

Fitting Regularized Partially Ordinal Regression Models with "Don't Know" Option within the GAMLSS Framework

A. Groll*, M. Iannario, T. Kneib, N. Umlauf

Research Seminar Winter Term 2025 WU Vienna, Institute for Statistics and Mathematics October 13^{th} , 2025

*Department of Statistics, TU Dortmund University

lacktriangle extensions of GAMs with y on partially ordered Likert scale including "don't know" ("dk") option

- extensions of GAMs with y on partially ordered Likert scale including "don't know" ("dk") option
- motivation: Fintech case study, where participants answered on financial questions on an ordinal scale

- extensions of GAMs with y on partially ordered Likert scale including "don't know" ("dk") option
- motivation: Fintech case study, where participants answered on financial questions on an ordinal scale
- we build upon GAMLSS / distributional regression (Rigby and Stasinopoulos, 2005)

- extensions of GAMs with y on partially ordered Likert scale including "don't know" ("dk") option
- motivation: Fintech case study, where participants answered on financial questions on an ordinal scale
- we build upon GAMLSS / distributional regression (Rigby and Stasinopoulos, 2005)
- estimation will be based on a mixture model, using (approximate) restricted maximum likelihood

- extensions of GAMs with y on partially ordered Likert scale including "don't know" ("dk") option
- motivation: Fintech case study, where participants answered on financial questions on an ordinal scale
- we build upon GAMLSS / distributional regression (Rigby and Stasinopoulos, 2005)
- estimation will be based on a mixture model, using (approximate) restricted maximum likelihood
- feature and model selection based on penalization

Short recap on GAMLSS

Generalized Additive Models for Location, Scale and Shape

$$g_1(\mu) = \eta_{\mu} = \beta_{0\mu} + \sum_{j=1}^{p_1} f_{j\mu}(x_j) \qquad \text{``location''}$$

$$g_2(\sigma) = \eta_{\sigma} = \beta_{0\sigma} + \sum_{j=1}^{p_2} f_{j\sigma}(x_j) \qquad \text{``scale''}$$

$$\vdots \qquad \vdots$$

Generalized Additive Models for Location, Scale and Shape

$$g_1(\mu) = \eta_{\mu} = \beta_{0\mu} + \sum_{j=1}^{p_1} f_{j\mu}(x_j) \qquad \text{"location"}$$

$$g_2(\sigma) = \eta_{\sigma} = \beta_{0\sigma} + \sum_{j=1}^{p_2} f_{j\sigma}(x_j) \qquad \text{"scale"}$$

$$\vdots \qquad \vdots$$

- proposed by Rigby and Stasinopoulos (2005)
- extension of generalized additive models (GAMs)
- distribution parameters are modeled by specific predictors and associated link functions $g_k(\cdot)$.

Example for GAMLSS

$$Y \sim N(\mu = \beta_{0\mu} + f_{\mu}(x), \ \sigma = \exp(\beta_{0\sigma} + f_{\sigma}(x))$$

General formulation of a GAMLSS:

- response vector $\mathbf{y} = (y_1, \dots, y_n)^{\top}$
- corresponding conditional density $f(y_i|\boldsymbol{\theta}_i)$, depending on several distribution parameters $\boldsymbol{\theta}_i = (\theta_{i1}, \dots, \theta_{id})^{\top}$
- with known monotonic link functions $g_k(\cdot)$:

$$g_k(\theta_{ik}) = \beta_{0k} + \sum_{j=1}^{p_k} \mathbf{x}_{ijk}^{\top} \boldsymbol{\beta}_{jk} = \eta_{\theta_{ik}}, \qquad k = 1, \dots, d.$$

General formulation of a GAMLSS:

- response vector $\mathbf{y} = (y_1, \dots, y_n)^{\top}$
- corresponding conditional density $f(y_i|\theta_i)$, depending on several distribution parameters $\theta_i = (\theta_{i1}, \dots, \theta_{id})^{\top}$
- with known monotonic link functions $g_k(\cdot)$:

$$g_k(\theta_{ik}) = \beta_{0k} + \sum_{j=1}^{p_k} \mathbf{x}_{ijk}^{\top} \boldsymbol{\beta}_{jk} = \eta_{\theta_{ik}}, \qquad k = 1, \dots, d.$$

• estimation of regression parameters: maximize log-likelihood

$$\ell(\boldsymbol{\beta}) = \sum_{i=1}^{n} \log \left(f(y_i | \boldsymbol{\theta}_i) \right) , \qquad (1)$$

with β collecting all effects of all linear predictors.

fitting: R-package gamlss (Stasinopoulos and Rigby, 2007)

Regularization in the GAMLSS framework

- a gradient boosting approach is provided by Mayr et al. (2012)
- allows for variable selection within GAMLSS framework
- corresponding R-package gamboostLSS (Hofner et al., 2015)
- provides a large number of pre-specified distributions

Regularization in the GAMLSS framework

- a gradient boosting approach is provided by Mayr et al. (2012)
- allows for variable selection within GAMLSS framework
- corresponding R-package gamboostLSS (Hofner et al., 2015)
- provides a large number of pre-specified distributions
- new: an alternative gradient boosting approach is implemented in the R-package bamlss (Umlauf et al., 2024)
 - embeds many different approaches suggested in literature and software
 - serves as unified conceptional "Lego toolbox" for complex regression models

L1-type penalization in GAMLSS

Idea: depending on the type of covariate effects, subtract a combination of (parts of) the following penalty terms $\lambda J(\beta)$ from the log-likelihood (1):

Idea: depending on the type of covariate effects, subtract a combination of (parts of) the following penalty terms $\lambda J(\beta)$ from the log-likelihood (1):

Classic LASSO (Tibshirani, 1996): For a metric covariate x_{jk} use

$$J_m(\beta_{jk}) = |\beta_{jk}|.$$

Idea: depending on the type of covariate effects, subtract a combination of (parts of) the following penalty terms $\lambda J(\beta)$ from the log-likelihood (1):

Classic LASSO (Tibshirani, 1996): For a metric covariate x_{jk} use

$$J_m(\beta_{jk}) = |\beta_{jk}|.$$

Group LASSO (Meier et al., 2008): For a (dummy-encoded) categorical covariate \mathbf{x}_{jk} use

$$J_g(\boldsymbol{\beta}_{jk}) = ||\boldsymbol{\beta}_{jk}||_2,$$

with vector β_{jk} collecting all corresponding coefficients.

Alternatively, for categorical covariates often *fusion* of categories with implicit *factor selection* is desirable.

Alternatively, for categorical covariates often *fusion* of categories with implicit *factor selection* is desirable.

Fused LASSO (Gertheiss and Tutz, 2010): depending on *nominal* (left) or *ordinal* scale level (right) of the covariate, we use

$$J_f(\pmb{\beta}_{jk}) = \sum_{l>m} w_{lm}^{(jk)} \, |\beta_{jkl} - \beta_{jkm}|, \ \, \text{or} \, \, J_f(\pmb{\beta}_{jk}) = \sum_{l=1}^{c_{jk}} w_l^{(jk)} \, |\beta_{jkl} - \beta_{jk,l-1}| \, ,$$

where c_{jk} is the number of levels of categorical predictor \mathbf{x}_{jk} and $w_{lm}^{(jk)}, w_l^{(jk)}$ denote suitable weights.

(we choose l=0 as reference $\implies \beta_{jk0}=0$ is fixed)

Fitting algorithm

- implemented in R-package bamlss (Umlauf et al., 2024)
- based on Newton-Raphson-type updating
- for very large data sets: IWLS-backfitting scheme
- quadratic penalty approximation (see Oelker & Tutz, 2017)

Fitting algorithm

- implemented in R-package bamlss (Umlauf et al., 2024)
- based on Newton-Raphson-type updating
- for very large data sets: IWLS-backfitting scheme
- quadratic penalty approximation (see Oelker & Tutz, 2017)

Partially ordinal model

Partially ordinal model

Ordinal outcomes and simultaneously account for "dk" answers

- \Rightarrow represent outcome of individual $i = 1, \dots, n$ in terms of:
 - $Y_{i1} \in \{0,1\}$: decision of individual to opt for "dk"
 - $\Rightarrow Y_{i1} = 1$ if "dk" option is chosen, $Y_{i1} = 0$ otherwise

Partially ordinal model

Ordinal outcomes and simultaneously account for "dk" answers \Rightarrow represent outcome of individual $i = 1, \dots, n$ in terms of:

- $Y_{i1} \in \{0,1\}$: decision of individual to opt for "dk" $\Rightarrow Y_{i1} = 1$ if "dk" option is chosen, $Y_{i1} = 0$ otherwise
- $Y_{i2} \in \{1, ..., C\}$: ordinal Likert scale outcome if an item is answered

Partially ordinal model (II)

Responses are dependent / only partially observable:

 Y_{i2} can only be observed if $Y_{i1} = 0$

Partially ordinal model (II)

Responses are dependent / only partially observable:

 Y_{i2} can only be observed if $Y_{i1}=0$ \Longrightarrow

Now, link bivariate response vector $\mathbf{Y}_i = (Y_{i1}, Y_{i2})^{\top}$ to (continuous) latent variables $\mathbf{Y}_i^* = (Y_{i1}^*, Y_{i2}^*)^{\top}$, where

$$Y_{i1} = 0 \Leftrightarrow Y_{i1}^* \le \alpha_{1,1}$$

with $\alpha_{1,1} \in \mathbb{R}$, and

$$Y_{i2} = c \Leftrightarrow \alpha_{2,c-1} < Y_{i2}^* \le \alpha_{2,c}, \ c = 1, \dots, C,$$

with ordered thresholds $-\infty = \alpha_{2,0} < \ldots < \alpha_{2,C} = +\infty$.

Partially ordinal model (III)

For this project, we mostly focus on simple linear effects:

$$Y_{id}^* = \eta_{id} + \varepsilon_{id}, \ d = 1, 2,$$

with i.i.d. errors ε_{id} with CDF $G_d(\cdot)$, and predictors $\eta_{id} = \boldsymbol{x}_{id}^{\top} \boldsymbol{\beta}_d$.

Partially ordinal model (III)

For this project, we mostly focus on simple linear effects:

$$Y_{id}^* = \eta_{id} + \varepsilon_{id}, \ d = 1, 2,$$

with i.i.d. errors ε_{id} with CDF $G_d(\cdot)$, and predictors $\eta_{id} = \boldsymbol{x}_{id}^{\top} \boldsymbol{\beta}_d$.

We plan to extend the model by

- nonlinear effects,
- random effects to account for intra-individual heterogeneity and dependence arising from the longitudinal data structure,
- spatial effects.

Partially ordinal model (IV)

We assume:

- $\mathbf{E}_i = (\varepsilon_{i1}, \varepsilon_{i2})^{\top} \sim \mathcal{G}_{\varepsilon}$
- and margins $\varepsilon_{id} \sim G_{\varepsilon_d}, d=1,2.$

Then, for given features x_{id} , the conditional likelihood for the respondent choosing the "dk" option is

$$P(Y_{i1} = 1 \mid \boldsymbol{x}_{i1}, \boldsymbol{x}_{i2}) = P(Y_{i1}^* > \alpha_{1,1} \mid \boldsymbol{x}_{i1}, \boldsymbol{x}_{i2})$$

= 1 - P(\varepsilon_{i1} \leq \alpha_{1,1} - \eta_{i1})
= 1 - G_{\varepsilon_1}(\alpha_{1,1} - \eta_{i1})

Partially ordinal model (V)

If the respondent decides to answer $(Y_{i1} = 0)$, we get

$$P(Y_{i1} = 0, Y_{i2} = c \mid \boldsymbol{x}_{i1}, \boldsymbol{x}_{i2})$$

$$= P(Y_{i1}^* \le \alpha_{1,1}, \alpha_{2,c-1} < Y_{i2}^* \le \alpha_{2,c} \mid \boldsymbol{x}_{i1}, \boldsymbol{x}_{i2})$$

$$= \mathcal{G}_{\varepsilon}(\alpha_{1,1} - \eta_{i1}, \alpha_{2,c} - \eta_{i2})$$

$$-\mathcal{G}_{\varepsilon}(\alpha_{1,1} - \eta_{i1}, \alpha_{2,c-1} - \eta_{i2})$$

Dependence structures

- lacksquare Correlate error terms via $m{arepsilon}_i \sim N(m{0}, m{\Sigma}_arepsilon), \ m{\Sigma}_arepsilon = egin{pmatrix} 1 &
 ho \\
 ho & 1 \end{pmatrix}$,
- In this particular case, we obtain the conditional distribution

$$\boldsymbol{Y}_{i}^{*} | \boldsymbol{x}_{i1}, \boldsymbol{x}_{i2} \sim N(\boldsymbol{\eta}_{i}, \boldsymbol{\Sigma}_{\varepsilon}).$$

Penalization

- classical shrinkage and variable selection,
- fuse effects of categorical covariates.

Penalization

- classical shrinkage and variable selection,
- fuse effects of categorical covariates.

Note that for estimation and inference

- we use locally quadratic approximations (see Oelker and Tutz, 2017; Groll et al., 2019)
- implemented in bamlss (Umlauf et al., 2024)
- now taken over to gamlss2 (Rigby and Stasinopoulos, 2005)
- ⇒ employ iterative estimation procedures (NR, FS, IWLS).

Simulation study

Simulation

■ draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each

- draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each
- $\eta_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1, \eta_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4$, with $\boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}, \boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top}$ and $\mathbf{x}_{i1}, \mathbf{x}_{i4}$ dummy-encoded covariate vectors of factors x_1, x_4

- lacktriangle draw 6 categorical predictors, x_1,\ldots,x_6 , with 4 to 6 levels each
- $$\begin{split} & \quad \boldsymbol{\eta}_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1 \,, \boldsymbol{\eta}_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4 \,, \text{ with } \\ & \quad \boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}, \boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top} \\ & \quad \text{and } \mathbf{x}_{i1}, \mathbf{x}_{i4} \text{ dummy-encoded covariate vectors of factors } x_1, x_4 \end{split}$$
- draw 2 latent responses with $\Sigma_{\varepsilon} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, with $\rho \in \{-0.9, -0.5, 0, 0.5, 0.9\}$

- \blacksquare draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each
- $$\begin{split} & \quad \boldsymbol{\eta}_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1 \,, \boldsymbol{\eta}_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4 \,, \text{ with } \\ & \quad \boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}, \boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top} \\ & \quad \text{and } \mathbf{x}_{i1}, \mathbf{x}_{i4} \text{ dummy-encoded covariate vectors of factors } x_1, x_4 \end{split}$$
- draw 2 latent responses with $\Sigma_{\varepsilon} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, with $\rho \in \{-0.9, -0.5, 0, 0.5, 0.9\}$
- lacksquare for $Y_1 \in \{0,1\}$ ("dk") we specify $\alpha_{1,1}=0$

- \blacksquare draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each
- $$\begin{split} & \quad \boldsymbol{\eta}_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1 \,, \boldsymbol{\eta}_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4 \,, \text{ with } \\ & \quad \boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}, \boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top} \\ & \quad \text{and } \mathbf{x}_{i1}, \mathbf{x}_{i4} \text{ dummy-encoded covariate vectors of factors } x_1, x_4 \end{split}$$
- draw 2 latent responses with $\Sigma_{\varepsilon} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, with $\rho \in \{-0.9, -0.5, 0, 0.5, 0.9\}$
- \blacksquare for $Y_1 \in \{0,1\}$ ("dk") we specify $\alpha_{1,1} = 0$
- lacksquare for $Y_2 \in \{1,\ldots,4\}$ we specify $oldsymbol{lpha}_2 = (-\infty,-1,0,1,\infty)^{ op}$

- draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each
- $$\begin{split} & \quad \boldsymbol{\eta}_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1 \,, \boldsymbol{\eta}_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4 \,, \text{ with } \\ & \quad \boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}, \boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top} \\ & \quad \text{and } \mathbf{x}_{i1}, \mathbf{x}_{i4} \text{ dummy-encoded covariate vectors of factors } x_1, x_4 \end{split}$$
- draw 2 latent responses with $\Sigma_{\varepsilon} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, with $\rho \in \{-0.9, -0.5, 0, 0.5, 0.9\}$
- \blacksquare for $Y_1 \in \{0,1\}$ ("dk") we specify $\alpha_{1,1} = 0$
- lacksquare for $Y_2 \in \{1,\ldots,4\}$ we specify $oldsymbol{lpha}_2 = (-\infty,-1,0,1,\infty)^{ op}$
- we choose $n \in \{50, 100, 200, 300, 400, 500, 750, 1000\}$

- draw 6 categorical predictors, x_1, \ldots, x_6 , with 4 to 6 levels each
- $\eta_{i1} = \mathbf{x}_{i1}^{\top} \boldsymbol{\beta}_1$, $\eta_{i2} = \mathbf{x}_{i4}^{\top} \boldsymbol{\beta}_4$, with $\boldsymbol{\beta}_1 = (0, 0.5, -0.4, 0.3, -0.4)^{\top}$, $\boldsymbol{\beta}_4 = (0, -0.4, 0.4, 0.5, -0.5)^{\top}$ and \mathbf{x}_{i1} , \mathbf{x}_{i4} dummy-encoded covariate vectors of factors x_1, x_4
- draw 2 latent responses with $\Sigma_{\varepsilon} = \begin{pmatrix} 1 & \rho \\ \rho & 1 \end{pmatrix}$, with $\rho \in \{-0.9, -0.5, 0, 0.5, 0.9\}$
- \blacksquare for $Y_1 \in \{0,1\}$ ("dk") we specify $\alpha_{1,1} = 0$
- lacksquare for $Y_2 \in \{1,\ldots,4\}$ we specify $oldsymbol{lpha}_2 = (-\infty,-1,0,1,\infty)^{ op}$
- we choose $n \in \{50, 100, 200, 300, 400, 500, 750, 1000\}$
- we fit GAMLSS with group LASSO penalties

MSEs for η_1 -coefficients and varying n, each based on 100 simulation runs

MSEs for η_2 -coefficients and varying n, each based on 100 simulation runs

MSEs for ρ and varying n, each based on 100 simulation runs

Coefficient paths of the 6 factors and $\rho=0.5$; vertical dashed lines: optimal penalty strength

Case Study: Fintech

Data set: Survey on "Knowledge and Use of Fintech Products" (https://www.cost.eu/actions/CA19130/), n=625 (Italian respondents)

<code>Data set:</code> Survey on "Knowledge and Use of Fintech Products" (https://www.cost.eu/actions/CA19130/), n=625 (Italian respondents)

Response structure:

- Ordinal responses on C-point scale with "don't know" option
- We focus on the item "household income development" with C=3

<code>Data set:</code> Survey on "Knowledge and Use of Fintech Products" (https://www.cost.eu/actions/CA19130/), n=625 (Italian respondents)

Response structure:

- Ordinal responses on *C*-point scale with "don't know" option
- We focus on the item "household income development" with C=3

Covariates:

■ x_1 : Age; x_2 : Gender; x_3 : Education; x_4 : Family composition; x_5 : Income; x_6 : Employment

Data set: Survey on "Knowledge and Use of Fintech Products" (https://www.cost.eu/actions/CA19130/), n=625 (Italian respondents)

Response structure:

- Ordinal responses on *C*-point scale with "don't know" option
- We focus on the item "household income development" with C=3

Covariates:

■ x_1 : Age; x_2 : Gender; x_3 : Education; x_4 : Family composition; x_5 : Income; x_6 : Employment

The predictors are specified as follows for $d \in \{1, 2\}$ (in gamlss2 syntax):

$$\eta_d = s(x_1) + la(x_2) + la(x_3, type = 2) + \dots + la(x_6, type = 2)$$

Results I

Estimated effects & coefficient paths corresponding to η_1 ; vertical dashed lines: λ_{opt}

Results II

Estimated effects & coefficient paths corresponding to η_2 ; vertical dashed lines: λ_{opt}

Summary

- We introduced a regularized bivariate GAMLSS for partially ordered categorical data with a "dk" option.
- The model separates the latent process of "dk" selection from the ordinal response, allowing correlation.
- We investigated model behavior in short simulation study.
- Application to Fintech data:
 - We found different covariate effects for η_1 and η_2 ,
 - Moderate amount of regularization,
 - Latent correlation $\approx 0 \Rightarrow$ supports cond. independence.

Future directions & outlook

- Incorporate additional response options ("No answer")
- Extend to space-time components, random effects, etc.
- Apply in broader survey and behavioral settings.

References & Software I

Gertheiss, J. & Tutz, G. (2010). Sparse modeling of categorial explanatory variables. *The Annals of Applied Statistics*, **4**(4), 2150–2180.

Groll, A., Iannarion, M., Kneib, T. and Umlauf, N. (2025). Regularization in Partially Ordinal Regression Models. *Proceedings of the 39th International Workshop on Statistical Modelling*, 201–206.

Mayr, A., Fenske, N., Hofner, B., Kneib, T., & Schmid, M.(2012). Generalized additive models for location, scale and shape for high-dimensional data - a flexible approach based on boosting. *Journal of the Royal Statistical Society, Series C*, **61**(3), 403–427.

Meier, L., Van De Geer, S., & Bühlmann, P. (2008). The group lasso for logistic regression. *Journal of the Royal Statistical Society B* **70**(1), 53–71.

Oelker, M. R., and Tutz, G. (2017). A uniform framework for the combination of penalties in generalized structured models. *Advances in Data Analysis and Classification*, 11, 97–120.

References & Software II

Rigby R.A. and Stasinopoulos D.M. (2005). Generalized Additive Models for Location, Scale and Shape, (with Discussion), *Journal of the Royal Statistical Society, Series C (Applied Statistics)*, **54**, 507 – 554.

Stasinopoulos, D.M. & Rigby, R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. *Journal of Statistical Software* 23(7).

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society B*, **58**, 267–288.

Umlauf, N., Klein, N., & Zeileis, A. (2018). BAMLSS: Bayesian additive models for location, scale and shape (and beyond). *Journal of Computational and Graphical Statistics*, 27(3), 612-627.

Umlauf, N., Klein, N., Simon, T., & Zeileis, A. (2021). bamlss: A Lego Toolbox for Flexible Bayesian Regression (and Beyond). *Journal of Statistical Software*, 100(4), 1-53.

Umlauf, N., Klein, N. & Zeileis, A. (2024). bamlss: Bayesian additive models for location, scale and shape (and beyond). R package version 1.2-5, URL: http://cran.r-project.org/package=bamlss.