Tensor decompositions of fluorescence spectra:

A case study in R

2025-10-01

Vienna, Austria

Ivan Krylov

File Edit View Misc Packages Windows Help

R version 2.10.1 (2009-12-14) Copyright (C) 2009 The R Foundation for Statistical Computing ISBN 3-900051-07-0 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details.

R is a collaborative project with many contributors.

Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R.

> help()

starting httpd help server ... done

> q()

2010


```
==1730== Invalid read of size 1
==1730==
            at 0x10915D: main (in /home/ivan/foo)
==1730==
          Address 0x4a6206a is 0 bytes after a block of size 42 alloc'd
            at 0x48417B4: malloc (vg replace_malloc.c:381)
==1730==
==1730==
            by 0x10914A: main (in /home/ivan/foo)
==1730==
==1730==
==1730== More than 10000000 total errors detected. I'm not reporting any more.
==1730== Final error counts will be inaccurate. Go fix your program!
==1730== Rerun with --error-limit=no to disable this cutoff. Note
==1730== that errors may occur in your program without prior warning from
==1730== Valgrind, because errors are no longer being displayed.
==1730==
==1730==
==1730== HEAP SUMMARY:
==1730==
             in use at exit: 42 bytes in 1 blocks
==1730==
          total heap usage: 1 allocs, 0 frees, 42 bytes allocated
==1730==
==1730== LEAK SUMMARY:
==1730==
            definitely lost: 42 bytes in 1 blocks
==1730==
            indirectly lost: 0 bytes in 0 blocks
==1730==
              possibly lost: 0 bytes in 0 blocks
==1730==
            still reachable: 0 bytes in 0 blocks
==1730==
                 suppressed: 0 bytes in 0 blocks
==1730== Rerun with --leak-check=full to see details of leaked memory
==1730==
==1730== For lists of detected and suppressed errors, rerun with: -s
```


Dissolved organic matter

Sources

- Terrestrial runoff
- Local production in rivers and oceans
- Melting permafrost
- Sinks
 - Photochemical bleaching
 - Local biodegradation

- Part of the global carbon cycle
 - flux ≈ 50 Gt C/year
- Goal: monitoring

(Kleinhempel, 1970)

Fluorescence spectroscopy

2025-10-01

9/46

Excitation and emission spectra

2025-10-01

10/46

Fluorescence as an outer product

 Emission spectrum independent from excitation spectrum

$$F_{k}(\lambda_{\text{em}}, \lambda_{\text{ex}}) = \sum_{r} C_{k,r} f_{r}^{\text{em}}(\lambda_{\text{em}}) f_{r}^{\text{ex}}(\lambda_{\text{ex}})$$

Second order advantage

Fitting the model

Alternating least squares

$$\min_{\mathbf{A}} \sum_{i,j,k} W_{i,j,k} \left(X_{i,j,k} - \sum_{r} A_{i,r} B_{j,r} C_{k,r} \right)^{2} \quad \mathbf{A} \leftarrow \mathbf{X}_{\mathbf{A}} \left(\mathbf{C} * \mathbf{B} \right)^{+}$$

$$\min_{\mathbf{B}} \sum_{i,j,k} W_{i,j,k} \left(X_{i,j,k} - \sum_{r} A_{i,r} B_{j,r} C_{k,r} \right)^{2} \quad \mathbf{B} \leftarrow \mathbf{X}_{\mathbf{B}} \left(\mathbf{A} * \mathbf{C} \right)^{+}$$

$$\min_{\mathbf{C}} \sum_{i,j,k} W_{i,j,k} \left(X_{i,j,k} - \sum_{r} A_{i,r} B_{j,r} C_{k,r} \right)^{2} \quad \mathbf{C} \leftarrow \mathbf{X}_{\mathbf{C}} \left(\mathbf{B} * \mathbf{A} \right)^{+}$$

Nonlinear optimisation

Deviations from the PARAFAC model

Inner filter effect Multiplying the whole EEM due to absorbance

Scattering signal Adding non-trilinear components

https://en.wikipedia.org/wiki/File:Why_is_the_sky_blue.jpg

Inner filter effect

Both excitation and emission beams get partially reabsorbed by the solution

Absorbance-based correction

 We observe partially absorbed signal

$$F_0(\lambda_{
m em}$$
 , $\lambda_{
m ex}$) $\cdot 10^{-rac{a(\lambda_{
m em})+a(\lambda_{
m ex})}{2}}$

 Multiply it back by corresponding absorbance factor

Scattering signal

1.4

1.2

1.0

Scattering signal is not trilinear and must be handled separately

Removal of scattering signal

- Zero residual weights for missing data
- May cause convergence problems, nonsense solutions

Interpolation of scattering signal

- Wide choice of methods
 - linear, PCHIP, LOESS, Kriging, B/P-splines, Whittaker...
- Prevents local minima, swamps
 - Fewer degrees of freedom in the model
- Choice of parameters not obvious
 - Typically empirical

Interpolation of scattering signal

Whittaker interpolation

• Empirically, need 1:1000 first order:second order penalty for ideal interpolated surface

2025-10-01 21/46

How many components?

$$X_{i,j,k} = \sum_{r} A_{i,r} B_{j,r} C_{k,r}$$

"Most tensor problems are NP-hard" (Hillar et al., 2013)

How to cross-validate an unsupervised learning model?

Split-half validation

- Divide dataset into non-intersecting halves
 - Group repeats together

(Harshman & De Sarbo, 1984)

- Fit both models
- Reorder components to match
- Measure similarity

Measure similarity

- Tucker's congruence coefficient
$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i} x_{i} y_{i}}{\sqrt{\sum_{i} x_{i}^{2} \sum_{i} y_{i}^{2}}}$$

How much to split?

- "S₄C₆T₃" methodology
 - (Murphy, 2014)
- Shuffle a ground truth 5-component dataset
- By chance some validation results are wrong
- More resampling ⇒ better?

Validated model


```
function(..., cores = parallel::detectCores(logical = FALSE))
                c("askpass","httr") %in% rownames(installed.packages())
                                               areturn data.frame
                                           mod <- try(..., silent=TRUE)</pre>
   aparam eem list eemlist
                                           if(inherits(mod, "try-error"))
                                             stop(mod)
              cl <- makeCluster(...)</pre>
              doParallel::registerDoParallel(cl)
               stopCluster(cl)
```


lengths(package_dependencies("staRdom", ...)) == 100

Generating figures in Rd

Workaround for long-fixed bugs in all variants of results= (e.g. r80718)

2025-10-01 29/46

Hand-written HTML equations

```
\newcommand{\eqn3}{
 \ifelse{html}{\out{<i>#3</i>}}
                 {\text{eqn}\{\#1\}\{\#2\}}
                        R<3.6.0: sometimes show up empty
\eqn3{ →
 A = \log \{10\} \operatorname{Inac}\{I \ 0\}\{I\}
A = log10(I0 / I)
 A = \log < sub > 10 < / sub > (
  <sup>I<sub>0</sub></sub>/<sub>I</sub>
)}
```

Fixing hand-written HTML equations

```
\Sexpr[results=hide,stage=build]{}
  Use pre-cached Rd database, don't parse anew
\newcommand{\eqn3}{
   \forcebuild
   \ifelse{
    \Sexpr[results=rd, stage=render]{...}
   }{...}{\eqn{#1}{#2}}
  Don't force ugly HTML on R \ge 4.2
```

\newcommand{\forcebuild}{

Progress bar for parallel operations?

- doSNOW: make your own parLapply() using sendCall() & friends
- pbapply: split workload into chunks, wait for each chunk, update progress bar
- futureverse: sneak custom messages into communication channel using dynGet()

2025-10-01 32/46

Progress bar for parallel operations

- Wrap a parallel cluster object
- Register methods for recvData, recvOneData
- Estimate the number of calls to happen
- Increment progress bar when called

2025-10-01 33/46

"Cooperative computing"

- Challenging network conditions
 - NAT between rooms
 - TCP connections disappear without keep-alive
- Log in: nested remote desktop
- Availability: sometimes

Poor man's cluster...

- Only the pool server needs to be reachable
- Nodes can join and leave
- Pool can restart
- Implements the sendData()
 / recvData() /
 recvOneData() interface
 - clusterEvalQ()
 problematic

2025-10-01 35/46

...in base R

- The protocol is serialize()
 - Clients & nodes are trusted
 - Doesn't work with non-blocking socket connections
 - Must be half-duplex
- Interrupting the client still loses a day's work
 - Caching?
- cf. depcache
 - How to compute the key?
 - Needs a reasonable eviction policy

Rare samples with unique components

 Split-half only validates a twocomponent model

2025-10-01 37/46

Sparse PARAFAC

$$\min_{\mathbf{A},\mathbf{B},\mathbf{C},\mathbf{w}} \left(\frac{1}{2N_F} \sum_{i,j,k} \left(F_{i,j,k} - \sum_r w_r A_{i,r} B_{j,r} C_{k,r} \right)^2 + \lambda_1 ||\mathbf{w}||_1 \right)$$
s.t. $||\mathbf{A}||_2^2 = N_A$, $||\mathbf{B}||_2^2 = N_B$, $||\mathbf{C}||_2^2 = N_C$

- Implementation: alabama::auglag
- Tune the regularisation coefficient instead of the number of non-zero components

Choosing the penalty

2025-10-01 39/46

Sparse 4-component solution

2025-10-01 40/46

Can scattering signal have tensor structure?

2025-10-01 41/46

Shifting the scattering spectra

 Stack multiple hat matrices on top of each other to get the whole scattering EEM as a vector

$$\begin{pmatrix} \boldsymbol{H}_{1} \\ \boldsymbol{H}_{2} \\ \vdots \\ \boldsymbol{H}_{N_{\text{ex}}} \end{pmatrix} \boldsymbol{b}_{\cdot,j} \rightarrow \text{vec}(\widetilde{\boldsymbol{B}})$$

2025-10-01 42/46

Constructing the scattering loadings

2025-10-01 43/46

Putting it all together

Excitation loadings replicated for every emission wavelength

Emission scores replicated, shifted, and interpolated at every excitation wavelength

Preliminary results

2025-10-01 45/46

