

Bounds for Expected Occupation Densities and Applications

Paul Eisenberg (Krühner) based on work with: **Shijie Xu, David Baños and Julia Eisenberg**

WIRTSCHAFTS
UNIVERSITÄT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

Outline

- Occupation Measures and Local Times
- Expected Occupation bounds
- Applications

Outline

- Occupation Measures and Local Times
- Expected Occupation bounds
- Applications

Occupation Measure

Definition (Occupation Measure)

Let $(X_t)_{t \geq 0}$ be a continuous sample paths stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. For $t \geq 0$, define the *occupation measure* by

$$\Lambda_t(A) := \int_0^t \mathbf{1}_A(X_s) ds, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

$$\mu_t(A) := \int_0^t \mathbf{1}_A(X_s) d[X]_s, \quad A \in \mathcal{B}(\mathbb{R}^d)$$

where the latter is only defined provided that the process X admits finite quadratic variation $[X]_t$ a.s.

Occupation Measure

Definition (Occupation Measure)

Let $(X_t)_{t \geq 0}$ be a continuous sample paths stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$. For $t \geq 0$, define the *occupation measure* by

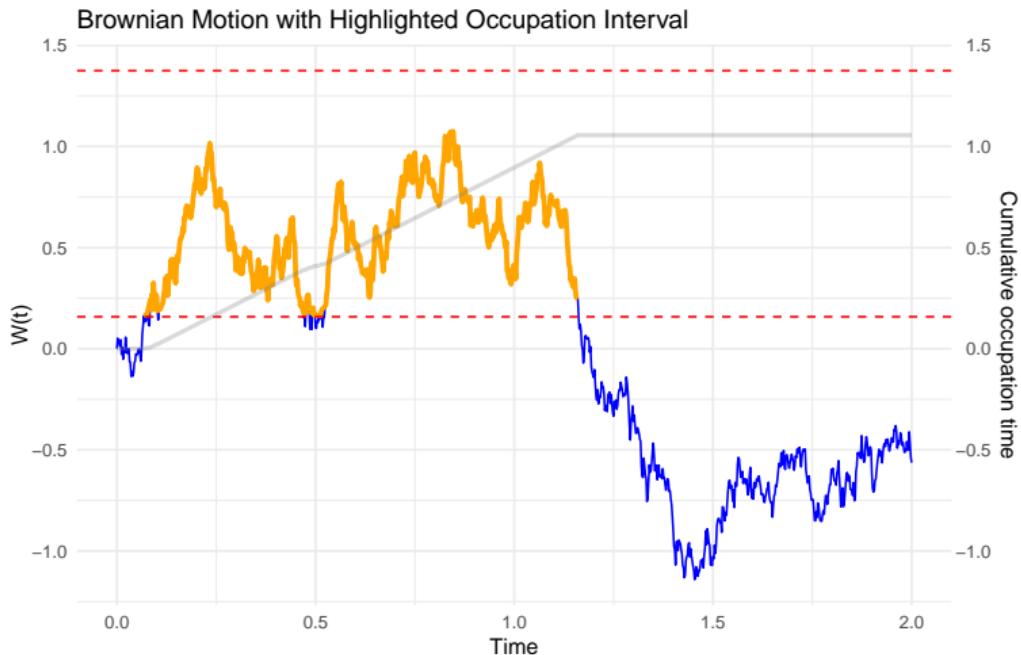
$$\Lambda_t(A) := \int_0^t \mathbf{1}_A(X_s) ds, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

$$\mu_t(A) := \int_0^t \mathbf{1}_A(X_s) d[X]_s, \quad A \in \mathcal{B}(\mathbb{R}^d)$$

where the latter is only defined provided that the process X admits finite quadratic variation $[X]_t$ a.s.

- Measures how much time the process spends in set A up to time t .
- Naturally depends on sample path ω .

BM with highlighted occupation interval



Occupation Density

Definition ((Expected) Occupation Density)

- If there exists a measurable function $\lambda_t(x)$ such that

$$\Lambda_t(A) = \int_A \lambda_t(x) dx, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

then $\lambda_t(x)$ is called the *occupation density* at time $t \geq 0$, $x \in \mathbb{R}^d$.

- If there exists a measurable function $\ell_t(x)$ such that

$$\int_0^t P(X_s \in A) ds = E[\Lambda_t(A)] = \int_A \ell_t(x) dx, \quad A \in \mathcal{B}(\mathbb{R}^d),$$

then $\lambda_t(x)$ is called the *expected occupation density* at time $t \geq 0$, $x \in \mathbb{R}^d$.

Remarks on (expected) occupation measure and density

- The occupation measure Λ_t is a finite random measure with total mass t and its expectation $E[\Lambda_t(\cdot)]$ is a finite measure with total mass t .
- If X is a 1-dimensional diffusion $dX_t = b_t dt + \sigma_t dW_t$ with $\sigma_t \geq \sigma_{\min} > 0$, then for any $t \geq 0$ the occupation density has a locally bounded version.
- If X is a 1-dimensional process such that X_t has density ρ_t , then

$$\int_0^t \rho_s(x) ds = \ell_t(x).$$

Remarks on (expected) occupation measure and density

- The occupation measure Λ_t is a finite random measure with total mass t and its expectation $E[\Lambda_t(\cdot)]$ is a finite measure with total mass t .
- If X is a 1-dimensional diffusion $dX_t = b_t dt + \sigma_t dW_t$ with $\sigma_t \geq \sigma_{\min} > 0$, then for any $t \geq 0$ the occupation density has a locally bounded version.
- If X is a 1-dimensional process such that X_t has density ρ_t , then

$$\int_0^t \rho_s(x) ds = \ell_t(x).$$

The main reason to be interested in expected occupation densities is the following formula which holds for any measurable $f : \mathbb{R} \rightarrow [0, \infty)$:

$$E\left[\int_0^t f(X_s) ds\right] = \int_{-\infty}^{\infty} f(x) \ell_t(x) dx.$$

Usage of expected occupation densities

Let X be a continuous sample path process which has expected occupation density $l_t(x)$ and γ measurable with $l_t(x) \leq \gamma_t(x)$, that is γ is some upper bound for the expected occupation density.

- For measurable $f : \mathbb{R} \rightarrow [0, \infty)$:

$$E\left[\int_0^t f(X_s)ds\right] \leq \int_{-\infty}^{\infty} f(x)\gamma_t(x)dx.$$

- Upper bounds are usually easier to obtain than the expected occupation density itself.
- If an upper bound is known up to some constants (implicit upper bound), then it can be used to get qualitative upper bounds as appear in stability schemes for SDEs.

Relation with expected values

Lemma

Let X be a Markovian diffusion $dX_t = b(X_t)dt + \sigma(X_t)dW_t$ and $f : \mathbb{R} \rightarrow \mathbb{R}$ be a C^2 -function with b, σ bounded measurable. Then

$$\begin{aligned} \mathbb{E}[f(X_t)] &= \mathbb{E}[f(X_0)] + \int_0^t \mathbb{E}[\mathcal{A}f(X_s)]ds \\ &\leq \mathbb{E}[f(X_0)] + \int_{-\infty}^{\infty} \max\{\mathcal{A}f(x), 0\} \ell_t(x)dx \end{aligned}$$

where \mathcal{A} is the generator $\mathcal{A}f(x) = b'(x)f(x) + \frac{1}{2}\sigma^2(x)f''(x)$.

- The formula is a useful tool for bounds, control and sensitivity analysis.

Outline

- Occupation Measures and Local Times
- Expected Occupation bounds
- Applications

Kernel based bounds (Strook Varadhan, 1979)

Setting. Let $(X_t)_{t \geq 0}$ solve the SDE

$$dX_t = b(X_t) dt + \sigma(X_t) dW_t,$$

where $b, \sigma \in C_b^\infty(\mathbb{R}^d)$ and the diffusion matrix $a = \sigma\sigma^\top$ is *uniformly elliptic*:

$$m_1|\xi|^2 \leq \xi^\top a(x) \xi \leq m_2|\xi|^2.$$

Gaussian heat kernel bounds. There exist **unknown constants** $c_i > 0$ such that **density ρ_t** of X_t admits

$$\rho_t(x) \leq c_1 t^{-d/2} \exp\left(-c_2 \frac{|x - X_0|^2}{t}\right), \quad t \in (0, T].$$

Expected occupation density bound. Consequently,

$$\ell_t(x) \leq \int_0^t c_1 s^{-d/2} \exp\left(-c_2 \frac{|x - X_0|^2}{s}\right) ds.$$

Failure of densities (McNamara 1983)

Counterexample. There exists a one-dimensional diffusion

$$dX_t = \sigma(t, X_t) dW_t, \quad X_0 = 0,$$

with

$$\sigma(t, x) \in \{\sigma_1, \sigma_2\},$$

such that for some fixed $T > 0$ the random variable X_T does not admit a density with respect to Lebesgue measure.

Key properties.

- Uniform ellipticity holds.
- The diffusion coefficient is bounded and measurable.
- The process is well defined for all $t \geq 0$.

Consequences.

- No classical heat kernel estimate exists at time T .
- Pointwise or Gaussian density estimates are impossible.
- Occupation bounds cannot rely on kernel estimates.

Krylov occupation bounds (Krylov Röckner 2008)

Setting. Let $(X_t)_{t \geq 0}$ be a diffusion

$$dX_t = \beta_t dt + \sigma_t dW_t,$$

where

$a_t = \sigma_t \sigma_t^T$ is uniformly elliptic and bounded,

and b is progressively measurable unbounded.

Krylov estimate. Let $f \in L^p([0, T] \times \mathbb{R}^d)$ with $p > \frac{d}{2} + 1$. Then there exists a **unknown constant** $C = C(d, p, \lambda, \Lambda, T)$ such that

$$\mathbb{E} \left[\int_0^T |f(t, X_t)| dt \right] \leq C \|f\|_{L^p([0, T] \times \mathbb{R}^d)}.$$

Key features.

- No pointwise heat kernel bounds required (or possible).
- Coefficients need only be measurable.
- Applies equally to time-inhomogeneous diffusions.

K. Xu upper bound (explicit)

Setting. Let $(X_t)_{t \geq 0}$ be a 1-dimensional diffusion

$$dX_t = \beta_t dt + \sigma_t dW_t,$$

where $\sigma_t \in [\sigma_{\min}, \sigma_{\max}]$ with $0 < \sigma_{\min} \leq \sigma_{\max}$ and $|\beta_t|$ is bounded by K .

K. Xu upper bound (explicit)

Setting. Let $(X_t)_{t \geq 0}$ be a 1-dimensional diffusion

$$dX_t = \beta_t dt + \sigma_t dW_t,$$

where $\sigma_t \in [\sigma_{\min}, \sigma_{\max}]$ with $0 < \sigma_{\min} \leq \sigma_{\max}$ and $|\beta_t|$ is bounded by K .

Theorem (K., Xu (2025))

Let X be as above. Then its expected local time l_t exists and

$$\alpha_t(x) \leq l_t(x) \leq \gamma_t(x)$$

for some continuous functions α, γ
with explicit form given by ...

Explicit upper bound

Theorem

Let X be as above. Then its expected local time ℓ_t exists and a version satisfies

$$\ell_t(x) \leq \gamma_t(x)$$

where

$$\gamma_t(x) = \frac{\sigma_{\max}}{\sigma_{\min}^2} \int_0^t \left(\frac{1}{\sqrt{s}} \varphi(v(|x - X_0|, s)) + K \Phi(v(|x - X_0|, s)) \right) ds,$$

where φ , Φ are the standard normal density and distribution function and

$$v(r, s) := K \sqrt{s} - \frac{r}{\sigma_{\max} \sqrt{s}} \quad s > 0, r \geq 0$$

Explicit upper bound

Theorem

Let X be as above. Then its expected local time ℓ_t exists and a version satisfies

$$\ell_t(x) \leq \gamma_t(x)$$

where

$$\gamma_t(x) = \frac{\sigma_{\max}}{\sigma_{\min}^2} \int_0^t \left(\frac{1}{\sqrt{s}} \varphi(v(|x - X_0|, s)) + K \Phi(v(|x - X_0|, s)) \right) ds,$$

where φ , Φ are the standard normal density and distribution function and

$$v(r, s) := K \sqrt{s} - \frac{r}{\sigma_{\max} \sqrt{s}} \quad s > 0, r \geq 0$$

Further comments

- Optimal expected and path-wise **interval** occupation has been found in (Ankirchner, Wendt 25). The bound for

$$\int_0^t P(X_s \in [a, b]) ds = E[\Lambda_t([a, b])] \leq Q_t(a, b, \sigma_{\min}, \sigma_{\max}, K), \quad a < b, t \geq 0$$

looks quite different — they only coincide to our bound in a limiting sense. However, their bound was used to find the bound in (Krühner, Xu 25).

Outline

- Occupation Measures and Local Times
- Expected Occupation bounds
- Applications

Application: Pre-estimates for Control Problems

Setting: Let

$$X_t^\sigma = X_0 + \int_0^t \sigma(s, X_s) dW_s$$

where $\sigma : \mathbb{R}^2 \rightarrow [a, b]$ measurable where $0 < a \leq b$ is given. Denote the set of measurable functions σ where such a process X^σ exists by \mathcal{C} .

Question: How large is

$$\sup_{\sigma \in \mathcal{C}} \mathbb{E} \left[f(X_t^\sigma) + \int_0^t g(X_s^\sigma) ds \right] \leq ?$$

Application: Pre-estimates for Control Problems

Setting: Let

$$X_t^\sigma = X_0 + \int_0^t \sigma(s, X_s) dW_s$$

where $\sigma : \mathbb{R}^2 \rightarrow [a, b]$ measurable where $0 < a \leq b$ is given. Denote the set of measurable functions σ where such a process X^σ exists by \mathcal{C} .

Question: How large is

$$\sup_{\sigma \in \mathcal{C}} \mathbb{E} \left[f(X_t^\sigma) + \int_0^t g(X_s^\sigma) ds \right] \leq ?$$

A common numerical approach: Find C^2 -functions $V_N(t, x)$ and **hope** that

$$V_N(u, x) \approx \mathbb{E} \left[f(X_u^\sigma) + \int_u^t g(X_s^\sigma) ds \middle| X_u^\sigma = x \right], \quad V_N(t, x) = f(x)$$

Application: Pre-estimates for Control Problems, cont.

A common numerical approach: Need to find $h_N : \mathbb{R} \rightarrow [0, \infty)$ such that

$$\sup_{m \in [a, b]} \left(\partial_1 V_N(s, x) + \frac{1}{2} \partial_2^2 V_N(s, x) m^2 + g(x) \right) \leq h(x)$$

Application: Pre-estimates for Control Problems, cont.

A common numerical approach: Need to find $h_N : \mathbb{R} \rightarrow [0, \infty)$ such that

$$\sup_{m \in [a, b]} \left(\partial_1 V_N(s, x) + \frac{1}{2} \partial_2^2 V_N(s, x) m^2 + g(x) \right) \leq h(x)$$

Error control: For some $\sigma \in \mathcal{C}$ we find

$$\begin{aligned} \mathbb{E}[f(X_t^\sigma)] &= \mathbb{E}[V_N(t, X_t^\sigma)] \\ &= V_N(0, X_0) + \mathbb{E} \left[\int_0^t \partial_1 V_N(s, X_s^\sigma) + \frac{1}{2} \partial_2^2 V_N(s, X_s) \sigma^2(X_s) ds \right] \\ &\leq V_N(0, X_0) + \mathbb{E} \left[\int_0^t h_N(X_s) ds \right] - \mathbb{E} \left[\int_0^t g(X_s) ds \right] \end{aligned}$$

So we get for any $\sigma \in \mathcal{C}$:

$$\mathbb{E} \left[f(X_t) + \int_0^t g(X_s) ds \right] \leq V_N(0, X_0) + \int_{-\infty}^{\infty} h(x) \gamma_t(x) dx.$$

Summary and Conclusions

- Expected occupation densities bounds γ allow for upper mean path integral bounds:

$$E\left[\int_0^t f(X_s)ds\right] \leq \int_{-\infty}^{\infty} f(x)\gamma_t(x)dx$$

- When drift/diffusion are known to be smooth, then
- (Krühner Xu 2025) bounds give explicit upper estimates under bounded drift and diffusion in the elliptic regime under no further regularity assumption on the drift/diffusion.

References: Classical heat kernel bounds

- D. Stroock and S. R. S. Varadhan, *Multidimensional Diffusion Processes*, Springer, 1979.
- D. G. Aronson, *Bounds for the fundamental solution of a parabolic equation*, Bull. Amer. Math. Soc. **73** (1967), 890–896.
- D. G. Aronson, *Non-negative solutions of linear parabolic equations*, Ann. Scuola Norm. Sup. Pisa, 1968.
- E. B. Davies, *Heat Kernels and Spectral Theory*, Cambridge University Press, 1989.

References: Parametrix and regularity (more heat kernel bounds)

- A. Friedman, *Partial Differential Equations of Parabolic Type*, Prentice-Hall, 1964.
- O. Ladyzhenskaya, V. Solonnikov, N. Ural'tseva, *Linear and Quasilinear Equations of Parabolic Type*, AMS, 1968.

References: Krylov-type occupation bounds

- N. Krylov, *Lectures on Elliptic and Parabolic Equations in Sobolev Spaces*, AMS, 2008.
- N. V. Krylov and M. Röckner, *Strong solutions of stochastic equations with singular time dependent drift*, Probab. Theory Relat. Fields **131** (2005), 154–196.

References: 1D diffusions and occupation times

- J. McNamara, *Optimal control of the diffusion coefficient of a simple diffusion process*, Math. Oper. Res. **8**, 373–380, 1983.
- S. Ankirchner and J. Wendt, *A sharp upper bound for the expected interval occupation time of Brownian martingales*, Journal of theoretical Probability, **38**, 2025.
- P. Krühner and S. Xu, *Sharp bounds for the expected occupation density of Itô processes with bounded irregular drift and diffusion coefficients*, Electronic Journal of Probability. **30**, 2025.
- D. Baños and P. Krühner, *Hölder continuous densities of solutions of SDEs with measurable and path dependent drift coefficients*, Stochastic Processes and their Applications. **127**, 1785 – 1799, 2017.
- D. Baños and P. Krühner, *Optimal density bounds for marginals of Itô processes*, Communications in Stochastic Analysis, **10**, 131–150, 2016.

References: Density bounds via Malliavin calculus

- D. Nualart and L. Quer-Sardanyons, *Optimal Gaussian density estimates for a class of stochastic equations with additive noise*, Infinite Dimensional Analysis, Quantum Probability and Related Topics **14**, 2009.
- I. Nourdin and F. G. Viens, *Density formula and concentration inequalities with Malliavin calculus*, Electron. J. Probab., **14**, 2287–2309, 2009.
- T. Nguyen, *Gaussian lower bounds for the density via Malliavin calculus*, Comptes Rendus Mathématique **358**, 79–87, 2020.
- B. Gess, C. Ouyang, and S. Tindel, *Density bounds for solutions to differential equations driven by Gaussian rough paths*, Journal of Theoretical Probability, **33**, 611–648, 2020.
- V. Bally, L. Caramellino and A. Kohatsu-Higa, *Upper bounds for the derivatives of the density associated to SDEs with jumps*, J. Math. Anal. Appl., **531**, 2024.

Thank you for your attention!

Thank you for your attention!

Questions?