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Introduction

extensions of GAMs with y on partially ordered Likert scale
including “don’t know” (“dk”) option

motivation: Fintech case study, where participants answered
on financial questions on an ordinal scale

we build upon GAMLSS / distributional regression (Rigby and
Stasinopoulos, 2005)

estimation will be based on a mixture model, using
(approximate) restricted maximum likelihood

feature and model selection based on penalization
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Short recap on GAMLSS
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Generalized Additive Models for Location, Scale and Shape

g1(µ) = ηµ = β0µ +
p1∑
j=1

fjµ(xj) “location”

g2(σ) = ησ = β0σ +
p2∑
j=1

fjσ(xj) “scale”

... ...

• proposed by Rigby and Stasinopoulos (2005)
• extension of generalized additive models (GAMs)
• distribution parameters are modeled by specific predictors and

associated link functions gk(·).
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Example for GAMLSS

Y ∼ N(µ = β0µ + fµ(x), σ = exp (β0σ + fσ(x))
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General formulation of a GAMLSS:
• response vector y = (y1, . . . , yn)>
• corresponding conditional density f(yi|θi), depending on

several distribution parameters θi = (θi1, . . . , θid)>
• with known monotonic link functions gk(·):

gk(θik) = β0k +
pk∑
j=1

x>ijkβjk = ηθik
, k = 1, . . . , d .

• estimation of regression parameters: maximize log-likelihood

`(β) =
n∑
i=1

log (f(yi|θi)) , (1)

with β collecting all effects of all linear predictors.
• fitting: R-package gamlss (Stasinopoulos and Rigby, 2007)
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Regularization in the GAMLSS framework
• a gradient boosting approach is provided by Mayr et al. (2012)
• allows for variable selection within GAMLSS framework
• corresponding R-package gamboostLSS (Hofner et al., 2015)
• provides a large number of pre-specified distributions

• new: an alternative gradient boosting approach is implemented
in the R-package bamlss (Umlauf et al., 2024)

◦ embeds many different approaches suggested in literature
and software
◦ serves as unified conceptional “Lego toolbox” for complex

regression models
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L1-type penalization in GAMLSS
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L1-type penalization
Idea: depending on the type of covariate effects, subtract a
combination of (parts of) the following penalty terms λJ(β) from
the log-likelihood (1):

Classic LASSO (Tibshirani, 1996): For a metric covariate xjk use

Jm(βjk) = |βjk| .

Group LASSO (Meier et al., 2008): For a (dummy-encoded)
categorical covariate xjk use

Jg(βjk) = ||βjk||2 ,

with vector βjk collecting all corresponding coefficients.
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L1-type penalization
Alternatively, for categorical covariates often fusion of categories
with implicit factor selection is desirable.

Fused LASSO (Gertheiss and Tutz, 2010): depending on nominal
(left) or ordinal scale level (right) of the covariate, we use

Jf (βjk) =
∑
l>m

w
(jk)
lm |βjkl−βjkm|, or Jf (βjk) =

cjk∑
l=1

w
(jk)
l |βjkl−βjk,l−1| ,

where cjk is the number of levels of categorical predictor xjk and
w

(jk)
lm , w

(jk)
l denote suitable weights.

(we choose l = 0 as reference =⇒ βjk0 = 0 is fixed)
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Fitting algorithm
• implemented in R-package bamlss (Umlauf et al., 2024)
• based on Newton-Raphson-type updating
• for very large data sets: IWLS-backfitting scheme
• quadratic penalty approximation (see Oelker & Tutz, 2017)
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Partially ordinal model
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Partially ordinal model

Ordinal outcomes and simultaneously account for “dk” answers
⇒ represent outcome of individual i = 1, . . . , n in terms of:

Yi1 ∈ {0, 1}: decision of individual to opt for “dk”
⇒ Yi1 = 1 if “dk” option is chosen, Yi1 = 0 otherwise

Yi2 ∈ {1, . . . , C}: ordinal Likert scale outcome if an item is
answered
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Partially ordinal model (II)
Responses are dependent / only partially observable:
Yi2 can only be observed if Yi1 = 0

=⇒

Now, link bivariate response vector Yi = (Yi1, Yi2)> to (continuous)
latent variables Y ∗i = (Y ∗i1, Y ∗i2)>, where

Yi1 = 0 ⇔ Y ∗i1 ≤ α1,1

with α1,1 ∈ R, and

Yi2 = c ⇔ α2,c−1 < Y ∗i2 ≤ α2,c, c = 1, . . . , C ,

with ordered thresholds −∞ = α2,0 < . . . < α2,C = +∞.
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Partially ordinal model (III)

For this project, we mostly focus on simple linear effects:

Y ∗id = ηid + εid, d = 1, 2 ,

with i.i.d. errors εid with CDF Gd(·), and predictors ηid = x>idβd.

We plan to extend the model by
nonlinear effects,
random effects to account for intra-individual heterogeneity
and dependence arising from the longitudinal data structure,
spatial effects.
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Partially ordinal model (IV)

We assume:
εεεi = (εi1, εi2)> ∼ Gε
and margins εid ∼ Gεd

, d = 1, 2.

Then, for given features xid, the conditional likelihood for the
respondent choosing the “dk” option is

P (Yi1 = 1 |xi1,xi2) = P (Y ∗i1 > α1,1 |xi1,xi2)
= 1− P (εi1 ≤ α1,1 − ηi1)
= 1−Gε1(α1,1 − ηi1)
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Partially ordinal model (V)

If the respondent decides to answer (Yi1 = 0), we get

P (Yi1 = 0, Yi2 = c |xi1,xi2)

= P (Y ∗i1 ≤ α1,1, α2,c−1 < Y ∗i2 ≤ α2,c |xi1,xi2)

= Gε(α1,1 − ηi1, α2,c − ηi2)
−Gε(α1,1 − ηi1, α2,c−1 − ηi2)
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Dependence structures

Correlate error terms via εεεi ∼ N(0,Σε), Σε =
(

1 ρ
ρ 1

)
,

In this particular case, we obtain the conditional distribution

YYY ∗i |xi1,xi2 ∼ N(ηηηi,Σε).
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Penalization
classical shrinkage and variable selection,

fuse effects of categorical covariates.

Note that for estimation and inference
we use locally quadratic approximations (see Oelker and Tutz,
2017; Groll et al., 2019)

implemented in bamlss (Umlauf et al., 2024)

now taken over to gamlss2 (Rigby and Stasinopoulos, 2005)

⇒ employ iterative estimation procedures (NR, FS, IWLS).
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Simulation study
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Simulation
draw 6 categorical predictors, x1, . . . , x6, with 4 to 6 levels each

ηi1 = x>i1β1 , ηi2 = x>i4β4 , with
β1 = (0, 0.5,−0.4, 0.3,−0.4)>,β4 = (0,−0.4, 0.4, 0.5,−0.5)>
and xi1,xi4 dummy-encoded covariate vectors of factors x1, x4

draw 2 latent responses with Σε =
(

1 ρ
ρ 1

)
, with

ρ ∈ {−0.9,−0.5, 0, 0.5, 0.9}
for Y1 ∈ {0, 1} (“dk”) we specify α1,1 = 0
for Y2 ∈ {1, . . . , 4} we specify α2 = (−∞,−1, 0, 1,∞)>

we choose n ∈ {50, 100, 200, 300, 400, 500, 750, 1000}
we fit GAMLSS with group LASSO penalties
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we choose n ∈ {50, 100, 200, 300, 400, 500, 750, 1000}
we fit GAMLSS with group LASSO penalties
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Case Study: Fintech & “Don’t Know” Responses
Data set: Survey on “Knowledge and Use of Fintech Products”
(https://www.cost.eu/actions/CA19130/), n = 625 (Italian respondents)

Response structure:

Ordinal responses on C-point scale with “don’t know” option

We focus on the item “household income development” with C = 3

Covariates:

x1: Age; x2: Gender; x3: Education; x4: Family composition;
x5: Income; x6: Employment

The predictors are specified as follows for d ∈ {1, 2} (in gamlss2 syntax):

ηd = s(x1) + la(x2) + la(x3, type = 2) + . . .+ la(x6, type = 2)

A. Groll |
TU Dortmund 27 / 33



Case Study: Fintech & “Don’t Know” Responses
Data set: Survey on “Knowledge and Use of Fintech Products”
(https://www.cost.eu/actions/CA19130/), n = 625 (Italian respondents)

Response structure:

Ordinal responses on C-point scale with “don’t know” option

We focus on the item “household income development” with C = 3

Covariates:

x1: Age; x2: Gender; x3: Education; x4: Family composition;
x5: Income; x6: Employment

The predictors are specified as follows for d ∈ {1, 2} (in gamlss2 syntax):

ηd = s(x1) + la(x2) + la(x3, type = 2) + . . .+ la(x6, type = 2)

A. Groll |
TU Dortmund 27 / 33



Case Study: Fintech & “Don’t Know” Responses
Data set: Survey on “Knowledge and Use of Fintech Products”
(https://www.cost.eu/actions/CA19130/), n = 625 (Italian respondents)

Response structure:

Ordinal responses on C-point scale with “don’t know” option

We focus on the item “household income development” with C = 3

Covariates:

x1: Age; x2: Gender; x3: Education; x4: Family composition;
x5: Income; x6: Employment

The predictors are specified as follows for d ∈ {1, 2} (in gamlss2 syntax):

ηd = s(x1) + la(x2) + la(x3, type = 2) + . . .+ la(x6, type = 2)

A. Groll |
TU Dortmund 27 / 33



Case Study: Fintech & “Don’t Know” Responses
Data set: Survey on “Knowledge and Use of Fintech Products”
(https://www.cost.eu/actions/CA19130/), n = 625 (Italian respondents)

Response structure:

Ordinal responses on C-point scale with “don’t know” option

We focus on the item “household income development” with C = 3

Covariates:

x1: Age; x2: Gender; x3: Education; x4: Family composition;
x5: Income; x6: Employment

The predictors are specified as follows for d ∈ {1, 2} (in gamlss2 syntax):

ηd = s(x1) + la(x2) + la(x3, type = 2) + . . .+ la(x6, type = 2)

A. Groll |
TU Dortmund 27 / 33



Results I
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Estimated effects & coefficient paths corresponding to η1; vertical dashed lines: λopt
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Results II
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Summary

We introduced a regularized bivariate GAMLSS for partially
ordered categorical data with a “dk” option.

The model separates the latent process of “dk” selection from
the ordinal response, allowing correlation.

We investigated model behavior in short simulation study.

Application to Fintech data:
- We found different covariate effects for η1 and η2,
- Moderate amount of regularization,
- Latent correlation ≈ 0⇒ supports cond. independence.
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Future directions & outlook

Incorporate additional response options (“No answer”)

Extend to space-time components, random effects, etc.

Apply in broader survey and behavioral settings.
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