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Introduction

Introduction and Context

Contagious interactions between financial institutions play an
important role in a financial crisis. ⇒ large literature on systemic risk

Most papers focuses on direct contagion and banking networks; see
e.g. Eisenberg and Noe [2001], Elsinger et al. [2006], Rogers and
Veraart [2013], Glasserman and Young [2016]

Indirect or price-mediated contagion caused by rapid deleveraging
(fire sales) important as well, see policy papers such as Hanson et al.
[2011] or Basel Committee on Banking Supervision [2014]

“at the height of the crisis, financial markets forced the banking sector
to reduce its leverage in a manner that amplified downward pressures on
asset prices. This de-leveraging process exacerbated the feedback loop
between losses, falling bank capital and shrinking credit availability.”
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Introduction

Risk capital constraints

Price-mediated contagion might be reinforced by regulatory capital
constraints such as Basel II or III rules.

Under these rules a bank’s risk capital (equity) should exceed a
multiple of its risk weighted assets
Banks typically deleverage when their position approaches capital
constraints (eg. after a shock), as raising new capital is expensive
Forced liquidation by regulators

Interesting twist between micro- and macroprudential regulation

Little analysis in formal models
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Introduction

Contributions and research question

We analyze price-mediated contagion in the context of a Mean Field
Game (MFG) model for a large banking system.

Banks invest into a bank-specific tradable asset in order to maximize
the expected value of their equity.
Contagion. The drift of the tradable assets is affected by changes in
the average asset holding of banks caused by trading or liquidation,
leading to a game

We introduce a stylized form of the Basel II/III regulatory capital
constraints and study numerically the impact of capital constraints on
financial stability using PDE approach

First mathematical results on existence and approximate Nash
equilibria in a model with smoothed contagion as in Hambly and
Sojmark [2019] or Burzoni and Campi [2023].
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Introduction

Literature

PDE part is based on Frey and Traxler [2026]

Papers on systemic risk and price-mediated contagion: Braouezec and
Wagalath [2019], Feinstein [2020],Cont and Wagalath [2016]

MFGs and systemic risk: Carmona et al. [2015]

Mean field models with default externality: Nadtochiy and Shkolnikov
[2019], Hambly et al. [2019], Hambly and Sojmark [2019], Cuchiero
et al. [2023], . . .

Mean field games with absorption (default or liquidation) Campi and
Fischer [2018], Burzoni and Campi [2023].

The mathematical analysis uses results from probabilistic approach to
MFGs
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The model

The model

Fix horizon date T , a probability space (Ω,F ,P) and consider a
continuum of banks.

Each bank invests into a non-tradable asset A, a tradable risky asset
S and in cash D. The inventory Q (the position in S) can be
adjusted only gradually via trading rate ν = (νt)0≤t≤T . Moreover,
there are transaction costs of size κν2t . This gives

dAt = σAdW
A
t (1)

dQt = νtdt + σQdW
Q
t (2)

dSt = µex + αc̄tdt + σSdWt (3)

dDt = −νt(St + κνt)dt (4)

for α, σA, σS , σQ > 0 and 3-dim BM W = (WQ ,W A,W S).

Denote by X ν
t = At + StQ

ν
t + Dν

t the book equity of a generic bank
and let Xt = (Qt ,Xt)

6 / 31



The model

Contagion

Brownian motions for different banks are independent; strategic
interaction is introduced via the contagion term c̄t .

We assume that c̄t is given by rate of change in average number of
risky asset held by the banking sector. (formal definition later)

Note that drift of S decreases if banking sector reduces overall
inventory level; this might be due to demand- or information effects.
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The model

Risk capital constraints

Under the Basel rules the risk capital of a bank must exceed a
multiple of its risk weighted assets.

We introduce a stylized version where risk capital at time t is given
by Xt and the risk weighted assets by γ|Qt |+ C̃ . Hence we have the
condition Xt > β|Qt |+ C for some C , β > 0.

A := {x = (q, x) ∈ R× R+ : x > β|q|+ C} denotes acceptable
positions; boundary is ∂A .

A bank is liquidated by the regulator at τA = inf{t ≥ 0,Xt /∈ A},
residual value for bank owners is zero.
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The model

Optimization problem of a bank and HJB

We get following dynamics for X = (Qt ,Xt)0≤t≤T

dQt = νtdt + σQdW
Q
t ,

dXt =
(
Qt(µex + αc̄t)− κν2t

)
dt + σAdW

A
t + QtσSdW

S
t

Bank wants to maximize terminal equity value E
(
X ν
T1{τ>T}

)
over ν

(liquidation ⇒ equity value is 0.)

Assume that bank takes some evolution t 7→ µ(t) of the contagion
term as given. Standard arguments give HJB equation for value
function u

0 = ∂tu + q(µex + αµ(t))∂xu +
1

2
σ2
Q∂

2
qu +

1

2

(
σ2
A + σ2

Sq
2
)
∂2
xu

+ sup
ν

{
ν∂qu − κν2∂xu

}
, u(T , q, x) = x ,

(5)

together with the terminal condition u(t, q, x) = 0 on ∂A.

Optimal trading rate ν∗(t, q, x) =
∂qu(t,q,x)

2κ∂xu(t,q,x)
.
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The model

Why mean-field game models?

Note that for consistency we must have µ(t) = c̄t .

Suppose we are dealing with a system of N homogeneous banks (N
large). If we ignore liquidation we get

c̄t =
1

N

N∑
i=1

ν∗(t,Qt,i ,Xt,i ) =

∫
R2

ν∗(t, q, x)µN
t (dq,dx)

with µN
t (dq,dx) =

1
N

∑N
i=1 δ(Qt,i ,Xt,i )(dq,dx)

It follows that the value function of bank i depends on the state
(Xt,1, . . . ,Xt,N) of all banks in the system.

N moderately large ⇒ impossible

Way out: for N large the contribution of each individual bank j to c̄
is very small (banks are almost independent.) Hence µN

t should
converge to a deterministic measure mt (the mean field)
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The model

Equilibrium of the mean field game

Definition. A strategy ν∗ and a deterministic measure flow
m̂ = (m̂t)0≤t≤T are an equilibrium of the MFG if

ν∗ solves the optimization problem of the bank assuming that the
drift of X is

µ(t) = c̄t(m̂) = ∂t⟨m̂t , q⟩

where for generic m ⟨mt , q⟩ :=
∫
R q mt(dq,dx)) is the average

inventory level.

mt is the distribution of the state process X given that the bank uses
the strategy ν∗

Comments.

Economic viewpoint: Nash equilibrium

Mathematical challenge: fixed point problem
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PDE systems

Benchmark case without capital constraints

As a benchmark we determine an explicit solution for the case without
capital constraints (see also Cardaliaguet and LeHalle [2018])

Assumption uunreg(t, q, x) = x + v(t, q). ⇒ v(T , q) = 0 and

0 = ∂tv + q(αµ(t) + µex) +
1

2
σ2
Q∂

2
qv + sup

ν

{
ν∂qv − κν2

}
,

Next, we assume that v(t, q) = h0(t) + h1(t)q. This gives

h′1 = −αµ(t)− µex, h′0 = − h21
4κ

, h0(T ) = h1(T ) = 0.

Moreover, optimal trading rate is ν∗(t, q) = 1
2κ∂qv = 1

2κh1(t).
(q-dependence for linear quadratic terminal condition)
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PDE systems

Contagion term and equilibrium

Without constraints system is described in terms of distribution of Q.

The forward equation for mt(dq) gives

c̄t = ∂t⟨mt , q⟩ = ⟨mt ,LQq⟩ = ⟨mt , ν
∗(t, ·)⟩,

i.e. contagion term equals average trading rate of the banks. This
gives interpretation of the model as MFG of controls.

We get c̄t =
1
2κh1(t). The equilibrium condition µ(t) = c̄t yields

h′1 = − α

2κ
h1 − µex, h1(T ) = 0 ;

given h1, the functions h0, v and uunreg are easily computed.
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PDE systems

The system with capital constraints - PDE approach

With capital constraints ν∗ will depend on x = (q, x). Hence we
consider HJB (5) with boundary condition u ≡ 0 on ∂A.

Pre-liquidation distribution of X is described by flow m with

⟨mt , f ⟩ = E[f (Xt)1{τA>t}], 0 ≤ t ≤ T . (6)

In abstract form the forward equation for mt(dq,dx) is

∂t⟨mt , f ⟩ = ⟨mt ,LXf ⟩, for f with f = 0 on ∂A.

Partial integration and boundary condition m(t, q, x) ≡ 0 on ∂A give
equation for density m(t, q, x).

HJB and forward equation are coupled via c̄t = ∂t⟨mt , q⟩.
c̄t reflects two effects: average trading rate ⟨mt , ν

∗(t, ·)⟩ and average
liquidation rate as banks reach ∂A
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PDE systems

Discussion of PDE approach ctd

No formal result on existence of solutions to the nonlinear forward
backward PDE system.

Challenges:

Liquidation cascade might lead to systemic risk event where large part
of the system is liquidated at once (Nadtochiy and Shkolnikov [2019])
existence of a fixed point

But see last part for results on smoothed version of the game.

We used numerical methods based on Picard iteration
m0 → u1 → m1 . . . and finite differences to study properties of the
PDE system.

In the unregulated case theoretical and numerical values coincide,
with capital constraints method converges if α and κ−1 are not too
large, otherwise blowup, corresponding to a liquidation cascade.
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Numerical results

Value function and optimal strategy: fixed q

Figure: Left case with capital constraints, right unregulated case
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Numerical results

Value function and optimal strategy: fixed x

Figure: Left case with capital constraints, right unregulated case
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Numerical results

Pre-liquidation density

Figure: Contour plots of the pre-liquidation density at start and terminal time for
the unregulated and regulated case. Acceptance region A in green.
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Numerical results

Evolution of the banking system

Figure: Evolution of banking system in regulated (light blue) and unregulated
(dark blue) case. Note the spike in liquidations at t ≈ 0.9
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Numerical results

Evolution of the banking system: well-capitalized banks

Figure: Evolution of banking system in regulated and unregulated case for (on
average) well capitalized banks. In that case the system is stable, supporting
claims for higher bank equity as in Admati and Hellwig [2013] or Hanson et al.
[2011].
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Mathematical analysis

Mathematical analysis with smoothed contagion

Next we discuss : mathematical analysis of a modified model with
smoothed contagion.

We use arguments from Burzoni and Campi [2023], and Campi et al.
[2021],

These papers use arguments from the probabilistic weak formulation
of MFGs, see Carmona and Lacker [2015] and Lacker [2018]
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Mathematical analysis

Modified model.

State process. We model transaction costs via running cost. Hence we
have

dQt = νtdt + σQdW
Q
t ,

dXt = Qt(µex + αc̄t)dt + σAdW
A
t + QtσSdW

S
t .

Define σX (q) = (σ2
A + q2σ2

S)
1
2 , b(x, c , ν) =

(
ν

q(µex + αc)

)
and let

Σ(q) = diag(σQ , σX (q)). Then

dXt = b(Xt , c̄t , νt)dt +Σ(Qt)dWt (7)

for BM W = (WQ ,W X )′ with W X
t =

∫ t
0

1
σX (Qs)

d(σAdW
A
s + QsσSdW

S
s ).

Measure flow. We let ⟨mt , f ⟩ = E[f (Xt)1{τA>t}], and denote by
m = (mt)0≤t≤T the corresponding flow.
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Mathematical analysis

Smoothed contagion (Hambly and Sojmark [2019])

Consider a smooth kernel k : [0,T ] → R+ with support [0, ϵ] and∫ ϵ
0 k(u)du = 1. Fix a large q̄ and let q(q, x) = q ∧ q̄ ∨ (−q̄). Then we
define the time-averaged inventory level It by

It :=
∫ t

t−ϵ
k(t − s)⟨ms , q⟩ds.

It is absolutely continuous (even if t 7→ ⟨mt , q⟩ is not). We define the
time-smoothed contagion term c̄t = c̄t(m) by

c̄t := ∂tIt = k(0)⟨mt , q⟩+
∫ t

t−ϵ
k ′(t − s)⟨ms , q⟩ds

Note that c̄t is bounded independently of m.
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Mathematical analysis

Optimization problem and equilibrium

Admissible strategies ν is admissible if it is is adapted to FW and if
|νt | ≤ ν̄, that is we assume a compact control space

Goal of a bank. Maximize

E
[
G (Xν

τA)−
∫ τA

0
κν2s ds

]
(8)

over admissible ν, where G (x) = 0 on ∂A and G (q, x) ≈ x on A.

Definition (MFG equilibrium). A probability space (Ω,F ,P,F) supporting
a BM W, a measure flow m, and an admissible control ν̂ are an
equilibrium of the MFG if

Given m (and hence c̄t), ν̂ is optimal for the problem with state
process X from (7) and objective (8)

mt(·) = P
(
Xt ∈ · ∩ τA > t

)
.
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Mathematical analysis

Optimization for a given measure flow

Lemma 1. There is some M such that
∥∥Σ(q)−1b(x, c , ν)

∥∥2 ≤ M for all x
and all |c | ≤ C̄ , |ν| ≤ ν̄.

Weak formulation. Consider some (Ω,F ,P,F) supporting a driftless state
process dXt = Σ(Xt)dWt . Fix a measure flow m and a strategy ν and let

Ut = Um,ν
t =

∫ t

0
Σ−1(Qs)b(Xs , c̄s(m), νs)dWs

Lemma 1 → E(U) is a martingale. Define Pm,ν by dPm,ν

dP = E(Um,ν)T .
Girsanov ⇒ under Pm,ν , X has drift b(Xt , c̄t(m), νt).

Weak objective. (for given m) Find strategy ν that maximizes

ν 7→ J(ν) = Em,ν
[
G (XτA)−

∫ τA

0
κν2s ds

]
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Mathematical analysis

Optimization for given m ctd

Define the Hamiltonian

H(t, x,m, z, ν) = −κν2 + z′Σ(q)−1b(x, c̄t(m), ν)

= −κν2 +
z1ν

σQ
+

z2q

σX (q)
(µex + αc̄t(m))

Denote by ν̂(z) =
z1σ

−1
Q

2κ ∨ (−ν̄) ∧ ν̄ the unique maximizer of H wrt ν and

let Ĥ(t, x,m, z) = H(t, x,m, z, ν̂).

Proposition 2. Suppose X solves under P the SDE dXt = Σ(Qt)dWt .
Given a flow m, denote by Ŷ , Ẑ the unique solution of the BSDE

dYt = Ĥ(t,Xt ,m,Zt)dt + ZtdWt , YτA = G (XτA)

Then the control ν̂ = (ν̂(Zt))t is optimal and J(ν̂) = E[Y0].
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Mathematical analysis

Existence of an equilibrium

By Lemma 1 and standard estimates for stochastic exponentials, for any
measure flow m and any admissible ν, the measure Pm,ν belongs to

E =
{
P′ ∈ M1(Ω,F ,P) : E

[(dP′

dP

)2
]
≤ eMT

}
E is convex and moreover compact for the so-called τ -topology . Consider
now the following map Φ: E → E :

P′ ∈ E see(6)−→ m(P′)
Prop2−→ Pm(P′),ν̂ ∈ E ,

that is Φ(P′) = Pm(P′),ν̂ . By definition a fixed point of Φ is an equilibrium.

Theorem 3. There is a MFG equilibrium.

This follows from Schauder’s fixed point theorem and the fact that Φ is
continuous in the τ topology.
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Mathematical analysis

Propagation of chaos and approximate Nash equilibria

In probability and statistical physics ‘Propagation of Chaos’ does not refer
to

the state of a typical teenager’s room or

the Mitternachtsquadrille at the WU Ball

but to the limiting behavior of the distribution of exchangeable interacting
particle systems as the number N of particles gets large
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Mathematical analysis

Setup

Consider N banks with state process XN
i , 1 ≤ i ≤ N and

dXN
t,i = b(XN

t,i , c̄t(µ
N), ν̂t)dt +Σ(QN

t,i )dWt,i ,

where

ν̂ is the optimal strategy from the MFG equilibrium.

µN = 1
N

∑N
i=1 δXN

i
is the empirical measure of the trajectories

X1, . . .XN on C := C0([0,T ],R2),

µN
t = 1

N

∑N
i=1 δXN

t,i
1{τ(XN

i )>t}

and finally c̄t(µ
N) = k(0)⟨µN

t , q⟩+
∫ t
t−ϵ k

′(t − s)⟨µN
s , q⟩ds

Note that the XN
i interact via the contagion term and that the measure

µN is random.
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Mathematical analysis

A limit result

Denote by P̂ the equilibrium measure of the MFG. The following result,
based on Lacker [2018], shows that µN converges to P̂ for N → ∞.

Theorem. For every open neighborhood U of P̂ in M1(C) one has
limN→∞ P

(
µN /∈ U

)
= 0.

Implications

for u : R2 → R bounded continuous it holds that

lim
N→∞

P
(
|⟨µN

t , u⟩ − ⟨mt(P̂), u⟩| > δ
)
= 0

The law of the components XN
i converges in the τ -topology to P̂.

Using these results one can show that the optimal strategy from the MFG
induces an approximate Nash equilibrium for the system with finitely many
banks (work in progress)
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Mathematical analysis

Outlook and next steps

Reduce regularity assumptions

Numerics adapted to weak approach

Capital injections

Two groups of banks Large or systemically important banks and
others

Common noise (difficult)
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