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Flury (1988) conducted a PCA of the Swiss banknotes data, with four variables:

• the width L on the left side

• the width R on the right side

• the size B of the bottom margin

• the size T of the top margin,

all measured in mm→10→1 on n = 85 counterfeit bills.



The resulting sample covariance matrix S provides eigenvalues ω̂1 = 102.69,
ω̂2 = 13.05, ω̂3 = 10.23, and ω̂4 = 2.66, and corresponding unit eigenvectors

ε̂1 =





.032 = L

↑.012 = R

.820 = B

↑.571 = T




, ε̂2 =





.593

.797

.057

.097




, ε̂3 =





↑.015
↑.129
.566
.814




, and ε̂4 =





.804
↑.590
↑.064
↑.035




.

Flury concludes that the 1st PC is a contrast between B and T .

It is tempting to interpret the 2nd PC as an aggregate of L and R... But Flury
writes "beware: the 2nd and 3rd roots are quite close and so the computation

of standard errors for the coefficients of ε̂2 and ε̂3 may be hazardous".
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"Computation of standard errors for the coefficients of ε̂2 and ε̂3 may be hazardous"

The covariance matrix in the asymptotic (normal) distribution of
↓

n(ε̂2 ↑ ε2) is

p∑

ω=1
ω ↑=2

ω2ωω

(ω2 ↑ ωω)2 εωε
↓
ω,

which is huge if ω2 is close to ω3!

On this basis, Flury refrains from drawing any conclusion about ε2. . .

Question: what can we say about ε2 in setups where ω2 ↔ ω3?
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For a fixed unit vector ε0
1 of Rp, we consider the problem of testing

H0 : ε1 = ε0
1 vs H1 : ε1 ↗= ε0

1,

based on Xn1, . . . ,Xnn i.i.d. Np(µn,!n), with the single-spiked structure

!n = ϑ2
n(Ip + rnv ε1ε

↓
1) = ϑ2

n(1 + rnv)︸ ︷︷ ︸
ε1n

ε1ε
↓
1 + ϑ2

n︸︷︷︸
ε2n=...=εpn

(Ip ↑ ε1ε
↓
1),

where v > 0 and (rn) is a positive real sequence that may be o(1).

If rn ↘ 1, then this is the usual asymptotic framework.
If rn = o(1), then ω1n/ω2n ≃ 1 (weak identifiability: challenging!)



We consider two parametric tests:

• the LR test ϖLR rejects H0 : ε1 = ε0
1 at asymptotic level ϱ if

QLR :=
n

ω̂1n

p∑

j=2

(ω̂jn ↑ ω̂1n)
2

ω̂jn

(
ε̂↓jnε

0
1
)2

> ς2
p→1,1→ϑ;

• the score test ϖS rejects H0 at asymptotic level ϱ if

QS :=
n

ω̂1n

p∑

j=2

1
ω̂jn

(
ε̃↓jnSnε

0
1
)2

> ς2
p→1,1→ϑ,

where ε̃2n, . . . , ε̃pn result from Gram-Schmidt-ing ε0
1, ε̂2n, . . . , ε̂pn.

If rn ↘ 1 (so that ωjn = ωj for any j), then these tests are asymptotically equivalent
under H0, hence also under contiguous alternatives.
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We may assume that µn ↘ 0 (from translation invariance)
We may assume that ϑn ↘ 1 (from scale invariance)
↭ Denote the resulting hypothesis as Pϖ1,rn,v .

Theorem 1

Assume that (rn) is O(1). Then, under the sequence of null hypotheses Pϖ0
1 ,rn,v

,

QS
D
≃ ς2

p→1

as n ≃ ⇐.

↭ Asymptotic null size ϱ irrespective of the rate at which rn ≃ 0 (if it does).

Hence, ϖS is robust to weak identifiability.



Simulations with covariance matrix !(ω)
n := (1 + n

→ω/6)ε0
1ε

0↓
1 + 1 → (Ip ↑ ε0

1ε
0↓
1 )
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Figure: Null empirical rejection frequencies of ωS and ωLR performed at nominal level 5%
(results are based on M = 10,000 independent 10-dimensional Gaussian random samples
of size n = 200 and size n = 500,000). The larger ε, the weaker the identifiability.
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Theorem 2

Let Z be a p → p random matrix such that vec(Z ) ⇒ N (0, Ip2 + Kp). Then, under

the sequence of null hypotheses Pϖ0
1 ,rn,v

:

(i) if rn ↘ 1 or (ii) if rn is o(1) with
↓

nrn ≃ ⇐, then QLR
D
≃ ς2

p→1;

(iii) if rn = 1/
↓

n, then

QLR
D
≃

p∑

j=2

(φ1(v)↑ φj(v))
2(wj1(v))

2,

where φ1(v) ⇑ . . . ⇑ φp(v) are the eigenvalues of Z + diag(v , 0, . . . , 0) and

wj(v) = (wj1(v), . . . ,wjp(v))
↓

is an arbitrary unit eigenv. associated with φj(v);

(iv) if rn = o(1/
↓

n), then

QLR
D
≃

p∑

j=2

(φ1 ↑ φj)
2
w

2
j1
(D
= 4ς2

p→1, for p = 2
)
,

where φ1 ⇑ . . . ⇑ φp are the eigenvalues of Z and wj = (wj1, . . . ,wjp)
↓

is an

arbitrary unit eigenvector associated with φj .
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We have shown that ϖS is "validity-robust" (>< ϖLR).
Is this achieved at the expense of power?

Theorem 3

Assume that (i) rn ↘ 1 or (ii) rn = o(1) with
↓

nrn ≃ ⇐. Then,

under Pϖ0
1+(

↔
nrn)→1ϱn,rn,v

, with (↼n) ≃ ↼ ,

QS
D
≃ ς2

p→1

(
v

2
⇓↼⇓2

1 + ↽v

)

as n ≃ ⇐, where ↽ = 1 in regime (i) and ↽ = 0 in regime (ii).

The faster rn goes to zero, the more severe the corresponding local alternatives.
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Theorem 3

(iii)

(iv) Assume that rn = o(1/
↓

n). Then, under Pϖ0
1+ϱn,rn,v

, with (↼n) ≃ ↼ ,

QS
D
≃ ς2

p→1(0)

as n ≃ ⇐.



Theorem 3

(iii) Assume that rn = 1/
↓

n. Then, under Pϖ0
1+ϱn,rn,v

, with (↼n) ≃ ↼ ,

QS
D
≃ ς2

p→1

(
1

16
v

2
⇓↼⇓2(4 ↑ ⇓↼⇓2)(2 ↑ ⇓↼⇓2)2

)

as n ≃ ⇐.

(iv) Assume that rn = o(1/
↓

n). Then, under Pϖ0
1+ϱn,rn,v

, with (↼n) ≃ ↼ ,

QS
D
≃ ς2

p→1(0)

as n ≃ ⇐.
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Non-trivial local powers in regimes (i)–(iii).
What about rate-optimality, what about plain optimality?



Theorem 4

Assume that (i) rn ↘ 1 or that (ii)
↓

nrn ≃ ⇐. Then, with ⇀n = 1/(
↓

nrn),

log
dP(n)

ϖ0
1+ςnϱn,rn,v

dP(n)

ϖ0
1 ,rn,v

= ↼ ↓
n”n ↑

1
2
↼ ↓

n#↼n + oP(1) and ”(n)
n

D
≃ Np(0, #)

as n ≃ ⇐ under P(n)

ϖ0
1 ,rn,v

, where

”n :=

↓
nv

1 + ↽v

(
Ip ↑ ε0

1ε
0↓
1
)
(Sn ↑ !n)ε

0
1 and # :=

v
2

1 + ↽v

(
Ip ↑ ε0

1ε
0↓
1
)

(↽ = 1 in case (i) and 0 in case (ii)).

In particular,

- ⇀n = 1/(
↓

nrn) is the contiguity rate.
- The optimal test rejects the null for large values of ”↓

n#
→”n = QS + oP(1).



Theorem 4

Assume that (iv) rn = o(1/
↓

n). Then, even with ⇀n ↘ 1,

log
dP(n)

ϖ0
1+ςnϱn,rn,v

dP(n)

ϖ0
1 ,rn,v

= oP(1)

as n ≃ ⇐ under P(n)

ϖ0
1 ,rn,v

.

↭ No tests can show non-trivial asymptotic powers against the most severe
alternatives ε1 = ε0

1 + ↼ .



Theorem 4

Assume that (iii) rn = 1/
↓

n. Then, with ⇀n ↘ 1,

log
dP(n)

ϖ0
1+ςnϱn,rn,v

dP(n)

ϖ0
1 ,rn,v

= ↼ ↓
n


v
↓

n(Sn ↑ !n)
(
ε0

1 + 1
2↼n

)

↑
v

2

2
⇓↼n⇓

2 +
v

2

8
⇓↼n⇓

4 + oP(1),

as n ≃ ⇐ under P(n)

ϖ0
1 ,rn,v

.

- ⇀n ↘ 1 is the contiguity rate, so that ϖS is rate-consistent here as well.

- For small ↼n, one recovers LAN, which will imply that ϖS is locally asymptotically
optimal.
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dP(n)

ϖ0
1 ,rn,v

= ↼ ↓
n


v
↓

n(Sn ↑ !n)
(
ε0

1 + 1
2↼n
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↑
v

2

2
⇓↼n⇓

2 +
v

2

8
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To summarize optimality results:

In regimes (i)–(ii): LAN and ϖS is Le Cam optimal.
In regime (iii): not LAN, but ϖS is still rate-consistent (and locally optimal).
In regime (iv): LAN and ϖS is Le Cam optimal, but optimality is degenerate



The sample covariance matrix S provides eigenvalues ω̂1 = 102.69,
ω̂2 = 13.05, ω̂3 = 10.23, and ω̂4 = 2.66, and corresponding eigenvectors

ε̂1 =




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↑.012
.820
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


, ε̂2 =
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
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, ε̂3 =





↑.015
↑.129
.566
.814




, and ε̂4 =





.804
↑.590
↑.064
↑.035




.

It is tempting to interpret the 2nd PC as an aggregate of L and R,
but Flury was anxious about it.

For the null hypothesis H0 : ε2 := (1, 1, 0, 0)↓/
↓

2, the p-value of ϖS is .177 and
the p-value of ϖLR is .099. Since ϖLR overrejects under weak identifiability, we are
confident that one should not reject the null hypothesis here.
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A natural question: are the above phenomenons Gaussian accidents?

No.

(a) They hold, without any modification, at any elliptical distribution for which the
kurtosis coefficient

⇁p(f ) :=
pE[d4]

(p + 2)(E[d2])2 ↑ 1, with d :=


(X ↑ µ)↓!→1(X ↑ µ),

takes the same value (⇁p(ϖ) = 0) as in the Gaussian case.

(b) At any elliptical distribution with ⇁p(f ) < ⇐, they apply to the modified tests

QLR

1 + ⇁̂p

> ς2
p→1,1→ϑ and

QS

1 + ⇁̂p

> ς2
p→1,1→ϑ,

where ⇁̂p is an arbitrary consistent estimator of ⇁p(f ).
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A few severe limitations in the previous results. . .



(i) Non-Gaussian results are under the null hypothesis only (what about the
power of pseudo-Gaussian tests away from the Gaussian case?)

↭ We considered (essentially arbitrary) elliptical densities of the form

x ⇔≃
cp,f

↓
det!

f


(x ↑ µ)↓!→1(x ↑ µ)



(only suitable derivability assumptions for f + finite Fisher information) and
studied the asymptotic behavior of the corresponding local log-likelihood ratios
under double-asymptotic scenarios involving weak identifiability.

This requires new results on quadratic mean differentiable families in triangular
array frameworks.

The Le Cam third lemma then provides the local asymptotic powers of
pseudo-Gaussian tests under virtually any f (these are poor under heavy tails!)



(ii) Pseudo-Gaussian tests are based on the empirical covariance matrix

Sn =
1
n

n∑

i=1

(Xi ↑ X̄ )(Xi ↑ X̄ )↓,

hence require finite fourth moments and are sensitive to possible outliers.

We consider rank-based covariance matrices of the form

Sn,K =
1
n

n∑

i=1

K

(
Ri(µ̂, V̂ )

n + 1

)
Ui(µ̂, V̂ )U ↓

i (µ̂, V̂ ),

where Ri(µ,V ) is the rank of di(µ,V ) among d1(µ,V ), . . . , dn(µ,V ),

di(µ,V ) := ⇓V
→1/2(Xi ↑ µ)⇓ and Ui(µ,V ) :=

V
→1/2(Xi ↑ µ)

⇓V→1/2(Xi ↑ µ)⇓
;

here, µ̂ and V̂ are suitable (robust) estimators of µ and V = !/(det!)1/p.



Away from weak identifiability, the rank tests

QK :=
np(p + 2)

(
 1

0 K 2(u) du)

p∑

j=2

(
ε̃↓j Sn,K ε

0
1
)2

> ς2
p→1,1→ϑ,

that mimick the score test

QS :=
n

ω̂1n

p∑

j=2

1
ω̂jn

(
ε̃↓jnSnε

0
1
)2

> ς2
p→1,1→ϑ,

are attractive:

• They do not require moment conditions

• With Gaussian scores (K (u) = $→1
p (u), with $p the cdf of the ς2

p), their
AREs with respect to pseudo-Gaussian tests are uniformly larger than one.

Do such properties survive weak identifiability?



Still with Ri(µ,V ) the rank of di(µ,V ) among d1(µ,V ), . . . , dn(µ,V ),

Sn,K =
1
n

n∑

i=1

K

(
Ri(µ̂, V̂ )

n + 1

)
Ui(µ̂, V̂ )U ↓

i (µ̂, V̂ )

and

SK ,f =
1
n

n∑

i=1

K

(
F̃ (di(µ,V ))

)
Ui(µ,V )U ↓

i (µ,V )

can be shown to be asymptotically equivalent under the null hypothesis; here,

F̃ (t) :=

( ↗

0
r

p→1
f (r) dr

)→1  t

0
r

p→1
f (r) dr

is the cdf of d1(µ,V ) under f .

Again, this result holds under arbitrarily weak identifiability.



This allows us to study the null asymptotic behavior of rank tests under weak
identifiability: they are as robust to weak identifiability as pseudo-Gaussian tests,
but extend validity to infinite fourth moments.

Better: from contiguity, combining this representation result with our study of the
asymptotic behavior of elliptical log-likelihood ratios under weak identifiability, we
can study the local powers of rank tests: for Gaussian scores, uniform dominance
over pseudo-Gaussian tests in terms of AREs resists weak identifiability.





(iii) So far, we considered weak identifiability with a single-spiked spectrum

ω1 = 1 + rnv , ω2 = . . . = ωp = 1,

but what happens for more general spectra of the form

ω1 = 1 + rnv , ω2 = . . . = ωq = 1 < ωq+1 < . . . < ωp?

Both pseudo-Gaussian tests and rank tests show the same asymptotic null
behavior under such more general spectra.

Their local powers are affected, but not the AREs!



1 Introduction/motivation

2 Parametric tests, in Gaussian single-spiked models

Results under the null hypothesis

Results under local alternatives

Optimality results

Pseudo-Gaussian tests

3 Nonparametric tests, in general models

4 Point estimation



Let Xn1, . . . ,Xnn be a random sample from an elliptical distribution with location
zero and shape matrix (throughout, shapes have unit determinants)

Vn =
Ip + rnvε1ε

↓
1

(det(Ip + rnvε1ε↓1))
1/p

,

with rn = O(1) and v > 0. Here, radial densities may freely depend on n.

We want to estimate the leading eigenvector ε1.

We consider ε̂n1, the leading eigenvector of the estimator of shape V̂n solving

p

n

n∑

i=1

XniX
↓
ni

X ↓
ni

V̂
→1
n Xni

= V̂n;

see Tyler (AoS 1987). It can be shown that, irrespective of rn,
↓

n(V̂n ↑ Vn) is
asymptotically normal with mean zero and covariance matrix gp(V ), V := limVn.



Theorem 5

(i) if rn ↘ 1, then
↓

n(ε̂n1 ↑ ε1) is asymptotically normal with mean zero and

covariance matrix

1 + v

v2

(
1 +

2
p

)
(Ip ↑ ε1ε

↓
1);

(ii) if rn is o(1) with
↓

nrn ≃ ⇐, then
↓

nrn(ε̂n1 ↑ ε1) is asymptotically normal

with mean zero and covariance matrix

1
v2

(
1 +

2
p

)
(Ip ↑ ε1ε

↓
1);

(iii) if rn = 1↔
n
, then ε̂n1 converges weakly to the unit eigenvector associated with

the largest eigenvalue of Z + vε1ε
↓
1, Z ⇒ Np,p

(
0,
(
1 + 2

p

)
(Ip2 + Kp)↑ 2

p
Jp

)
;

(iv) if rn = o( 1↔
n
), then ε̂n1 converges weakly to a random vector that is uniformly

distributed over the unit sphere S
p→1

.
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Weak identifiability (WI) may hurt!

But some procedures are validity-robust to weak identifiability.
They may even show adaptively optimal Type 2 risks.

In some problems, robustness to WI might therefore be a further point to
consider when selecting a statistical procedure(?)

To do 1: high-dimensional case (p = pn ≃ ⇐)
To do 2: LR vs score tests in a generic WI problem?

Thank you!
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