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@ Introduction/motivation



Flury (1988) conducted a PCA of the Swiss banknotes data, with four variables:

e the width L on the left side
® the width R on the right side
® the size B of the bottom margin

e the size T of the top margin,

all measured in mmx10~" on n = 85 counterfeit bills.
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BANCA NAZIONALE SVIZZERA <



The resulting sample covariance matrix S provides eigenvalues Ay = 102.69,
X2 = 13.05, A3 = 10.23, and 4 = 2.66, and corresponding unit eigenvectors

032=1L 593 —.015 804
N —012= N . - 12 N -
b= | =02=F | o 7 120 = | 5%
820=18 .057 566 —.064
~571=T .097 814 -.035

Flury concludes that the 1st PC is a contrast between B and T.

It is tempting to interpret the 2nd PC as an aggregate of L and R... But Flury
writes "beware: the 2nd and 3rd roots are quite close and so the computation
of standard errors for the coefficients of & and 0, may be hazardous".
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Flury concludes that the 1st PC is a contrast between B and T.

It is tempting to interpret the 2nd PC as an aggregate of L and R... But Flury
writes "beware: the 2nd and 3rd roots are quite close and so the computation
of standard errors for the coefficients of O and 0, may be hazardous".



"Computation of standard errors for the coefficients of 0, and O, may be hazardous"

The covariance matrix in the asymptotic (normal) distribution of ﬁ(ég —6o)is

which is huge if s is close to \3!

On this basis, Flury refrains from drawing any conclusion about 6. . .

Question: what can we say about 6, in setups where A\, ~ A3?
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For a fixed unit vector 69 of RP, we consider the problem of testing
Ho : 01 = 6° Vs Hi: 04 # 69,
based on Xu1, ..., Xon i.i.d. Np(pn, £n), with the single-spiked structure

Yo =0a(lp+ rav 6:0;) = 010) + o2 (Ih—016}),
~~

Aan=---=Apn

where v > 0 and (r,) is a positive real sequence that may be o(1).

If r, = 1, then this is the usual asymptotic framework.
If ro = o(1), then A\1,/X2n — 1 (weak identifiability: challenging!)



We consider two parametric tests:

e the LR test ¢x rejects Ho : 61 = 69 at asymptotic level « if

PR
n (A A
ln)\im)(e/n%) >Xp 11—

1n j=2 jn

Qrr =

e the score test ¢s rejects H, at asymptotic level « if

p
n 1
= Z ~ 61n8n01 > X§,1,1,a,
)\1n j=2 )\/n
where Oap, . .., Opn result from Gram-Schmidt-ing 62, 02, . . . , Gpn.

If ro =1 (so that \j, = A; for any j), then these tests are asymptotically equivalent
under Ho, hence also under contiguous alternatives.
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We may assume that un, = 0 (from translation invariance)
We may assume that o, = 1 (from scale invariance)
~ Denote the resulting hypothesis as Py, r,,v.

Theorem 1

Assume that (r;) is O(1). Then, under the sequence of null hypotheses Pgo v
Qs = X;znfw

asn— oo.

~ Asymptotic null size « irrespective of the rate at which r, — 0 (if it does).

Hence, ¢s is robust to weak identifiability.



Simulations with covariance matrix £ := (1 + n=%/8)%6% + 1 x (I, — 696%")

(i)

Null rejection frequencies

0.00 0.15 0.30 045 060 0.75 0.90

=0

=1

(ii)

N -

=2

n=200

(i)

=3

=4

)

=5

0.00 0.15 0.30 045 060 0.75 0.90

n=500,000
(i) (i) (i)
T [
=0 =1 =2 =3

W)

Figure: Null empirical rejection frequencies of ¢s and ¢ r performed at nominal level 5%
(results are based on M = 10,000 independent 10-dimensional Gaussian random samples
of size n = 200 and size n = 500,000). The larger ¢, the weaker the identifiability.
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Theorem 2
Let Z be a p x p random matrix such that vec(Z) ~ N (0, I = + Kp). Then, under
the sequence of null hypotheses Pg?

Ve

(i) if ra = 1 or (ii) if n is o(1) with v/nr, — oo, then Qir = X2_1;



Theorem 2

Let Z be a p x p random matrix such that vec(Z) ~ N (0, I = + Kp). Then, under
the sequence of null hypotheses Pyo v

(i) if ra = 1 or (ii) if n is o(1) with v/nr, — oo, then Qir = X2_1;
(iii) if ro = 1/+/n, then

Que 5 Y (01(V) = (V)P (win (V)%
=2
where £1(v) > ... > ly(Vv) are the eigenvalues of Z + diag(v, 0, ...,0) and
wi(v) = (Wi (v),...,wp(V)) is an arbitrary unit eigenv. associated with ¢;(v);
(iv) if ro = o(1/+/n), then

P
Qe 5> (6 — 4w (B 4x5_y, for p=2),
j=2

where {1 > ... > {, are the eigenvalues of Z and w; = (W1, ..., wWp)' is an
arbitrary unit eigenvector associated with ¢;.
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We have shown that ¢s is "validity-robust" (>< ¢rr).
Is this achieved at the expense of power?



We have shown that ¢s is "validity-robust" (>< ¢rr).
Is this achieved at the expense of power?

Theorem 3

Assume that (i) r. = 1 or (i) r, = o(1) with v/nr, — co. Then,
under Poo., (i) with (7a) — T,

2112
D ve||T
Qs — X1274 (1 J—AHV>

—17n,n,v?

as n — oo, where 6 =1 in regime (i) and 6 = 0 in regime (ii).

The faster r, goes to zero, the more severe the corresponding local alternatives.



Theorem 3

(i)

(iv) Assume that r, = o(1/+/n). Then, underPo? with (tp) — T,

+7n,rn,V’
D
Qs — X;2:—1(0)

as n— oo.



Theorem 3

s With (Tn) — 7,

(i) Assume that r, = 1/+/n. Then, underPOg)

1 2
Qs B X1 (EV I711% (4 = 1I711%) (2 = [I71%) )
asn— oo.
(iv) Assume that r, = o(1/+/n). Then, underPe%Tm,mv, with (mn) — T,

o =S ng(o)

as n — oo.



Asymptotic powers, rejection frequencies
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Non-trivial local powers in regimes (i)—(iii).
What about rate-optimality, what about plain optimality?



Theorem 4
Assume that (i) r, = 1 or that (ii) \/nr, — oo. Then, with v, = 1/(+/nra),

dP(’(’J) 1
0. Tn,ln,
o — LY _ i, Ledra b 1) and A B AKO.T)
P
609,rn,v

as n— oo underP  where
91 s,V

= Y b Vo e06)

00
An = 1 + (5V (Ip — 91 91/)(Sn — Zn)91 and r = m(lp

(6 =1 in case (i) and 0 in case (ii)).

In particular,

- vp = 1/(\/nn,) is the contiguity rate.
- The optimal test rejects the null for large values of AT~ A, = Qs + op(1).



Theorem 4
Assume that (iv) r, = o(1/+/n). Then, even with v, = 1,

ap)

9?+u,77n,r,,,v
log G or(1)

9?,r,7,v

as n — oo under P'f)
1

sfn,V

~ No tests can show non-trivial asymptotic powers against the most severe
alternatives 67 = 69 + r.



Theorem 4
Assume that (iii) r» = 1/+/n. Then, with v, =1,
ap(?

9 vnTn,'n,
log % = 74 [ VW/A(S) — Ea) (63 + 370)]

6?,r,7,v

—*H Tl + IITnII +oe(1),

as n — oo under P

9?»fnaV'

- vp = 1 is the contiguity rate, so that ¢s is rate-consistent here as well.



Theorem 4

Assume that (iii) r» = 1/+/n. Then, with v, =1,
()
dP0?+VnTn,rn,V

dP(")

G?JmV

log = T;;[Vﬁ(sn - Zn)(e? + %Tﬂ)]

v2 v2
Ll + Sl + (),

as n — oo under P'f)
0,

rn,v’

- vp = 1 is the contiguity rate, so that ¢s is rate-consistent here as well.
- For small 7,, one recovers LAN, which will imply that ¢s is locally asymptotically
optimal.



Asymptotic powers, rejection frequencies
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To summarize optimality results:

In regimes (i)—(ii): LAN and ¢s is Le Cam optimal.
In regime (iii): not LAN, but ¢s is still rate-consistent (and locally optimal).
In regime (iv): LAN and ¢s is Le Cam optimal, but optimality is degenerate



The sample covariance matrix S provides eigenvalues Ay = 102.69,
X2 = 13.05, A3 = 10.23, and \4 = 2.66, and corresponding eigenvectors

.032 593 =1L —.015 .804

A —. A 797 =R A —. A —.
b, — 012 = 9 0y = 129 and 6, = 590
.820 .057 =B .566 —.064
—.571 097 =T .814 —.035

It is tempting to interpret the 2nd PC as an aggregate of L and R,
but Flury was anxious about it.

For the null hypothesis Ho : 6; := (1,1,0,0)'/+/2, the p-value of ¢s is .177 and
the p-value of ¢rr is .099. Since ¢ir Overrejects under weak identifiability, we are
confident that one should not reject the null hypothesis here.
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A natural question: are the above phenomenons Gaussian accidents?



A natural question: are the above phenomenons Gaussian accidents? No.



A natural question: are the above phenomenons Gaussian accidents? No.

(a) They hold, without any modification, at any elliptical distribution for which the
kurtosis coefficient

4
% —1, with d:= \/(X—u)’Z”(X—M)y

takes the same value (kp(¢) = 0) as in the Gaussian case.

kp(f) ==

(b) At any elliptical distribution with kp(f) < oo, they apply to the modified tests

Qir
14 Rp

Qs
1+ Rp

2 2
> Xp—1,1—a and > Xp—1,1—as

where &, is an arbitrary consistent estimator of «(f).
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@® Nonparametric tests, in general models



A few severe limitations in the previous results. ..



(i) Non-Gaussian results are under the null hypothesis only (what about the
power of pseudo-Gaussian tests away from the Gaussian case?)

~+ We considered (essentially arbitrary) elliptical densities of the form

(= T )

(only suitable derivability assumptions for f + finite Fisher information) and
studied the asymptotic behavior of the corresponding local log-likelihood ratios
under double-asymptotic scenarios involving weak identifiability.

This requires new results on quadratic mean differentiable families in triangular
array frameworks.

The Le Cam third lemma then provides the local asymptotic powers of
pseudo-Gaussian tests under virtually any f (these are poor under heavy tails!)



(i) Pseudo-Gaussian tests are based on the empirical covariance matrix

1< < o
Sn:EZ;(Xi_X)(Xi_X)v

hence require finite fourth moments and are sensitive to possible outliers.

We consider rank-based covariance matrices of the form
A~ T HZERY
Sn'K o Z K< n+ 1 > U"(Nv V)U/(Mv V)a

where Ri(u, V) is the rank of di(u, V) among di(u, V), ..., di(u, V),

VX )

A, V)= VX =Wl and - Ui, V) = iz — T

here, /. and V are suitable (robust) estimators of . and V = ¥ /(det ¥)'/P.



Away from weak identifiability, the rank tests

np(p + 2) P
OK = pp E QSNKQO >X§*1,1*0¢7

([ K2 (u)du)
that mimick the score test

p
Z 0]!78”01 > X;21—1,1—a7

in ]:2 /n

>

are attractive:

* They do not require moment conditions

* With Gaussian scores (K(u) = W, ' (u), with W, the cdf of the x3), their
AREs with respect to pseudo-Gaussian tests are uniformly larger than one.

Do such properties survive weak identifiability?



Still with R;(, V) the rank of di(u, V) among di(u, V), ..., da(u, V),

n

i=1 n+1

and

Sci=1 ZK( (@0, VD)) Ui, VI, V)

can be shown to be asymptotically equivalent under the null hypothesis; here,

E(t) = (/OOO rP=E(r) dr)_1 /Otrp_1f(r) ar

is the cdf of d(u, V) under f.

Again, this result holds under arbitrarily weak identifiability.



This allows us to study the null asymptotic behavior of rank tests under weak
identifiability: they are as robust to weak identifiability as pseudo-Gaussian tests,
but extend validity to infinite fourth moments.

Better: from contiguity, combining this representation result with our study of the

asymptotic behavior of elliptical log-likelihood ratios under weak identifiability, we
can study the local powers of rank tests: for Gaussian scores, uniform dominance
over pseudo-Gaussian tests in terms of AREs resists weak identifiability.

Underlying density

K ¥4 t5 tg t19 N ey e3 es
2 | 2204 1215 1.078 1.000 1.129 1308 1.637
3 | 2270 1233 108 1.000 1.108 1259 1.536
vdW | 4 | 2326 1249 1.093 1.000 1.093 1223 1462
6 | 2413 1275 1.106 1.000 1.072 1.174 1.363
10 | 2531 1312 1126 1.000 1.050 1.121 1.254
oo | 3.000 1500 1250 1.000 1.000 1.000 1.000
2 1.500 0.750 0.625 0.500 0392 0.365 0.347
3 1.800 0.900 0.750 0.600 0.493 0464 0.444
L 4 | 2000 1.000 0.833 0667 0565 0537 0517
6 | 2250 1.125 0938 0.750 0.662 0.636 0.617
10 | 2500 1.250 1.041 0.833 0.766 0.746 0.730
oo | 3000 1500 1250 1.000 1.000 1.000 1.000
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(iii) So far, we considered weak identifiability with a single-spiked spectrum
M =14+nv, A2:...:>\p:1,
but what happens for more general spectra of the form

)\1:1—|—an, )\2::Aq:1<)\q+1<<)\p7

Both pseudo-Gaussian tests and rank tests show the same asymptotic null
behavior under such more general spectra.

Their local powers are affected, but not the AREs!



@ Point estimation



Let Xn, ..., Xnon be a random sample from an elliptical distribution with location
zero and shape matrix (throughout, shapes have unit determinants)

Ip + V6101
(det(lp + rmv610;))1/P’

n=

with r, = O(1) and v > 0. Here, radial densities may freely depend on n.

We want to estimate the leading eigenvector 6;.

We consider 1, the leading eigenvector of the estimator of shape ¥, solving

n

p an n/ {
ZX’ VX,

see Tyler (AoS 1987). It can be shown that, irrespective of r,, \f(\A/ Vi) is
),V

asymptotically normal with mean zero and covariance matrix gp(V = lim V.



Theorem 5

(i) ifr, =1, then/n(0, — 61) is asymptotically normal with mean zero and
covariance matrix

i) (1 T g)up —0,68));
o
(il) if r is o(1) with \/nr, — co, then \/nra(6,1 — 61) is asymptotically normal
with mean zero and covariance matrix

1 2 ,
P<1 1 B)(lp—mm);

(i) ifrn = \iﬁ then 6,1 converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z + v6167, Z ~ Np,p(0,(1 + 2) {()z + Kp) — 3p});

(iv) ifrp = o(\iﬁ), then 0,1 converges weakly to a random vector that is uniformly

distributed over the unit sphere SP~".



Theorem 5

(i) ifra =1, then /n(0ny — 641) is asymptotically normal with mean zero and
covariance matrix

1+v 2
e (1 = B) (Ip - 0104);
(ii) if r is o(1) with \/nr, — co, then \/nra(6,1 — 61) is asymptotically normal
with mean zero and covariance matrix

1 2 ;

(i) ifrn = \iﬁ then 6,1 converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z + v6167, Z ~ Np,p(0,(1 + 2) {()z + Kp) — 3p});

(iv) ifrp = o(\iﬁ), then 0,1 converges weakly to a random vector that is uniformly

distributed over the unit sphere SP~".



Theorem 5

(i) ifra =1, then /n(0ny — 641) is asymptotically normal with mean zero and
covariance matrix

1+v 2
e (1 = B) (Ip - 0104);
(il) if r is o(1) with \/nr, — co, then \/nra(6,1 — 61) is asymptotically normal
with mean zero and covariance matrix

1 2 ,
P<1 1 B)(lp—mm);

(i) ifrn = \iﬁ then 6,1 converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z + v6167, Z ~ Np,p(0,(1 + 2) {()z + Kp) — 3p});

(iv) ifr, = o(%), then 01 converges weakly to a random vector that is uniformly

distributed over the unit sphere SP~".



Theorem 5

(i) ifra =1, then /n(0ny — 641) is asymptotically normal with mean zero and
covariance matrix

1+v 2
e (1 = B) (Ip - 0194);
(il) if r is o(1) with \/nr, — co, then \/nra(6,1 — 61) is asymptotically normal
with mean zero and covariance matrix

1 2 ,
P<1 1 B)(lp—mm);

(iii) ifrp = ﬁ then 6,y converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z + v6167, Z ~ Np,p(0,(1 + 2){()z + Kp) — 3p});

(iv) ifra = o(\iﬁ), then 0,1 converges weakly to a random vector that is uniformly

distributed over the unit sphere SP~".
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Weak identifiability (WI) may hurt!

But some procedures are validity-robust to weak identifiability.
They may even show adaptively optimal Type 2 risks.

In some problems, robustness to WI might therefore be a further point to
consider when selecting a statistical procedure(?)

To do 1: high-dimensional case (p = pn — o)
To do 2: LR vs score tests in a generic WI problem?



Weak identifiability (WI) may hurt!

But some procedures are validity-robust to weak identifiability.
They may even show adaptively optimal Type 2 risks.

In some problems, robustness to WI might therefore be a further point to
consider when selecting a statistical procedure(?)

To do 1: high-dimensional case (p = pn — o)
To do 2: LR vs score tests in a generic WI problem?

Thank you!
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