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Section 1. Occupation Measures and Local Times

Occupation Measure

Definition (Occupation Measure)

Let (Xt)t>0 be a continuous sample paths stochastic process on
(Q, F,P). For t > 0, define the occupation measure by

t
/\t(A):=J 1,(Xs)ds, A e B(RY),
0

t
He(A) :=J 14(Xs)d[X]s, A€ BRY)
0

where the latter is only defined provided that the process X admits
finite quadratic variation [ X]¢ a.s.
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Occupation Measure

Definition (Occupation Measure)

Let (Xt)t>0 be a continuous sample paths stochastic process on
(Q, F,P). For t > 0, define the occupation measure by

t
/\t(A):=J 1,(Xs)ds, A e B(RY),
0

t
He(A) :=f 1a(Xs)d[X]s, AeBRY)
0

where the latter is only defined provided that the process X admits
finite quadratic variation [ X]¢ a.s.

= Measures how much time the process spends in set A up to time t.
= Naturally depends on sample path w.
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Section 1. Occupation Measures and Local Times
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Section 1. Occupation Measures and Local Times

Occupation Density

Definition ((Expected) Occupation Density)

= |f there exists a measurable function A¢(x) such that

Ae(A) = J Ae(x)dx,  AeB(RY),
A

then A¢(x) is called the occupation density at time t > 0, x € R,
= |f there exists a measurable function /:(x) such that

t
J P(Xs € A)ds = E[A+(A)] = J Le(x)dx, AeB[RY),
0 A

then A¢(x) is called the expected occupation density at time t > 0,
x € RY,
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Section 1. Occupation Measures and Local Times

Remarks on (expected) occupation mea- “U
sure and density E

= The occupation measure A; is a finite random measure with total

mass t and its expectation E[ A+(-)] is a finite measure with total mass
t

= If X is a 1-dimensional diffusion dX¢ = bidt + ordW¢ with o > omin > 0,
then for any t > 0 the occupation density has a locally bounded
version.

= If X is a 1-dimensional process such that X; has density p¢, then

t
f Ps(x)ds = Lt(x).
0
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Section 1. Occupation Measures and Local Times
Remarks on (expected) occupation mea- “U
sure and density :

= The occupation measure A; is a finite random measure with total
mass t and its expectation E[ A+(-)] is a finite measure with total mass
t.

= If X is a 1-dimensional diffusion dX¢ = bidt + ordW¢ with o > omin > 0,
then for any t > 0 the occupation density has a locally bounded
version.

= If X is a 1-dimensional process such that X; has density p¢, then

t
f Ps(x)ds = Lt(x).
0

The main reason to be interested in expected occupation densities is the
following formula which holds for any measurable f : R — [0, oo):

t o)
EU f(Xs)d5:| =J FOALe(Xx)dx.
0 —00

. . PN
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Section 1. Occupation Measures and Local Times

W

Usage of expected occupation densities

Let X be a continuous sample path process which has expected
occupation density £+(x) and ¥ measurable with /+(x) < y+(x), thatis y is
some upper bound for the expected occupation density.

= For measurable f : R — [0, c0):
t 0
E U f(Xs)dS] < J FOAYe(x)dx.
0 —00

= Upper bounds are usually easier to obtain than the expected
occupation density itself.

= If an upper bound is known up to some constants (implicit upper
bound), then it can be used to get qualitative upper bounds as appear
in stability schemes for SDEs.
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Section 1. Occupation Measures and Local Times

Relation with expected values

Let X be a Markovian diffusion dX: = b(X¢)dt + o(X¢)dWi and f : R — R
be a C?-function with b, o bounded measurable. Then

t

ELf(Xt)] = E[f(X0)] + JO E[Af(Xs)]ds

< E[f(X0)] +f max {Af(x), 0}£:(x)dx

—00

where A is the generator Af(x) = b’(x)f(x) + %oz(x)f”(x).

= The formula is a useful tool for bounds, control and sensitivity
analysis.
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Section 2. Expected Occupation bounds

Outline

= Expected Occupation bounds
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Kernel based bounds (Strook Varadhan, “U
1979)

Setting. Let (X¢)t>0 solve the SDE
dXe = b(Xe) dt + o(X¢) dWe,

where b, 0 € CZ°(IRd) and the diffusion matrix a = oo is uniformly
elliptic:
m1|gl° < §Ta(x)g < ma|&|°.

Gaussian heat kernel bounds. There exist unknown constants ¢; > 0
such that density p: of X admits

X — Xo|?
pt(x) < c1t™92 exp(—cz %) ) te(0,T].

Expected occupation density bound. Consequently,

t X —X 2
£e(x) < f c15~92 exp(—cz Q) ds
0
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Section 2. Expected Occupation bounds

£c:
A

Failure of densities (McNamura 1983)

Counterexample. There exists a one-dimensional diffusion
dXt=O(t,Xt)th, X0=0,
with
o(t,x) e {01,021},
such that for some fixed T > 0 the random variable X does not admit a
density with respect to Lebesgue measure.
Key properties.
= Uniform ellipticity holds.
= The diffusion coefficient is bounded and measurable.
= The process is well defined for all t > 0.
Consequences.
= No classical heat kernel estimate exists at time T.

= Pointwise or Gaussian density estimates are impossible.
scQecupation bounds cannot rely on kernel estimates. £qus [lacse <GAvER



Section 2. Expected Occupation bounds

Krylov occupation bounds (Krylov Réckner “U
2008)

Setting. Let (X¢)t>0 be a diffusion
dXt = Bedt + or dWs,
where
ar = ototT is uniformly elliptic and bounded,
and b is progressively measurable unbounded.

Krylov estimate. Let f € LP([0, T] x RY) with p > %’ + 1. Then there
exists a unknown constant C=C(d, p, A, A\, T) such that

-
[E[f If(t, Xt)ldf] < ClIfllecro, T7xRY)-
0

Key features.

= No pointwise heat kernel bounds required (or possible).

= Coefficients need only be measurable.

=cApplies equally to time-inhomogeneous diffusions. £quis [ ascss < AVBA



Section 2. Expected Occupation bounds

K. Xu upper bound (explicit)

Setting. Let (X¢)t>0 be a 1-dimensional diffusion
dXt = ,Btdt + Ot th,

where 0t € [ Omin, Omax] With 0 < Omin < Omax and |B¢| is bounded by K.
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Section 2. Expected Occupation bounds

K. Xu upper bound (explicit)

Setting. Let (X¢)t>0 be a 1-dimensional diffusion
dXt = ﬁtdt+ Ot th,

where 0t € [ Omin, Omax] With 0 < Omin < Omax and |B¢| is bounded by K.

Theorem (K., Xu (2025))
Let X be as above. Then its expected local time ; exists and

at(x) < Le(x) < ve(x)

for some continuous functions a, 7y
with explicit form given by ...
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Section 2. Expected Occupation bounds

Explicit upper bound

Theorem

Let X be as above. Then its expected local time I+ exists and a version
satisfies

Le(x) < ve(x)
where

Ye(x) = 20 J t(ifp(vux—xm 5)) + K&(v(Ix — Xol s)))ds
min J0 \ VS ' ' '

where @, ® are the standard normal density and distribution function
and

r
v(r,s) i =KYs——— s>0,r>0
Omax ¥/S
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Theorem

Let X be as above. Then its expected local time I+ exists and a version
satisfies

Le(x) < ve(x)
where

Ye(x) = 20 J t(ifp(vux—xm 5)) + K&(v(Ix — Xol s)))ds
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where @, ® are the standard normal density and distribution function
and

r
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Section 2. Expected Occupation bounds

Further comments

= Optimal expected and path-wise interval occupation has been found
in (Ankirchner, Wendt 25). The bound for

t
J P(Xs € [a, b])ds = E[A¢([a, b])] < Qt(a, b, Omin, Omax, K),  a<b,t=0
0

looks quite different — they only coincide to our bound in a limiting
sense. However, their bound was used to find the bound in (Krthner,
Xu 25).
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Section 3. Applications
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Application: Pre-estimates for Control “U
Problems 5

Setting: Let
t

0
where 0 : R2 — [a, b] measurable where 0 < a < b is given. Denote the
set of measurable functions o where such a process X¢ exists by C.

Question: How large is
oeC

t
supE[f(Xf)+f g(Xg)ds} <?
0
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Application: Pre-estimates for Control “U
Problems

Setting: Let
t

0
where 0 : R2 — [a, b] measurable where 0 < a < b is given. Denote the
set of measurable functions o where such a process X¢ exists by C.

Question: How large is

t
supE[f(Xf)+f g(Xg)ds} <?
oeC 0

A common numerical approach: Find C2-functions Vy(t, x) and hope
that

t
Vn(u, x) =~ E [f(Xot) + f g(X?)ds|X] = x] , Vn(t, x) = f(x)
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Appiication: Pre-estimates for Control “U
Problems, cont. :

A common numerical approach: Need to find hy : R — [0, o) such that

sup (81 Vn(s, x) + %a%VN(s, xX)m? + g(x)) < h(x)

me[a,b]
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Section 3. Applications

Application: Pre-estimates for Control “U

Problems, cont.

A common numerical approach: Need to find hy : R — [0, o) such that

sup (81 Vn(s, x) + %a%VN(s, xX)m? + g(x)) < h(x)

me[a,b]

Error control: For some o € C we find

ELF(X9)] = ELVi(t, XO)]
t

=Vn(0,Xo) + E {J

1
91Vn(s, X7) + EagVN(S, Xs)o? (Xs)ds]
0

t t
< VWn(0,Xp)+E U hN(Xs)d5:| —E U Q(Xs)d5:|

0 0
So we get forany o €C:

(o]

t
E |:f(Xt) + J Q(Xs)ds} < Vn(0, Xo) +J h(x)yt(x)dx.
0

—00
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Summary and Conclusions

= Expected occupation densities bounds y allow for upper mean path
integral bounds:

t [e)
E[U f(Xs)dS] SJ FO)ye(x)dx
0 —00

= When drift/diffusion are known to be smooth, then

= (Krihner Xu 2025) bounds give explicit upper estimates under
bounded drift and diffusion in the elliptic regime under no further
regularity assumption on the drift/diffusion.
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Thank you for your attention!
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Thank you for your attention!

Questions?
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