Realized Principal Component Analysis of Noisy High-Frequency Data

Bezirgen Veliyev (Aarhus University, Denmark) joint with F. Benvenuti (Aalborg) and K. Christensen (Aarhus)

WU Vienna, December 3, 2025.

Introduction

0000000

- Introduction
- Setting (Target, Estimators, Assumptions)
- Theoretical Results
- Simulations
- Empirical Analysis

PCA in High-Frequency Settings

PCA

- Given a high-dimensional dataset, principal components analysis (PCA) is a tool to identify a small number of common factors that summarize a large portion of the variation in the dataset.
- PCA has been well researched in i.i.d. and stationary time series settings.
- Ait-Sahalia and Xiu (2019, JASA) develop a high-frequency version of PCA and its asymptotic theory under very general conditions.
- The dimension of assets *d* is large but fixed.
- An absence of microstructure noise is assumed.

General Microstructure Noise Setting

- High-frequency data are contaminated by microstructure noise (bid-ask bounce, discrete pricing, order-book frictions).
- Plain realized measures typically use sparse sampling (e.g. every 5 or 1 minutes), effectively discarding most tick data.
- To exploit tick-by-tick high-frequency data, noise-robust estimators are necessary; initial wave of noise robust estimators were proposed during 2005–2010.
- Jacod, Li, Zheng (2017, ECTA) propose a general noise framework that accommodates serial dependence, heteroskedasticity in noise, and random, endogenous observation times.
- Jacod, Li, Zheng (2019) and Li and Linton (2024) develop pre-averaging estimators for integrated volatility and spot volatility, respectively.

Our contributions

Multivariate Spot Covariance

- Under the general microstructure noise setting (excluding random observation times), we propose a multivariate spot covariance estimator.
- We extend Li and Linton (2024) from the univariate to the multivariate context.
- To the best of our knowledge, this is the first noise-robust spot covariance estimator in the literature under such generality.

Realized PCA

- Using this spot covariance estimator, we extend realized principal component analysis of Ait-Sahalia and Xiu (2019).
- In this regard, we develop a noisy version of a Jacod and Rosenbaum (2013)-type estimator for volatility functionals.

Methodological Challenges

Eigenvalue Separation

 We have to impose spatial localization condition to ensure that eigenvalues and eigenvectors of the spot covariance matrix are locally well-defined and unique.

Theoretical Challenge and Solution

- Pre-averaging CLT theory relies on big blocks and small blocks to ensure conditional independence: big blocks drive the limiting distribution, while small blocks are negligible.
- For bias correction of eigenvalue functionals, we must aggregate information from $p=p_n$ nearby blocks, and still show that several bias-correction terms are negligible as $n \to \infty$.

Related literature

Earlier Noise Robust Estimators of IV/SV

- Univariate IV: Zhang et al. (2005), Barnorff-Nielsen et al. (2008), Jacod et al. (2009), Xiu (2010), Hautsch and Podolskij (2013), Ikeda (2015), Varneskov (2016), Li et al. (2020), ...
- Multivariate IV: Zhang (2006), Christensen et al. (2010), Barnorff-Nielsen et al. (2011),...
- SV: Zu and Boswijk (2014), Bibinger et al. (2019), Todorov (2019), Figueroa-Lopez and Wu (2024),...

Recent Estimators under General Noise Setting (Univariate)

Jacod, Li, Zheng (2017, 2019), Da, Xiu (2021), Li, Linton (2022, 2024),...

Principal Component Analysis under High Frequency Data

 Ait-Sahalia, Xiu (2019), Dai, Lu, Xiu (2019), Chen, Mykland, Zhang (2020), ...

Generalized Volatility Functionals

 Mykland, Zhang (2009), Jacod, Rosenbaum (2013), Li, Xiu (2016), Li, Todorov, Tauchen (2016, 2017), Chen (2019), ...

Recommended References for Students

High-Frequency Econometrics

• Ait-Sahalia & Jacod (2014)

High-Frequency Financial Econometrics.

The standard reference on noise-robust estimators, pre-averaging, jumps, asymptotic theory, and empirical implementation.

Semimartingale Theory and Discretization

Jacod & Protter (2012)

Discretization of Processes.

A fundamental text on limit theorems for semimartingales under high-frequency observation. Essential background for modern HF econometrics.

- 1 Introduction
- 2 Setting (Target, Estimators, Assumptions)
- 3 Theoretical Results
- 4 Simulations
- 5 Empirical Analysis

We model the latent efficient log-price X as a d-dimensional Itô semimartingale on [0, T]:

$$X_t = X_0 + \int_0^t b_s \, ds + \int_0^t \sigma_s \, dW_s + \int_{[0,t] \times \mathbb{R}^d} \delta(s,z) \, \mu(ds,dz).$$

- b_s : drift process (optional, \mathbb{R}^d -valued)
- σ_s : spot volatility matrix $(d \times d)$
- W: d-dimensional Brownian motion
- μ : Poisson random measure with intensity $\nu(ds,dz)=ds\otimes \bar{\nu}(dz)$
- $\delta(s,z)$: jump size of X at time s with mark z

Interpretation: The model allows for:

- Stochastic drift and volatility
- Finite or infinite activity jumps
- Arbitrary jump sizes and arrival patterns

Assumptions on Drift, Volatility, and Jumps

Setting (Target, Estimators, Assumptions)

Assumption (V)

The drift and volatility processes admit continuous Itô semimartingale:

$$\sigma_t = \sigma_0 + \int_0^t \tilde{b}_s ds + \int_0^t \tilde{\sigma}_s d\tilde{W}_s,$$
 $b_t = b_0 + \int_0^t \check{b}_s ds + \int_0^t \check{\sigma}_s d\check{W}_s,$

where \tilde{W} and \tilde{W} are Brownian motions of dimensions d^2 and d, respectively.

There exists $r \in [0,1)$ and a localization sequence $\tau_n \uparrow \infty$ such that:

$$\|\delta(t,z)\|^r \wedge 1 \leq J_n(z), \qquad \|U_t\| \leq n, \quad U \in \{\tilde{b},\tilde{\sigma},\check{b},\check{\sigma}\}, \ t \leq \tau_n.$$

Meaning:

- Volatility and drift evolve smoothly (continuous semimartingales)
- Jumps of X satisfy a summability condition (r < 1)
- Sufficient regularity for stable central limit theorems

Objects of Interest

Our analysis is built around $d \times d$ dimensional **spot covariance process**

$$c_t = \sigma_t \sigma_t^{\top}$$
.

Eigenvalues/eigenvectors of c_s

- $\lambda_1(c_s) > \lambda_2(c_s) > \cdots > \lambda_d(c_s)$: ordered eigenvalues,
- $\gamma_r(c_s)$: eigenvector associated with $\lambda_r(c_s)$.

Targets

Integrated eigenvalue: $V(\lambda_r)_t = \int_0^t \lambda_r(c_s) ds$,

Integrated eigenvector: $R(\lambda_r)_t = \int_0^t \gamma_r(c_s) ds$,

Principal component process: $PC(\lambda_r)_t = \int_0^t \gamma_r(c_s)^\top dX_s$.

This talk focuses on estimating $V(\lambda_r)_t$. Other two objects follow analogously from the same theory.

High-Frequency Asymptotics

Infill asymptotics:

- Process X_t defined on a *fixed* time interval [0, T],
- Discrete observations $X_{i\Delta_n}$ with sampling $\Delta_n \to 0$ (frequency $\to \infty$).

Continuous semimartingale

$$X_t = X_0 + \int_0^t b_s ds + \int_0^t \sigma_s dW_s.$$

Realized volatility (RV):

$$RV_t^n = \sum_{i=1}^{\lfloor t/\Delta_n \rfloor} (X_{i\Delta_n} - X_{(i-1)\Delta_n})^2.$$

Key facts

• RV converges to integrated volatility:

$$RV_t^n \xrightarrow{\mathbb{P}} \int_0^t \sigma_s^2 ds.$$

Central limit theorem:

$$\Delta_n^{-1/2}(RV_t^n-\int_0^t\sigma_s^2ds)\stackrel{d_s}{\longrightarrow}MN\Big(0,\,2\int_0^t\sigma_s^4ds\Big).$$

Idea of Jacod and Rosenbaum (2013)

Goal: Estimate nonlinear functionals of spot volatility,

$$V(g)_t = \int_0^t g(\sigma_s^2) ds, \qquad g \in C^3.$$

Key idea: Construct a *local* estimator of σ_s^2 by averaging over a short window.

$$\widehat{c}_i^n = \frac{1}{k_n \Delta_n} \sum_{i=0}^{k_n-1} (X_{(i+j)\Delta_n} - X_{(i+j-1)\Delta_n})^2, \qquad k_n \to \infty, \quad k_n \Delta_n \to 0.$$

Plug-in estimator:

$$\widetilde{V}(g)_t^n = \Delta_n \sum_{i=0}^{\lfloor t/\Delta_n \rfloor - k_n + 1} g(\widehat{c}_i^n),$$

consistent for $V(g)_t$, but with a second-order bias.

Bias-corrected estimator:

$$\widehat{V}(g)_t^n = \Delta_n \sum_{i}^{\lfloor t/\Delta_n \rfloor - k_n + 1} \left[g(\widehat{c}_i^n) - \frac{1}{k_n} g''(\widehat{c}_i^n) (\widehat{c}_i^n)^2 \right].$$

CLT: If $k_n^3 \Delta_n \to \infty$, $k_n^2 \Delta_n \to 0$, then $\Delta_n^{-1/2} (\widehat{V}(g)_t^n - V(g)_t) \Longrightarrow MN(0, \Sigma_t)$.

Univariate Pre-Averaging for Integrated Volatility

We observe noisy prices

$$Y_{i\Delta_n} = X_{i\Delta_n} + \epsilon_i$$
, $\mathbb{E}[\epsilon_i] = 0$, $\mathbb{E}[\epsilon_i^2] = \omega^2$, (ϵ_i) i.i.d. and independent of X .

Target:

$$IV = \int_0^1 \sigma_t^2 dt$$
 = integrated volatility of the efficient price.

Pre-averaged returns

$$ar{Y}_i^n = \sum_{i=1}^{n-1} \varphi(j/k_n) (Y_{(i+j)\Delta_n} - Y_{(i+j-1)\Delta_n}), \qquad k_n \sim \theta/\sqrt{\Delta_n}, \ \varphi \ \text{is a kernel function}$$

Pre-averaging estimator (Jacod et al. 2009):

$$\widehat{IV}^{PA} = \frac{1}{\theta \psi_2 \sqrt{\Delta_n}} \sum_{i=1}^{\lfloor 1/\Delta_n \rfloor - k_n} (\bar{Y}_i^n)^2 - \frac{\psi_1}{\theta^2 \psi_2} \widehat{\omega}^2, \quad \widehat{\omega}^2 = \frac{1}{2 \lfloor 1/\Delta_n \rfloor} \sum_{i=1}^{\lfloor 1/\Delta_n \rfloor} (Y_{i\Delta_n} - Y_{(i-1)\Delta_n})^2.$$

Intuition:

- Pre-averaging smooths high-frequency noise: $\bar{\epsilon}_i^n = O_p(\Delta_n^{1/4})$.
- Squared pre-averaged returns estimate $c_1 IV + c_2 \omega^2$.
- A bias correction removes the effect of microstructure noise.

Pre-averaging: notation and constants

Pre-averaging relies on a kernel function

$$\varphi: [0,1] \to \mathbb{R}, \qquad \varphi(0) = \varphi(1) = 0,$$

which smooths high-frequency returns and controls the noise-signal tradeoff.

The choice of φ determines several constants that appear in the bias correction and the asymptotic variance of the estimator:

$$\phi_{1}(t) = \int_{t}^{1} \varphi'(u)\varphi'(u-t)du, \quad \phi_{2}(t) = \int_{t}^{1} \varphi(u)\varphi(u-t)du,$$

$$\psi_{1} = \phi_{1}(0), \quad \psi_{2} = \phi_{2}(0),$$

$$\Phi_{11} = \int_{0}^{1} \phi_{1}^{2}(t)dt, \quad \Phi_{12} = \int_{0}^{1} \phi_{1}(t)\phi_{2}(t)dt, \quad \Phi_{22} = \int_{0}^{1} \phi_{2}^{2}(t)dt.$$

Explicit constants for triangular kernel $\varphi(x) = \min(x, 1-x)$,:

$$\psi_1=1, \qquad \psi_2=rac{1}{12},$$
 $\Phi_{11}=rac{1}{6}, \qquad \Phi_{12}=rac{1}{96}, \qquad \Phi_{22}=rac{151}{80640}.$

General Microstructure Noise Model

Observed log-prices are contaminated by noise:

$$Y_{i\Delta_n}=X_{i\Delta_n}+\epsilon_{i\Delta_n}.$$

Assumption (N)

For each asset $j = 1, \ldots, d$,

$$\epsilon_{i\Delta_n}^j = \omega_{i\Delta_n}^j \, \chi_i^j,$$

where:

- ω_t^j is a continuous Itô semimartingale (time-varying noise level),
- χ_i^j is a stationary, mean-zero, unit-variance sequence,
- (χ_i^j) is v-polynomially ρ -mixing with v > 4 (serial dependence),
- χ has finite moments of all orders, and χ is independent of (X, ω) .

Noise autocovariance is $r(\ell) = \mathbb{E}[\chi_0 \chi_\ell^\top]$, and its long-run covariance matrix is

$$\mathcal{R}=\sum_{\ell=-\infty}^{\infty}r(\ell).$$

Asymptotic Variance

Without noise:

- Asymptotic variance involves quarticity $2\sigma_t^4$.
- In the multivariate case: $c_t^{jl} c_t^{km} + c_t^{jm} c_t^{kl}$.

With general microstructure noise:

- The limit variance involves both the price covariance c_t and the noise covariance $\omega_t \mathcal{R} \omega_t$,
- plus *mixed* terms capturing signal–noise interactions.

Precisely, the limiting variance kernel is

$$\Gamma(c_t, \omega_t \mathcal{R}\omega_t)^{jk,lm}$$

where for arbitrary $x,y \in \mathbb{R}^{d \times d}$,

$$\Gamma(x,y)^{jk,lm} = \frac{2}{\psi_2^2} \left[\theta \Phi_{22} \Lambda(x)^{jk,lm} + \frac{\Phi_{12}}{\theta} \Xi(x,y)^{jk,lm} + \frac{\Phi_{11}}{\theta^3} \Lambda(y)^{jk,lm} \right],$$

$$\Xi(x,y)^{jk,lm} = x^{jl} y^{km} + x^{jm} y^{kl} + x^{km} y^{jl} + x^{kl} y^{jm},$$

$$\Lambda(x)^{jk,lm} = x^{jl} x^{km} + x^{jm} x^{kl}.$$

Spot Covariance Estimator

To estimate the instantaneous covariance c_t , we smooth pre-averaged returns over a local window of length h_n .

Let $N_t^n = \lfloor t/\Delta_n \rfloor$. The spot covariance estimator is

$$\widehat{c}_t^n = \frac{1}{\theta \psi_2 h_n \sqrt{\Delta_n}} \sum_{u=N_t^n}^{N_t^n + h_n - 1} \overline{Y}_u^n (\overline{Y}_u^n)^\top \mathbf{1} \{ \|\overline{Y}_u^n\| \le u_n \} - \frac{1}{\theta^2 \psi_2} \widehat{\Psi}_t^n.$$

The long-run noise covariance is estimated by

$$\widehat{\Psi}_t^n = \sum_{\ell=-\ell_n}^{\ell_n} \psi_1(|\ell|) U(\ell)_t^n,$$

with

$$U(\ell)_t^n = \frac{1}{2h_n} \sum_{\substack{n=N^n+m \\ n=1}}^{N_t^n+m_n+h_n-1} \left[(Y_u^n - Y_{u-m_n}^n)(Y_{u+\ell}^n - Y_{u+\ell+m_n}^n)^\top + \text{sym.} \right].$$

This generalizes the univariate estimator of Li & Linton (2024).

The spot covariance estimator involves several smoothing and truncation parameters. We express their asymptotic growth using exponents:

$$h_n \asymp \Delta_n^{-h}, \qquad \ell_n \asymp \Delta_n^{-\ell}, \qquad m_n \asymp \Delta_n^{-m}, \qquad u_n \asymp (k_n \Delta_n)^{\varpi}.$$

- h_n : local window size for spot smoothing; larger h_n averages out noise.
- ℓ_n : range of autocovariances used to estimate long-run noise variance.
- m_n : lag used to decorrelate the noise sequence.
- u_n : truncation level in the pre-averaging tail control (depends on ϖ).

These parameters must grow at compatible rates for the LLN and CLT to hold.

Spatial Localization

Introduction

To handle eigenvalues, we must avoid points where eigenvalues collide. When the rth eigenvalue is simple, the map $c \mapsto \lambda_r(c)$ is smooth.

Assumption (SL)

There exists an open and convex set $\mathcal{C} \subseteq \mathcal{M}(r)$ such that

$$c_s \in \mathcal{C}, \qquad 0 \leq s \leq t,$$

where $\mathcal{M}(r)$ is the set of positive definite covariance matrices with a simple rth eigenvalue.

Comment:

This ensures a uniform spectral gap around $\lambda_r(c_s)$, so λ_r is differentiable along the path of c_s . Therefore Taylor expansions used in bias correction and the CLT are valid.

- 1 Introduction
- 2 Setting (Target, Estimators, Assumptions)
- Theoretical Results
- 4 Simulations
- 6 Empirical Analysis

Spot Covariance CLT

Theorem

Suppose that the following conditions hold for the rates:

$$h \in (\frac{1}{2}, \frac{3}{4}), \ \ell \in (\frac{1}{8(\nu-1)}, \frac{1}{6}), \ m \in (\ell, \frac{1}{6}), \ \varpi \in (\frac{1}{4-2r}, \frac{2\lfloor \nu \rfloor - 3}{4\lfloor \nu \rfloor - 4}), \ r < \frac{2\lfloor \nu \rfloor - 4}{2\lfloor \nu \rfloor - 3}.$$

Under Assumptions (V) and (N), for any $t \in (0, T]$, as $\Delta_n \to 0$,

$$h_n^{1/2}\Delta_n^{1/4}\left[\widehat{c}_t^n-c_t\right]\stackrel{d_s}{\longrightarrow}MN(0,Q_t),$$

where the components of $d^2 \times d^2$ -dimensional conditional variance \mathcal{Q}_t are given by

$$Q_t^{jk,lm} = \Gamma \left(c_t, \omega_t \mathcal{R} \omega_t \right)^{jk,lm}.$$

Comment:

 This generalizes Christensen, Kinnebrock, Podolskij (2010) to the spot and more general noise setting, and Li and Linton (2024) to multivariate setting. Introduction

An obvious estimator of integrated eigenvalue $V(\lambda_r)$ is

$$V(\lambda_r)_t^n = \Delta_n \sum_{i=0}^{N_t^n - 1} \lambda_r(\widehat{c}_i^n).$$

This has a second order asymptotic bias in CLT.

Theorem

Suppose that the following rate conditions hold:

$$h \in (\frac{1}{2}, \frac{3}{4}), \ \ell \in (\frac{1}{4(\nu-1)}, \frac{1}{12}), \ m \in (\ell, \frac{1}{12}), \ \varpi \in (\frac{1}{4-2r}, \frac{2\lfloor \nu \rfloor - 3}{4\lfloor \nu \rfloor - 4}), \ r < \frac{2\lfloor \nu \rfloor - 4}{2\lfloor \nu \rfloor - 3}.$$

Then, under Assumptions (V), (N) and (SL), for any $t \in (0, T]$, as $\Delta_n \to 0$, it holds that

$$\Delta_n^{1/2} h_n \Big[V(\lambda_r)_t^n - V(\lambda_r)_t \Big] \stackrel{\mathbb{P}}{\longrightarrow} B(\lambda_r)_t, \tag{1}$$

where

$$B(\lambda_r)_t = \frac{1}{2} \sum_{j,k,l,m=1}^d \int_0^t \partial_{jk,lm}^2 \lambda_r(c_s) \Gamma(c_s, \omega_s \mathcal{R} \omega_s)^{jk,lm} ds.$$

Its bias-corrected version of the rth realized eigenvalue:

$$\widehat{V}(\lambda_r)_t^n = \Delta_n \sum_{i=0}^{N_t^n-1} \left[\lambda_r \left(\widehat{c}_i^n \right) - \widehat{B}(\lambda_r)_i^n \right],$$

where

Introduction

$$\widehat{B}(\lambda_r)_i^n = \frac{1}{2h_n \Delta_n^{1/2}} \sum_{i,k,l,m=1}^d \partial_{jk,lm}^2 \lambda_r \left(\widehat{c}_i^n\right) \Gamma\left(\widehat{c}_i^n, \widehat{\Psi}_i^n\right)^{jk,lm}. \tag{2}$$

Introduction

Theorem

Suppose that the following conditions hold for the rates:

$$h \in (\frac{23}{31}, \frac{3}{4}), \ \ell \in (\frac{1}{4(\nu-1)}, \frac{1}{12}), \ m \in (\ell, \frac{1}{12}), \ \varpi \in (\frac{1}{4-2r}, \frac{2\lfloor \nu \rfloor - 3}{4\lfloor \nu \rfloor - 4}), \ r < \frac{2\lfloor \nu \rfloor - 4}{2\lfloor \nu \rfloor - 3}.$$

Then, under Assumptions (V), (N) and (SL), for any $t \in (0, T]$, as $\Delta_n \to 0$, it holds that

$$\Delta_n^{-1/4} \left[\widehat{V}(\lambda_r)_t^n - V(\lambda_r)_t \right] \stackrel{d_s}{\longrightarrow} MN(0, S(\lambda_r)_t),$$

where the conditional variance is given by

$$S(\lambda_r)_t = \int_0^t \sum_{i,k,l,m=1}^d \partial_{jk} \lambda_r\left(c_s\right) \partial_{lm} \lambda_r\left(c_s\right) \Gamma\left(c_s, \omega_s \mathcal{R} \omega_s\right)^{jk,lm} \mathrm{d}s.$$

- 1 Introduction
- 2 Setting (Target, Estimators, Assumptions)
- 3 Theoretical Results
- 4 Simulations
- **5** Empirical Analysis

Simulation study

We work with d=10 assets and suppose r=3 factors. We simulate the following d-dimensional model:

$$\mathrm{d}X_{i,t} = \sum_{j=1}^{r} \beta_{ij,t} \mathrm{d}F_{j,t} + \mathrm{d}Z_{i,t},$$

where for $i = 1, \ldots, d$ and $j = 1, \ldots, r$.

$$\mathrm{d}F_{j,t} = \mu_j \mathrm{d}t + \sigma_{j,t} \mathrm{d}W_{j,t}$$
 and $\mathrm{d}Z_{i,t} = \gamma_{i,t} \mathrm{d}B_{i,t}.$

In the above, the coefficient processes are described by:

$$d\sigma_{j,t}^{2} = \kappa(\theta - \sigma_{j,t}^{2})dt + \eta\sigma_{j,t}d\widetilde{W}_{j,t},$$

$$d\gamma_{i,t}^{2} = \kappa_{Z}(\theta_{Z} - \gamma_{i,t}^{2})dt + \eta_{Z}\gamma_{i,t}d\overline{B}_{i,t},$$

$$d\beta_{i1,t} = \widetilde{\kappa}_{1}(\widetilde{\theta}_{i1} - \beta_{i1,t})dt + \widetilde{\xi}_{1}\sqrt{\beta_{i1,t}}d\widetilde{B}_{i1,t},$$

$$d\beta_{ij,t} = \widetilde{\kappa}_{j}(\widetilde{\theta}_{ij} - \beta_{ij,t})dt + \widetilde{\xi}_{j}d\widetilde{B}_{ij,t}, \quad j \geq 2.$$

Three Noise Settings

We have

$$\epsilon_i^{n,j} = \omega_i^{n,j} \chi_i$$

where

$$\omega_i^{n,j} = \sqrt{\rho} n \sigma_i^{n,j}$$
 and $\chi_i = \sum_{j=0}^q \theta_j u_j$,

with i.i.d. normal u_i and $\rho = 0.5$

We consider three types of noise:

- Uncorrelated Noise with q = 0.
- Moving average noise with q=100 following Jacod, Li and Zheng (2017).
- Autoregressive noise with $q = \infty$ and $\theta_j = 0.8^j$ following Li and Linton (2024).

Introduction

Eigenvalue	1st	2nd	3rd
True value	0.907	0.408	0.336
Explained variation	0.242	0.109	0.090
Panel A: Uncorrelated noise			
Consistent estimator			
Relative bias	1.026	1.154	1.196
Estimation Error	0.025	0.061	0.066
Standard deviation	0.067	0.022	0.013
Bias-corrected estimator			
Relative bias	0.993	1.045	1.113
Estimation Error	-0.002	0.017	0.038
Standard deviation	0.069	0.024	0.016

Simulation Results-MA Noise

Eigenvalue	1st	2nd	3rd
True value	0.907	0.408	0.336
Explained variation	0.242	0.109	0.090
Panel B: Moving average noise			
Consistent estimator			
Relative bias	1.027	1.156	1.199
Estimation Error	0.026	0.062	0.067
Standard deviation	0.067	0.022	0.013
Bias-corrected estimator			
Relative bias	0.994	1.047	1.116
Estimation Error	-0.001	0.018	0.039
Standard deviation	0.069	0.024	0.016

0.069

0.024

0.016

Standard deviation

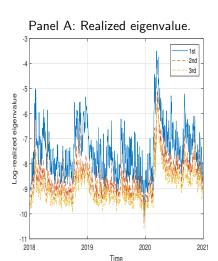
Eigenvalue	1st	2nd	3rd
True value	0.907	0.408	0.336
Explained variation	0.242	0.109	0.090
Panel C: Autoregressive noise			
Consistent estimator			
Relative bias	1.028	1.157	1.200
Estimation Error	0.026	0.062	0.067
Standard deviation	0.067	0.022	0.013
Bias-corrected estimator			
Relative bias	0.995	1.048	1.117
Estimation Error	-0.001	0.019	0.039

- 1 Introduction
- 2 Setting (Target, Estimators, Assumptions)
- 3 Theoretical Results
- 4 Simulations
- **5** Empirical Analysis

Introduction

- d = 10 stocks from NYSE TAQ dataset.
- Eight liquid Dow Jones index members:
 Apple (AAPL), Caterpillar (CAT), Walt Disney (DIS),
 Microsoft (MSFT), Nike (NKE), Pfizer (PFE), Walmart
 (WMT), and Exxon Mobil (XOM).
- Two less liquid companies: Autodesk (ADSK) and Edison International (EIX).
- January 2, 2018 to December 31, 2020 (T = 756 days).
- 1 second sampling during 9:30-16:00 (n = 23400 per day).

Introduction



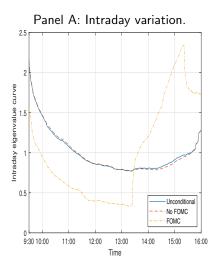
Panel B: Explained variance. 0.8 2nd 3rd 0.7 Explained variance 2018 2019 2020 2021

Time

Intraday Periodicity

- Is there intraday variation in eigenvalues or explained variance? Next, we are interested in the intraday periodicity.
- We look are Federal Open Market Committee (FOMC) meetings, where there eight ordinary meetings per year.
- This is announced during 14.00-14.15.
- On FOMC days, we observe a drastic change in eigenvalues and variation around announcement time.

Intraday dynamic of principal eigenvalue



Panel B: Explained variance. 0.65 - Unconditional 0.4 No FOMC FOMC 0.35 9:30 10:00 11:00 12:00 13:00 14:00 15:00 16:00 Time

Thanks for your attention!