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Section 1. Occupation Measures and Local Times

Occupation Measure

Definition (Occupation Measure)

Let (Xt)t≥0 be a continuous sample paths stochastic process on
(Ω,F ,P). For t ≥ 0, define the occupation measure by

Λt(A) :=
∫ t

0
1A(Xs)ds, A ∈ B(Rd),

μt(A) :=
∫ t

0
1A(Xs)d[X]s, A ∈ B(Rd)

where the latter is only defined provided that the process X admits
finite quadratic variation [X]t a.s.

� Measures how much time the process spends in set A up to time t.
� Naturally depends on sample path ω.
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Section 1. Occupation Measures and Local Times
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Section 1. Occupation Measures and Local Times

Occupation Density

Definition ((Expected) Occupation Density)

� If there exists a measurable function λt() such that

Λt(A) =
∫

A
λt()d, A ∈ B(Rd),

then λt() is called the occupation density at time t ≥ 0,  ∈ Rd.
� If there exists a measurable function ℓt() such that

∫ t

0
P(Xs ∈ A)ds = E[Λt(A)] =

∫

A
ℓt()d, A ∈ B(Rd),

then λt() is called the expected occupation density at time t ≥ 0,
 ∈ Rd.
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Section 1. Occupation Measures and Local Times

Remarks on (expected) occupation mea-
sure and density

� The occupation measure Λt is a finite random measure with total
mass t and its expectation E[Λt(·)] is a finite measure with total mass
t.

� If X is a 1-dimensional diffusion dXt = btdt + σtdWt with σt ≥ σmin > 0,
then for any t ≥ 0 the occupation density has a locally bounded
version.

� If X is a 1-dimensional process such that Xt has density ρt, then
∫ t

0
ρs()ds = ℓt().

The main reason to be interested in expected occupation densities is the
following formula which holds for any measurable ƒ : R→ [0,∞):

E

�

∫ t

0
ƒ (Xs)ds

�

=
∫ ∞

−∞
ƒ ()ℓt()d.
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Section 1. Occupation Measures and Local Times

Usage of expected occupation densities

Let X be a continuous sample path process which has expected
occupation density ℓt() and γ measurable with ℓt() ≤ γt(), that is γ is
some upper bound for the expected occupation density.
� For measurable ƒ : R→ [0,∞):

E

�

∫ t

0
ƒ (Xs)ds

�

≤
∫ ∞

−∞
ƒ ()γt()d.

� Upper bounds are usually easier to obtain than the expected
occupation density itself.

� If an upper bound is known up to some constants (implicit upper
bound), then it can be used to get qualitative upper bounds as appear
in stability schemes for SDEs.

Slide 8



Section 1. Occupation Measures and Local Times

Relation with expected values

Lemma

Let X be a Markovian diffusion dXt = b(Xt)dt + σ(Xt)dWt and ƒ : R→ R
be a C2-function with b, σ bounded measurable. Then

E[ƒ (Xt)] = E[ƒ (X0)] +
∫ t

0
E[Aƒ (Xs)]ds

≤ E[ƒ (X0)] +
∫ ∞

−∞
mx{Aƒ (),0}ℓt()d

where A is the generator Aƒ () = b′()ƒ () + 1
2σ

2()ƒ ′′().

� The formula is a useful tool for bounds, control and sensitivity
analysis.
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Section 2. Expected Occupation bounds

Kernel based bounds (Strook Varadhan,
1979)

Setting. Let (Xt)t≥0 solve the SDE

dXt = b(Xt)dt + σ(Xt)dWt,

where b, σ ∈ C∞b (R
d) and the diffusion matrix  = σσ> is uniformly

elliptic:
m1|ξ|2 ≤ ξ>()ξ ≤m2|ξ|2.

Gaussian heat kernel bounds. There exist unknown constants c > 0
such that density ρt of Xt admits

ρt() ≤ c1t−d/2 exp
�

−c2
| − X0|2

t

�

, t ∈ (0, T].

Expected occupation density bound. Consequently,

ℓt() ≤
∫ t

0
c1s−d/2 exp

�

−c2
| − X0|2

s

�

ds.
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Section 2. Expected Occupation bounds

Failure of densities (McNamura 1983)

Counterexample. There exists a one-dimensional diffusion

dXt = σ(t, Xt)dWt, X0 = 0,

with
σ(t, ) ∈ {σ1, σ2},

such that for some fixed T > 0 the random variable XT does not admit a
density with respect to Lebesgue measure.
Key properties.
� Uniform ellipticity holds.
� The diffusion coefficient is bounded and measurable.
� The process is well defined for all t ≥ 0.

Consequences.
� No classical heat kernel estimate exists at time T.
� Pointwise or Gaussian density estimates are impossible.
� Occupation bounds cannot rely on kernel estimates.Slide 12



Section 2. Expected Occupation bounds

Krylov occupation bounds (Krylov Röckner
2008)

Setting. Let (Xt)t≥0 be a diffusion

dXt = βtdt + σt dWt,

where
t = σtσ>t is uniformly elliptic and bounded,

and b is progressively measurable unbounded.

Krylov estimate. Let ƒ ∈ Lp([0, T] × Rd) with p > d
2 + 1. Then there

exists a unknown constant C = C(d, p, λ,Λ, T) such that

E

�

∫ T

0
|ƒ (t, Xt)|dt

�

≤ C‖ƒ‖Lp([0,T]×Rd).

Key features.
� No pointwise heat kernel bounds required (or possible).
� Coefficients need only be measurable.
� Applies equally to time-inhomogeneous diffusions.Slide 13



Section 2. Expected Occupation bounds

K. Xu upper bound (explicit)

Setting. Let (Xt)t≥0 be a 1-dimensional diffusion

dXt = βtdt + σt dWt,

where σt ∈ [σmin, σmx] with 0 < σmin ≤ σmx and |βt | is bounded by K.

Theorem (K., Xu (2025))

Let X be as above. Then its expected local time ℓt exists and

αt() ≤ ℓt() ≤ γt()

for some continuous functions α, γ
with explicit form given by ...
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Section 2. Expected Occupation bounds

Explicit upper bound

Theorem

Let X be as above. Then its expected local time ℓt exists and a version
satisfies

ℓt() ≤ γt()

where

γt() =
σmx

σ2min

∫ t

0

�

1
p
s
φ
�

(| − X0|, s)
�

+ K
�

(| − X0|, s)
�

�

ds,

where φ,  are the standard normal density and distribution function
and

(r, s) := K
p
s −

r

σmx
p
s

s > 0, r ≥ 0

The bound γ is optimal given the bounds and no further information.
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Section 2. Expected Occupation bounds

Further comments

� Optimal expected and path-wise interval occupation has been found
in (Ankirchner, Wendt 25). The bound for
∫ t

0
P(Xs ∈ [, b])ds = E[Λt([, b])] ≤ Qt(, b, σmin, σmx, K),  < b, t ≥ 0

looks quite different — they only coincide to our bound in a limiting
sense. However, their bound was used to find the bound in (Krühner,
Xu 25).
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Section 3. Applications

Application: Pre-estimates for Control
Problems

Setting: Let

Xσt = X0 +
∫ t

0
σ(s, Xs)dWs

where σ : R2 → [, b] measurable where 0 <  ≤ b is given. Denote the
set of measurable functions σ where such a process Xσ exists by C.

Question: How large is

sp
σ∈C

E

�

ƒ (Xσt ) +
∫ t

0
g(Xσs )ds

�

≤?

A common numerical approach: Find C2-functions VN(t, ) and hope
that

VN(, ) ≈ E
�

ƒ (Xσt) +
∫ t


g(Xσs )ds

�

�

�Xσ = 

�

, VN(t, ) = ƒ ()
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Section 3. Applications

Application: Pre-estimates for Control
Problems, cont.

A common numerical approach: Need to find hN : R→ [0,∞) such that

sp
m∈[,b]

�

∂1VN(s, ) +
1

2
∂22VN(s, )m

2 + g()
�

≤ h()

Error control: For some σ ∈ C we find

E[ƒ (Xσt )] = E[VN(t, X
σ
t )]

= VN(0, X0) + E

�

∫ t

0
∂1VN(s, Xσs ) +

1

2
∂22VN(s, Xs)σ

2(Xs)ds

�

≤ VN(0, X0) + E
�

∫ t

0
hN(Xs)ds

�

− E
�

∫ t

0
g(Xs)ds

�

So we get for any σ ∈ C:

E

�

ƒ (Xt) +
∫ t

0
g(Xs)ds

�

≤ VN(0, X0) +
∫ ∞

−∞
h()γt()d.

.
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Summary and Conclusions

� Expected occupation densities bounds γ allow for upper mean path
integral bounds:

E[

�

∫ t

0
ƒ (Xs)ds

�

≤
∫ ∞

−∞
ƒ ()γt()d

� When drift/diffusion are known to be smooth, then
� (Krühner Xu 2025) bounds give explicit upper estimates under

bounded drift and diffusion in the elliptic regime under no further
regularity assumption on the drift/diffusion.
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