure via fixed neighborhood matrix
• Limitation: common regression coefficients across all areal units:

β1·j = β2·j = · · · = βN·j
→ Complete pooling

▶ Temme and Verburg (2011):
• Region-specific multinomial logit models
• Separate coefficients for each region

β1·j ̸= β2·j ̸= . . . ̸= βN·j
• Limitation: no information sharing across regions and N × (K + 1)× (J − 1) = 51072

parameters in our case
→ No pooling

→ Cluster the areal units!
• The discreteness of DP samples implies that multiple areal units may share the same

parameters → considered part of the same cluster
• We encode this clustering through s = (s1, . . . , sN), where si ∈ {1, . . . ,M}
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THE BAYESIAN NONPARAMETRIC CLUSTERING MODEL

Yi·· | Xi··,βi·· ind∼ M
(
Yi·· | Xi··,βi··

)
, i = 1, . . . ,N,

βi·· | G iid∼ G,

G | α ∼ DP (α,G0) ,

α ∼ G(α0, β0)

G0 = N (β0,Σ0)

Hyperparameters
▶ β0 = 0 and Σ0 = I → fairly general and enable good

mixing
▶ Loss function parameters aα = 1 and bα = 2 → imply an

interpretable number of clusters E[M | α] ≈ 4 a priori
(Teh, 2010).

Yi·j

πi,j Xi··

βi·j

Gα G0

j=1,..,J i=1,...,N
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DATA

Variable Description Source

Employment primary Share of employment in the primary sector. ARDECO
Employment tertiary Share of employment in the tertiary sector. ARDECO
Log GDP per capita Logarithm of the gross domestic product divided by the population. ARDECO
Population density Population per square kilometer. ARDECO
Elevation Average elevation in meters. EU-DEM
Slope Average slope in degrees. EU-DEM

Farm output Total farm output in EUR divided by utilized agricultural area.
Rent Total rent paid in EUR divided by the total rented area in ha.
Pillar I - Coupled (crops) Total of Pillar I coupled payments for crops in EUR divided by the

total agricultural area in hectare.
Pillar I - Coupled (livestock) Total of Pillar I coupled payments for livestock in EUR divided by

the total agricultural area in hectare.
FADN

Pillar I - Decoupled payments Total of Pillar I decoupled payments in EUR divided by the total
agricultural area in hectare.

Pillar II - Environmental payments Total of Pillar II environmental payments for crops in EUR divided
by the total agricultural area in hectare.

Pillar II - Least favored area payments Total of Pillar II least favored area payments for crops in EUR di-
vided by the total agricultural area in hectare.
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DATA

CAP payments from 2007 to 2020 in billion EUR. Included variables are marked with a border
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CLUSTERING USING ALL COVARIATES – A BORING RESULT?

▶ Except Sweden, Finland and Ireland
mostly just one, large cluster

▶ Homogenous impact of covariates
like slope and elevation encourages
algorithm to place most NUTS-3
regions in the same cluster.

→ Exclude homogenous variables?

Cluster

1

2

3

Posterior estimate using the generalized Binder loss with acost = 1.5
including all covariates
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CLUSTERING USING ONLY FARM RELATED COVARIATES – BETTER?

▶ North-South split in Germany and
France, one additional cluster

▶ Cherry-picking variables
▶ Loss of available information
▶ Fewer controls

→ Goal: exclude global variables from
the clustering process

Cluster

1

2

3

4

Posterior estimate using the generalized Binder loss with acost = 1.5
including only farm subsidies

30 / 61



PARTIAL CLUSTERING

Split the likelihood into:
▶ covariates used to cluster the areal units X c

▶ global control variables X nc

pitj =
exp(X T

it·βi·j)∑J
j=1 exp(X T

it·βi·j)
→

exp(X c,T
it· βi·j + X nc,T

it· θ·j)∑J
j=1 exp(X c,T

it· βi·j + X nc,T
it· θ·j)

How to sample θ?
▶ Compute the joint full conditional of all regression coefficients of the j th category
▶ Construct a new design matrix X L ∈ RN×T×(C×K c+K nc) and stack all regression coefficients

X L =


X c

si=1·· 0 0 0 X nc
si=1··

0 X c
si=2·· 0 · · · X nc

si=2··
0 0

. . . 0
...

0 0 0 X c
si=M·· X nc

si=M··

 , ϕ =


β⋆si=1··
β⋆si=2··

...
θ··


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THE BAYESIAN NONPARAMETRIC PARTIAL CLUSTERING MODEL

1. For every i = 1, . . . ,N sample si according to Algorithm 8
by Neal (2000)

2. For every category j = 1, . . . J − 1:
2.1 For every cluster c = 1, . . . ,M:

2.1.1 Sample auxiliary variables ωsi=c,tj using those i such that
si = c

2.1.2 Sample β⋆
c·j from their full conditional using the data

augmentation by Polson et al. (2013)

2.2 Sample ωL
itj

2.3 Sample θ·j using the stacked matrices

3. Sample concentration parameter α

Yi·j

πi,j

X c
i··

X nc
i··

θi j
βi·j

Gα G0

j=1,..,J i=1,...,N
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PARTIAL CLUSTERING USING FARM SUBSIDIES AND GLOBAL COVARIATES

▶ Cluster covariates X c

• farm output
• farm rent
• coupled payments crops
• coupled payments livestock
• decoupled payments
• environmental payments
• least favored area payments

▶ Global Covariates X nc

• employment primary sector
• employment tertiary sector
• log GDP per capita
• population density
• elevation
• slope
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RESULTS – PREDICTED VALUES
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Units colored corresponding to the land-use class with the highest probability, i.e., argmaxj=1,...,J(pi,T+1,j |Y ,X ),
additionally shaded depending on the respective entropy and exemplified for year T + 1 = 11 34 / 61



RESULTS – PREDICTED VALUES
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Posterior mean E(pi,T+1,j |Y ,X ) by land-use category (excluding Rural and Other Natural Land), exemplified for
year T + 1 = 11.
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RESULTS – CLUSTERING (BINDER LOSS, acost = 1.5)

▶ Country specific clustering
of policies evident

▶ Clusters align closely with
the EEA biogeographical
regions

▶ Regional fragmentation in
France and Spain

Cluster

1

2

3
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CROP SUBSIDY INCREASE – CLUSTER-SPECIFIC EFFECTS

Cropland Forest Grassland OthNatLnd Urban
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LIVESTOCK SUBSIDY INCREASE – CLUSTER-SPECIFIC EFFECTS

Cropland Forest Grassland OthNatLnd Urban
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RESULTS – POLICY CHANGES
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MOTIVATION

▶ Prior on component locations in a standard mixture model:

µ
iid∼ πµ(µ), µ = (µ1, . . . , µM)

▶ Problem: overlapping, redundant clusters
▶ Idea: include distance between parameters d (µi ,µj) into prior

▶ Repulsive mixture model:

µ ∼ πµ(µ), µ = (µ1, . . . , µM)

π(µ) ∝

(
M∏

m=1

g(µm)

) ∏
1≤i<j≤M

d (µi , µj)


▶ Origin in statistical mechanics
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HOW AND WHAT TO PENALIZE?

▶ Distance measures for repulsive mixture models:

Publication d
(
µi , µj

)
Petralia et al. (2012) exp

{
−g/ (µi − µj)

′ A−1 (µi − µj)
}

Quinlan et al. (2021) − log
(

1 − e−((µi−µj)/σ)
2
)

Non-local Priors (Fúquene et al., 2019) (µi − µj)
′ A−1 (µi − µj) /g

Cremaschi et al. (2023) |(µi − µj)|ζ

▶ Other methods for repulsive priors in recent literature: determinantal point processes (DPP)
(Bianchini et al., 2020; Xu et al., 2016), normalized random measures (Beraha et al., 2020)

▶ Our idea: repulsive prior on the component weights w
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SPARSITY-INDUCING PARTITION (SIP) PRIOR

Selberg Dirichlet (SDir ) distribution

SDir(w , α, γ,M) =
1

D(α, γ,M)

(
M∏

m=1

wα−1
m

)
|△w |2γ

D(α, γ,M) =
Γ(α)

Γ(Mα+ γ(M − 1)(M − 2))

M−1∏
j=1

Γ(α+ (j − 1)γ)Γ(1 + jγ)
Γ(1 + γ)

▶ Repulsion parameter γ ≥ 0
▶ Concentration parameter α > 0
▶ The term △w =

∏
1≤i<j≤M−1 |wi − wj | represents the product of the absolute pairwise differences

among the components of w .
▶ Introduced in Pham-Gia (2009)
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SELBERG DIRICHLET (EQUAL α-ELEMENTS)

Simulation-based densities of the Selberg Dirichlet distribution for varying values of the repulsion parameter γ and
concentration parameter α. From left to right: γ = (0, 0.5, 1, 3). From top to bottom: α = (0.5, 1). For illustration
purposes, the colors are scaled separately for each plot.
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GENERALIZED SELBERG DIRICHLET

▶ Posterior update of mixture weights increments α by the corresponding cluster size

→ need for varying concentration parameters αm

Generalised Selberg Dirichlet

The M-dimensional generalised Selberg Dirichlet has a density given by:

GSDir(w ,α, γ,M) =
1

GD(α, γ,M)

(
M∏

m=1

wαm−1
m

)
|△w |2γ

GD(α, γ,M) =

∫ 1

0
· · ·
∫ 1

0

(
M∏

m=1

wαm−1
m

)
|△w |2γdw1 . . . dwM

▶ Repulsion parameter γ ≥ 0
▶ Potentially different concentration parameters αm > 0 for m = 1, . . . ,M
▶ Avoid unknown normalization constant GD using Metropolis-Hastings steps
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GENERALIZED SELBERG DIRICHLET (UNEQUAL α-ELEMENTS)

Simulation-based densities of the Dirichlet and Selberg Dirichlet distribution for varying values of the concentration
parameter α and γ = 1. From left to right: α = (2, 5, 2), (5, 5, 2), (5, 5, 2), (5, 3, 2). The first row shows the Dirichlet
distribution and the second the generalized Selberg Dirichlet with γ = 1. For illustration purposes, the colors are
scaled separately for each plot.
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PAIRWISE DIFFERENCES

Distance measured as
∣∣∣∏1≤i<j≤M−1 xi − xj

∣∣∣
▶ “Clear”for µ ∈ R
▶ What about w1, ...,wp : 0 ≤ wi ≤ 1,

∑M
i=1 wi = 1 ?

|△w | = 0.00067 |△w | = 0.00627 |△w | = 0.05666

▶ Smaller M → larger △w
▶ Smoothing over redundant components
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IMPLIED PRIOR ON THE NUMBER OF CLUSTERS Ma

M = 6 M = 7 M = 8

M = 3 M = 4 M = 5
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Simulation-based, implied prior on Ma for α0 = 1 and varying values of M and γ.
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A FULLY REPULSIVE MIXTURE MODEL

Fully Repulsive Mixture Model

yi | ci ,µci ,Σci

ind∼ N (µci ,Σci ), i = 1, . . . ,N

µ1,d , . . . , µM,d ∼ GE(ζ), d = 1, . . . ,D

Σm
iid∼ IW(V0, ν0), m = 1, . . . ,M

c1, . . . , cN | w iid∼ C(1,w)

w ∼ SDir(α, γ,M)

M ∼ Poi1(λ)

γ ∼ G(αγ,0, βγ,0)
ζ ∼ G(αζ,0, βζ,0)

▶ Gaussian ensemble distribution as prior for locations
• → Higher repulsion supports separation

▶ Selberg Dirichlet distribution as prior for weights
• → Higher repulsion leads to smoothing effect
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REPULSIVE PRIOR ON CLUSTER LOCATIONS

Gaussian Ensemble (GE) distribution (Cremaschi et al., 2023; Forrester, 2010)

π(µ) = GE(µ | M, ζ) =
1

G(M, ζ)

M∏
k=1

e− ζ
2µ

2
k |△µ|ζ

▶ △x =
∏

1≤i<j≤M xi − xj

▶ Repulsion parameter ζ

GE prior for M = 2 on µ, repulsion parameter ζ = 0.1, 1, 5
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SIMULATION STUDY

▶ Simulate n = 300 observations from 5-component bivariate Gaussian mixture
▶ Intentionally substantial cluster overlap and redundant component
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POSTERIOR NUMBER OF CLUSTERS AND SIMILARITY MATRICES

▶ Increasing γ reduces both the posterior mean and variance of Ma, whereas increasing ζ leads to a
higher estimated number of clusters

▶ Posterior similarity matrices show low variability for γ = 1, except when both γ and ζ are large, in
which case cluster assignments become more uncertain
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APPLICATION TO DATA ON CHILDREN’S BMI AND EATING BEHAVIOR

▶ 537 children from a highly phenotyped
prospective cohort (Soh et al., 2013)

▶ Standardized BMI (Z-BMI)
▶ Eating behavior: CEBQ questionnaire (Wardle

et al., 2001)
▶ Food-approach subscales:

• food responsiveness
• enjoyment of food
• emotional overeating
• desire to drink

▶ Latent trait recovery using the Partial Credit
Model (Masters, 1982)

▶ Positive correlation between latent
food-approach and Z-BMI (r = 0.24), cf. Fogel
et al. (2017)

Z-BMI vs. latent food-approach for 537 GUSTO children.
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CLUSTERING RESULTS BASED ON THE BINDER LOSS FUNCTION FOR THE SIP
MIXTURE

▶ Three repulsion settings (γ, ζ) are evaluated based on 5,000 thinned samples of the SIP repulsive
mixture model
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(a) γ = 0.1, ζ = 0.1
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(b) γ = 2, ζ = 3
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(c) γ = 1, ζ = 3

▶ The preferred specification identifies three clusters: average Z-BMI and food-approach; high Z-BMI
with more dispersed traits; and low Z-BMI with low food-approach

▶ Maternal pre-pregnancy BMI differs significantly across clusters, while maternal education does not
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CLUSTER ANALYSIS OF PRE-PREGNANCY MATERNAL BMI AND EDUCATION

▶ Maternal pre-pregnancy BMI varies across clusters: Cluster 1 shows highest variability, Cluster 2
has higher median, and Cluster 3 has lowest median and variability

▶ Maternal education (6-level scale) distribution is similar for Clusters 1 and 2; Cluster 3 has more
mothers with university degrees but lacks lower education levels

▶ Due to small sample size in Cluster 3, no significant differences in maternal education were found
across clusters
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