Worst-Case Optimal Investment in Incomplete Markets

Alexander Steinicke

Department of Mathematics and Information Technology Montanuniversitaet Leoben Austria

Joint work with Sascha Desmettre (University of Linz), Sebastian Merkel (Exeter Business School) and Annalena Mickel (University of Mannheim)

Research Seminar

Vienna University of Economics and Business October 23, 2024

- 1 The Worst Case Optimal Investment Problem
- Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations

- 1 The Worst Case Optimal Investment Problem
- 2 Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations

Worst-Case Optimal Investment in a Nutshell

The Market Model

• Usual Black-Scholes model:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.

Worst-Case Optimal Investment in a Nutshell

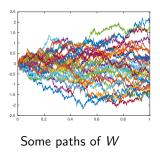
The Market Model

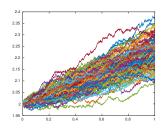
• Usual Black-Scholes model:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.





Some scenarios for S

The Market Model

• Normal Times:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.

The Market Model

• Normal Times:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.

• At CRASH TIME au, which is modeled as a STOPPING TIME and which is subject to Knightian uncertainty, the stock price can suddenly fall by a relative (fixed) amount ℓ with $0 \le \ell < 1$, i.e. in a crash scenario (au, ℓ) :

$$S_{\tau} = (1 - \ell)S_{\tau-}$$
.

The Market Model

• Normal Times:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.

• At CRASH TIME au, which is modeled as a STOPPING TIME and which is subject to Knightian uncertainty, the stock price can suddenly fall by a relative (fixed) amount ℓ with $0 \le \ell < 1$, i.e. in a crash scenario (au, ℓ) :

$$S_{\tau} = (1 - \ell)S_{\tau-}.$$

- ullet In general: Finitely many crashes can happen before the horizon T.
- ullet For simplicity in this talk: At most one crash can happen before T.

The Market Model

• Normal Times:

$$db_t = b_t r dt, \quad b(0) = 1$$

$$dS_t = S_t [(\lambda + r) dt + \sigma dW_t], \quad S_0 = s$$

with constant market coefficients λ and $\sigma \neq 0$.

• At CRASH TIME au, which is modeled as a STOPPING TIME and which is subject to Knightian uncertainty, the stock price can suddenly fall by a relative (fixed) amount ℓ with $0 \le \ell < 1$, i.e. in a crash scenario (au, ℓ) :

$$S_{\tau} = (1 - \ell)S_{\tau-}$$
.

- ullet In general: Finitely many crashes can happen before the horizon T.
- ullet For simplicity in this talk: At most one crash can happen before T.
- Studied for the first time in Korn & Wilmott (2002).

- \bullet $\operatorname{PRE-CRASH}$ strategy π is valid up to and including the crash time.
- \bullet $\operatorname{Post-crash}$ strategy $\overline{\pi}$ is implemented immediately afterwards.

- ullet PRE-CRASH strategy π is valid up to and including the crash time.
- ullet Post-crash strategy $\overline{\pi}$ is implemented immediately afterwards.

The dynamics of the investor's wealth $X^{\pi,\overline{\pi}}$ are the solution X to

$$\frac{dX_t}{X_t} = (r + \pi_t \lambda) dt + \pi_t \sigma dW_t \text{ on } [0, \tau), \quad X_0 = x
X_\tau = (1 - \pi_\tau \ell) X_{\tau-}
\frac{dX_t}{X_t} = (r + \overline{\pi}_t \lambda) dt + \overline{\pi}_t \sigma dW_t \text{ on } (\tau, T]$$

where x > 0 denotes the initial wealth.

- ullet PRE-CRASH strategy π is valid up to and including the crash time.
- ullet Post-crash strategy $\overline{\pi}$ is implemented immediately afterwards.

The dynamics of the investor's wealth $X^{\pi,\overline{\pi}}$ are the solution X to

$$\frac{dX_t}{X_t} = (r + \pi_t \lambda)dt + \pi_t \sigma dW_t \text{ on } [0, \tau), \quad X_0 = x
X_\tau = (1 - \pi_\tau \ell)X_{\tau-}
\frac{dX_t}{X_t} = (r + \overline{\pi}_t \lambda)dt + \overline{\pi}_t \sigma dW_t \text{ on } (\tau, T]$$

where x > 0 denotes the initial wealth.

• $(\tilde{X}_t^\pi)_{t\in[0,T]}$: wealth process in the standard crash-free Black-Scholes model corresponding to the portfolio process π .

- ullet PRE-CRASH strategy π is valid up to and including the crash time.
- ullet Post-crash strategy $\overline{\pi}$ is implemented immediately afterwards.

The dynamics of the investor's wealth $X^{\pi,\overline{\pi}}$ are the solution X to

$$\begin{array}{lll} \frac{dX_t}{X_t} & = & (r + \pi_t \lambda) dt + \pi_t \sigma dW_t \text{ on } [0, \tau), & X_0 = x \\ X_\tau & = & (1 - \pi_\tau \ell) X_{\tau-} \\ \frac{dX_t}{X_t} & = & (r + \overline{\pi}_t \lambda) dt + \overline{\pi}_t \sigma dW_t \text{ on } (\tau, T] \end{array}$$

where x > 0 denotes the initial wealth.

- $(\tilde{X}_t^{\pi})_{t \in [0,T]}$: wealth process in the standard crash-free Black-Scholes model corresponding to the portfolio process π .
- Explicit expression for \tilde{X}^{π} :

$$ilde{X}_t = x \exp\left(\int_0^t \left(r + \pi_s \lambda - \frac{1}{2}\pi_s^2 \sigma_s^2\right) ds + \int_0^t \pi_s \sigma_s dW_s\right).$$

Worst-Case Optimal Investment Problem

• The problem to optimally choose a pre- and post-crash strategy $(\pi, \overline{\pi}) \in \mathcal{A}(t, x) \times \overline{\mathcal{A}}(t, x)$ facing the worst possible crash-scenario τ with $0 \le \tau \le T$, i.e.

$$\sup_{(\pi,\overline{\pi})}\inf_{\tau}\mathbb{E}\left[U(X_{T}^{\pi,\overline{\pi}})\right] \tag{P}$$

with final wealth $X_T^{\pi,\overline{\pi}}$ in the case of a crash of size ℓ at au given by

$$X_T^{\pi,\overline{\pi}} = (1 - \pi_{ au}\ell)\, ilde{X}_T^{\pi}$$

is called the worst-case portfolio problem.

- 1 The Worst Case Optimal Investment Problem
- Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- 4 The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations

How to solve the problem:

How to solve the problem: → start with post-crash strategy!	

$$\sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\pi,\overline{\pi},\tau})] = \sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi}})] \tag{P_{post}}$$

$$\sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi},\overline{\tau}})] = \sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi}})] \tag{P_{post}}$$

COM Device - **Merton Problem with Random Initial Time** We can solve for X explicitly (using e.g. power utility $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$)

$$U(X_T^{\overline{\pi}}) = U(X_{\tau}^{\overline{\pi}}) \exp\left((1 - \gamma) \int_{\tau}^{T} \Phi(\overline{\pi}_s) ds\right) M_T(\overline{\pi})$$

with $X^{\overline{\pi}}_{ au}=(1-\pi_{ au}\ell)X^{\pi}_{ au}$, a martingale $\mathit{M}(\pi)$ satisfying $\mathit{M}_{ au}(\pi)=1$ and

$$\Phi(y) := r + (b - r)y - \frac{1}{2}\gamma\sigma^2y^2.$$

$$\sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi},\overline{\tau}})] = \sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi}})] \tag{P_{post}}$$

COM Device - **Merton Problem with Random Initial Time** We can solve for X explicitly (using e.g. power utility $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$)

$$U(X_T^{\overline{\pi}}) = U(X_{\tau}^{\overline{\pi}}) \exp\left((1 - \gamma) \int_{\tau}^{T} \Phi(\overline{\pi}_s) ds\right) M_T(\overline{\pi})$$

with $X^{\overline{\pi}}_{ au}=(1-\pi_{ au}\ell)X^{\pi}_{ au}$, a martingale $M(\pi)$ satisfying $M_{ au}(\pi)=1$ and

$$\Phi(y) := r + (b - r)y - \frac{1}{2}\gamma\sigma^2y^2.$$

Thus: $\overline{\pi}_t^* = \arg\max_{\overline{\pi}} \Phi(\overline{\pi}) = \pi^M \implies \overline{\pi}_t^*$ does not depend on $(\tau, \ell)!!!$

$$\sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi},\overline{\tau}})] = \sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi}})] \tag{P_{post}}$$

COM Device - **Merton Problem with Random Initial Time** We can solve for X explicitly (using e.g. power utility $U(x) = \frac{x^{1-\gamma}}{1-\gamma}$)

$$U(X_T^{\overline{\pi}}) = U(X_{\tau}^{\overline{\pi}}) \exp\left((1 - \gamma) \int_{\tau}^{T} \Phi(\overline{\pi}_s) ds\right) M_T(\overline{\pi})$$

with $X^{\overline{\pi}}_{ au}=(1-\pi_{ au}\ell)X^{\pi}_{ au}$, a martingale $M(\pi)$ satisfying $M_{ au}(\pi)=1$ and

$$\Phi(y) := r + (b-r)y - \frac{1}{2}\gamma\sigma^2y^2.$$

Thus: $\overline{\pi}_t^* = \arg\max_{\overline{\pi}} \Phi(\overline{\pi}) = \pi^M \Rightarrow \overline{\pi}_t^*$ does not depend on $(\tau, \ell)!!!$ Optimal POST-CRASH strategy: Merton fraction $\pi^M = \lambda/\gamma\sigma^2$.

$$\sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\pi,\overline{\pi},\tau})] = \sup_{\overline{\pi} \in \mathcal{A}(\tau)} \mathbb{E}[U(X_T^{\overline{\pi}})] \tag{P_{post}}$$

COM Device - Merton Problem with Random Initial Time for LOG-utility

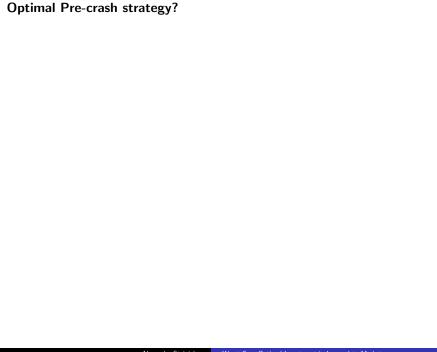
$$U(X_T^{\overline{\pi}}) = U(X_T^{\overline{\pi}}) + \int_T^T \Phi(\overline{\pi}_s) ds + M_T(\overline{\pi})$$

with $X^{\overline{\pi}}_{ au}=(1-\pi_{ au}\ell)X^{\pi}_{ au}$, a martingale $M(\pi)$ satisfying $M_{ au}(\pi)=0$ and

$$\Phi(y) := r + \lambda y - \frac{1}{2}\sigma^2 y^2.$$

Thus: $\overline{\pi}_t^* = \arg\max_{\overline{\pi}} \Phi(\overline{\pi}) = \pi^M \Rightarrow \overline{\pi}_t^*$ does not depend on $(\tau, \ell)!!!$ Optimal POST-CRASH strategy: Merton fraction $\pi^M = \lambda/\sigma^2$.

- 1 The Worst Case Optimal Investment Problem
- Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- 4 The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations



Optimal Pre-crash strategy?

A WOC optimal strategy is characterized by an *indifference property*, i.e. the investor's utility is *independent of the timing* of a crash ℓ .

Optimal Pre-crash strategy?

A WOC optimal strategy is characterized by an *indifference property*, i.e. the investor's utility is *independent of the timing* of a crash ℓ .

Worst-case problem (P) decouples into the post-crash problem (P_{post}) and the problem to choose a pre-crash strategy such that

$$\sup_{\pi} \inf_{(\tau,\ell)} \mathbb{E}\left[\overline{V}\left(\tau, (1-\pi_{\tau}\ell)X_{\tau}^{\pi}\right)\right] \tag{P}_{pre}$$

where \overline{V} denotes the value function of the post-crash (Merton) problem:

$$\overline{V}(t,x) = \frac{x^{1-\gamma}}{1-\gamma} e^{\left((1-\gamma)\int_t^T \Phi(\bar{\pi}) ds\right)} = U(x) e^{\left((1-\gamma)\int_t^T \Phi(\bar{\pi}) ds\right)}.$$

Optimal Pre-crash strategy?

A WOC optimal strategy is characterized by an *indifference property*, i.e. the investor's utility is *independent of the timing* of a crash ℓ .

Worst-case problem (P) decouples into the post-crash problem (P_{post}) and the problem to choose a pre-crash strategy such that

$$\sup_{\pi} \inf_{(\tau,\ell)} \mathbb{E}\left[\overline{V}\left(\tau, (1-\pi_{\tau}\ell)X_{\tau}^{\pi}\right)\right] \tag{P}_{pre}$$

where \overline{V} denotes the value function of the post-crash (Merton) problem:

$$\overline{V}(t,x) = \frac{x^{1-\gamma}}{1-\gamma} e^{\left((1-\gamma)\int_t^T \Phi(\bar{\pi}) ds\right)} = U(x) e^{\left((1-\gamma)\int_t^T \Phi(\bar{\pi}) ds\right)}.$$

Controller-vs-Stopper Game

• (P_{pre}) is a controller-vs-stopper game and Seifried (2010) has shown that this is solved by rendering

$$t \mapsto \overline{V}(t,(1-\pi_t\ell)X_t^{\pi})$$

a continuous martingale, since then the market's (stopper's) actions become irrelevant to the investor (controller).

• Apply Itô's formula to \overline{V} : \Rightarrow WOC-ODE.

Solutions to the WOC Problem

Optimal PRE-CRASH strategy: Unique solution of the ODE

$$\pi_t^{'} = rac{1-\pi_t \ell}{\ell} \left[-rac{\gamma \sigma^2}{2} \left(\pi_t - \pi^M
ight)^2
ight] \;\;,\;\; \pi_T = 0 \,.$$

 $[\Rightarrow \bar{V}]$ is a martingale **Argument/reason behind:** An investor has to be indifferent between a crash happening immediately or not at all.]

Solutions to the WOC Problem

• Optimal PRE-CRASH strategy: Unique solution of the ODE

$$\pi_t^{'} = \frac{1-\pi_t \ell}{\ell} \left[-\frac{\gamma \sigma^2}{2} \left(\pi_t - \pi^M \right)^2 \right] \;\;,\;\; \pi_T = 0 \,. \label{eq:pitting_tau_tau}$$

 $[\Rightarrow \bar{V}]$ is a martingale **Argument/reason behind:** An investor has to be indifferent between a crash happening immediately or not at all.]

• Optimal POST-CRASH strategy: Merton fraction $\pi^M = \lambda/\gamma\sigma^2$.

Solutions to the WOC Problem

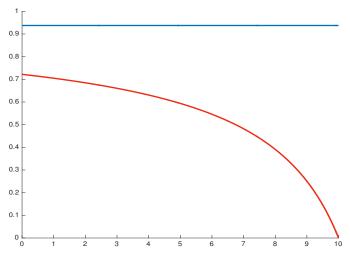
Optimal PRE-CRASH strategy: Unique solution of the ODE

$$\pi_t^{'} = \frac{1-\pi_t \ell}{\ell} \left[-\frac{\gamma \sigma^2}{2} \left(\pi_t - \pi^M \right)^2 \right] \;\;,\;\; \pi_T = 0 \,. \label{eq:pitting_tau_tau}$$

 $[\Rightarrow \bar{V}]$ is a martingale **Argument/reason behind:** An investor has to be indifferent between a crash happening immediately or not at all.]

- Optimal POST-CRASH strategy: Merton fraction $\pi^M = \lambda/\gamma\sigma^2$.
- Log: Explicit calculations as given in Korn & Wilmott (2002).
- Power: Solution of HJB systems as in Korn & Steffensen (2007) or using the martingale approach of Seifried (2010).

Illustration: $\hat{\pi}$ (red) and π_M (blue)



Parameters: $\gamma=$ 1, $\lambda=$ 0.15, $\sigma=$ 0.4, $\ell=$ 0.2, T= 10

Stochastic Lévy Market Coefficients

Choose pre-crash and post-crash strategy $(\pi, \overline{\pi}) \in \mathcal{A}(t, x) \times \mathcal{A}(t, x)$ as to maximize the LOG-utility of terminal wealth in the worst-case scenario:

$$\sup_{(\pi,\overline{\pi})}\inf_{\tau}\mathbb{E}[\log X_{T}^{\pi,\overline{\pi}}]. \tag{P^{SM}}$$

Now, $X^{\pi,\overline{\pi}}$ is the solution X to

$$\begin{split} \frac{dX_t}{X_{t-}} &= (r_t + \pi_t \lambda_t) dt + \pi_t \sigma_t dW_t - \int_{[0,l^{\text{max}}]} \pi_t l\nu(dt,dl) &\quad \text{on } [0,\tau) \\ X_\tau &= (1 - \pi_\tau \ell) X_{\tau-} \\ \frac{dX_t}{X_{t-}} &= (r_t + \overline{\pi}_t \lambda_t) dt + \overline{\pi}_t \sigma_t dW_t - \int_{[0,l^{\text{max}}]} \overline{\pi}_t l\nu(dt,dl) &\quad \text{on } (\tau,T] \end{split}$$

and initial condition $X_0 = x > 0$, where ν is a Poisson random measure with Lévy measure ϑ with $I^{\max} \ll \ell$.

Analogous to the constant case, we define the function

$$\Phi_t: [0,\infty) o \mathbb{R}^\Omega, y \mapsto r_t + \lambda_t y - rac{1}{2}\sigma_t^2 y^2 - \int_{[0,I^{\mathsf{max}}]} \mathsf{log}(1-yI) artheta(dI).$$

- 1 The Worst Case Optimal Investment Problem
- Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- The Solution for Stochastic CoefficientsBSDEs
- 5 Concrete examples
- 6 Simulations

Post-Crash Problem

- ullet Recall: $X_t = (1-\pi_ au\ell)\, ilde{X}_t$, where $ilde{X}$ is the crash-free setting.
- The solution to the crash-free SDE is given by

$$\begin{split} \tilde{X}_t &= x \exp\left(\int_0^t \left(r_s + \tilde{\pi}_s \lambda_s - \frac{1}{2} \tilde{\pi}_s^2 \sigma_s^2 + \int_{[0,I^{\max}]} \log(1 - \tilde{\pi}_s I) \vartheta(dI)\right) ds \\ &+ \int_0^t \tilde{\pi}_s \sigma_s dW_s + \int_{(0,t] \times [0,I^{\max}]} \log(1 - \tilde{\pi}_s I) \tilde{\nu}(ds,dI)\right), \end{split}$$

Post-Crash Problem

- ullet Recall: $X_t = (1 \pi_ au \ell) \, ilde{X}_t$, where $ilde{X}$ is the crash-free setting.
- The solution to the crash-free SDE is given by

$$\begin{split} \tilde{X}_t &= x \exp\left(\int_0^t \left(r_s + \tilde{\pi}_s \lambda_s - \frac{1}{2}\tilde{\pi}_s^2 \sigma_s^2 + \int_{[0,I^{\text{max}}]} \log(1 - \tilde{\pi}_s I) \vartheta(dI)\right) ds \\ &+ \int_0^t \tilde{\pi}_s \sigma_s dW_s + \int_{(0,t] \times [0,I^{\text{max}}]} \log(1 - \tilde{\pi}_s I) \tilde{\nu}(ds,dI)\right), \end{split}$$

• which for $\tau < t$ can be rewritten as

$$\begin{split} \tilde{X}_t = & x \exp\bigg(\int_0^{\tau} \Phi_s(\pi_s) ds + \int_{\tau}^t \Phi_s(\overline{\pi}_s) ds + \int_0^{\tau} \pi_s \sigma_s dW_s + \int_{\tau}^t \overline{\pi}_s \sigma_s dW_s \\ & + \int_{(0,\tau] \times [0,l^{\text{max}}]} \log(1 - \pi_s l) \tilde{\nu}(ds,dl) + \int_{(\tau,t] \times [0,l^{\text{max}}]} \log(1 - \overline{\pi}_s l) \tilde{\nu}(ds,dl) \bigg). \end{split}$$

Post-Crash Problem

• Taking the logarithm, our objective function reads (using boundedness of $\pi, \overline{\pi}$):

$$\begin{split} & \mathbb{E}\left[\log X_{T}^{(\pi,\overline{\pi}),\tau}\right] = \mathbb{E}\left[\log\left((1-\pi_{\tau}\ell)\,\tilde{X}_{T}\right)\right] \\ & = \mathbb{E}\left[\log\left((1-\pi_{\tau}\ell)\,x\,\exp\left(\int_{0}^{\tau}\Phi_{s}(\pi_{s})ds + \int_{\tau}^{T}\Phi_{s}(\overline{\pi}_{s})ds\right)\right)\right] \\ & = \log x + \mathbb{E}\left[\log\left(1-\pi_{\tau}\ell\right) + \int_{0}^{\tau}\Phi_{t}(\pi_{t})dt\right] + \mathbb{E}\left[\int_{\tau}^{T}\Phi_{t}(\overline{\pi}_{t})dt\right]. \end{split}$$

- Thus, post-crash strategy as before: $\overline{\pi}_t^* = \pi_t^M = \arg\max_{\overline{\pi}} \Phi_t(\overline{\pi})$
- In the case without Lévy jumps π_t^M is given by $\frac{\lambda_t}{\sigma_t^2}$

Pre-Crash Problem

Rewrite the objective as follows:

$$\begin{split} \mathbb{E}\left[\log\left(1-\pi_{\tau}\ell\right) + \int_{0}^{\tau} \Phi_{t}(\pi_{t})dt\right] + \mathbb{E}\left[\int_{\tau}^{T} \Phi_{t}(\pi_{t}^{M})dt\right] = \\ \mathbb{E}\left[\underbrace{\log\left(1-\pi_{\tau}\ell\right) + \int_{0}^{\tau} \left(\Phi_{t}(\pi_{t}) - \Phi_{t}(\pi_{t}^{M})\right)dt}_{(A)}\right] + \underbrace{\mathbb{E}\left[\int_{0}^{T} \Phi_{t}(\pi_{t}^{M})dt\right]}_{(B)} \end{split}$$

Consequences of this representation:

- (B) is independent of τ and π and can therefore be ignored.
- (A) is \mathcal{F}_{τ} -measurable.
- ullet Our objective is to choose a PRE-CRASH portfolio strategy $\pi \in \mathcal{A}$ as to maximise

$$\sup_{\pi}\inf_{\tau}\mathbb{E}\left[\log\left(1-\pi_{\tau}\ell\right)+\int_{0}^{\tau}\left(\Phi_{s}(\pi_{s})-\Phi_{s}(\pi_{s}^{M})\right)ds\right]\qquad\left(\mathsf{P}_{\textit{pre}}^{\textit{SM}}\right)$$

A BSDE Characterisation of Optimal Strategies

Controller-vs-stopper game approach:

$$\Upsilon^\pi_t := \log\left(1 - \pi_t\ell\right) + \int_0^t \left(\Phi_s(\pi_s) - \Phi_s(\pi_s^M)\right) ds \quad o \; \text{martingale!}$$

• Υ_t depends on the path of $r_t, \lambda_t, \sigma_t! \Rightarrow$ we cannot solve it through an ODE!

A BSDE Characterisation of Optimal Strategies

Controller-vs-stopper game approach:

$$\Upsilon^\pi_t := \log\left(1 - \pi_t\ell\right) + \int_0^t \left(\Phi_s(\pi_s) - \Phi_s(\pi_s^M)\right) ds \quad o \; \text{martingale!}$$

• Υ_t depends on the path of $r_t, \lambda_t, \sigma_t! \Rightarrow$ we cannot solve it through an ODE!

In such a case, we need a backward stochastic differential equation (BSDE)!

- 1 The Worst Case Optimal Investment Problem
- 2 Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- The Solution for Stochastic CoefficientsBSDEs
- 5 Concrete examples
- 6 Simulations

 $\mathsf{BSDE} \neq \mathsf{SDE}$ solved backward in time!

Motivation: conditional expectation

Consider a random variable $\xi \in L^1(\mathcal{F}_T)$ and its conditional expectation,

$$Y_t = \mathbb{E}_t[\xi] := \mathbb{E}[\xi \mid \mathcal{F}_t].$$

 $\mathsf{BSDE} \neq \mathsf{SDE}$ solved backward in time!

Motivation: conditional expectation

Consider a random variable $\xi \in L^1(\mathcal{F}_T)$ and its conditional expectation,

$$Y_t = \mathbb{E}_t[\xi] := \mathbb{E}[\xi \mid \mathcal{F}_t].$$

By the martingale representation, we can write $\xi=\mathbb{E}[\xi]+\int_0^T Z_s dW_s$ and get

$$Y_t = \mathbb{E}_t[\xi] = \xi - \int_t^T Z_s dW_s$$
 and $Y_T = \xi$

 $\mathsf{BSDE} \neq \mathsf{SDE}$ solved backward in time!

Motivation: conditional expectation

Consider a random variable $\xi \in L^1(\mathcal{F}_T)$ and its conditional expectation,

$$Y_t = \mathbb{E}_t[\xi] := \mathbb{E}[\xi \mid \mathcal{F}_t].$$

By the martingale representation, we can write $\xi=\mathbb{E}[\xi]+\int_0^T Z_s dW_s$ and get

$$Y_t = \mathbb{E}_t[\xi] = \xi - \int_t^T Z_s dW_s$$
 and $Y_T = \xi$

So we found two adapted processes (Y, Z) such that, given ξ , $\int_t^T Z_s dW_s$ subtracts the 'right amount of randomness' from ξ to yield an adapted process (which is Y).

Next: nonlinear conditional expectation

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

$$Y_t + \int_0^t f(s, Y_s) ds = \mathbb{E}_t \left[\xi + \int_0^T f(s, Y_s) ds \right].$$

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

$$Y_t + \int_0^t f(s, Y_s) ds = \mathbb{E}_t \left[\xi + \int_0^T f(s, Y_s) ds \right].$$

 \rightarrow not explicit anymore in Y! It becomes an equation.

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

$$Y_t + \int_0^t f(s, Y_s) ds = \mathbb{E}_t \left[\xi + \int_0^T f(s, Y_s) ds \right].$$

 \rightarrow not explicit anymore in Y! It becomes an equation.

Using the martingale representation again,

$$\xi + \int_0^T f(s, Y_s) ds = \mathbb{E}\left[\xi + \int_0^T f(s, Y_s) ds\right] + \int_0^T Z_s dW_s$$
, we get

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

$$Y_t + \int_0^t f(s, Y_s) ds = \mathbb{E}_t \left[\xi + \int_0^T f(s, Y_s) ds \right].$$

 \rightarrow not explicit anymore in Y! It becomes an equation.

Using the martingale representation again,

$$\xi + \int_0^T f(s, Y_s) ds = \mathbb{E}\left[\xi + \int_0^T f(s, Y_s) ds\right] + \int_0^T Z_s dW_s$$
, we get

$$Y_t + \int_0^t f(s, Y_s) ds = \xi + \int_0^T f(s, Y_s) ds - \int_t^T Z_s dW_s, \quad Y_T = \xi$$

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

$$Y_t + \int_0^t f(s, Y_s) ds = \mathbb{E}_t \left[\xi + \int_0^T f(s, Y_s) ds \right].$$

 \rightarrow not explicit anymore in Y! It becomes an equation.

Using the martingale representation again,

$$\xi + \int_0^T f(s, Y_s) ds = \mathbb{E}\left[\xi + \int_0^T f(s, Y_s) ds\right] + \int_0^T Z_s dW_s$$
, we get

$$Y_t + \int_0^t f(s, Y_s) ds = \xi + \int_0^T f(s, Y_s) ds - \int_t^T Z_s dW_s, \quad Y_T = \xi$$

$$\Leftrightarrow Y_t = \xi + \int_t^T f(s, Y_s) ds - \int_t^T Z_s dW_s, \quad Y_T = \xi$$

One may even involve the Z-process:

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$

One may even involve the Z-process:

$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$

This is the standard form of a BSDE. Its solution consists of a pair (Y, Z) of adapted processes. ξ is the terminal value and f is the generator.

One may even involve the Z-process:

$$Y_t = \xi + \int_t^T f(s, Y_s, \frac{Z_s}{S}) ds - \int_t^T Z_s dW_s$$

This is the standard form of a BSDE. Its solution consists of a pair (Y, Z) of adapted processes. ξ is the terminal value and f is the generator.

Differential notation:

$$dY_t = -f(t, Y_t, Z_t)dt + Z_t dW_t, \quad Y_T = \xi, \quad t \in [0, T].$$

Nonlinear expectations

- Nonlinear expectations
- Strategies for hedging problems

- Nonlinear expectations
- Strategies for hedging problems
- Risk measures representations

- Nonlinear expectations
- Strategies for hedging problems
- Risk measures representations
- Utility maximization and optimal control

- Nonlinear expectations
- Strategies for hedging problems
- Risk measures representations
- Utility maximization and optimal control
- One-to-one relationship with a class of parabolic, quasilinear PDEs

- Nonlinear expectations
- Strategies for hedging problems
- Risk measures representations
- Utility maximization and optimal control
- One-to-one relationship with a class of parabolic, quasilinear PDEs

Back to our problem!

A BSDE Characterisation of Optimal Strategies

Controller-vs-stopper game approach:

$$\Upsilon^\pi_t := \log \left(1 - \pi_t \ell \right) + \int_0^t \left(\Phi_s(\pi_s) - \Phi_s(\pi_s^M) \right) ds \quad o \; \mathsf{martingale!}$$

• Υ_t depends on the path of $r_t, \lambda_t, \sigma_t! \Rightarrow \mathsf{BSDE}$ instead of ODE!

A BSDE Characterisation of Optimal Strategies

Controller-vs-stopper game approach:

$$\Upsilon^\pi_t := \log\left(1 - \pi_t \ell\right) + \int_0^t \left(\Phi_s(\pi_s) - \Phi_s(\pi_s^M)\right) \frac{ds}{ds} \quad o \; \text{martingale!}$$

• Υ_t depends on the path of $r_t, \lambda_t, \sigma_t! \Rightarrow \mathsf{BSDE}$ instead of ODE!

Proposition [Utility Crash Exposure BSDE, DMMSt2024+]

Assume that
$$\mathbb{E}\left[\int_0^T |r_t| dt + \left(\int_0^T |\lambda_t| + |\sigma_t|^2 dt\right)^2
ight] < \infty$$
 (B2), λ, σ

 $\mathcal{F}^{\mathbf{W}}$ -measurable, let ϱ be a stopping time with $0 \leq \varrho \leq \mathcal{T}$, $\pi \in \mathcal{A}$. Then:

- $\ \ \ \ \exists \ Z \in \mathbb{L}^2$, such that (Y,Z) is on $[\varrho,T]$ a solution to the BSDE

$$dY_t = \left(\Phi_t\left(\frac{1 - e^{-Y_t}}{\ell}\right) - \Phi_t(\pi_t^M)\right)dt + Z_t dW_t, \qquad Y_T = 0,$$

where $\pi = \frac{1-e^{-Y_t}}{\ell}$ and the utility crash exposure Y^{π} of strategy $\pi \in \mathcal{A}$ is defined by $Y_t^{\pi} := -\log\left(1 - \pi_t \ell\right)$.

Theorems and corollaries (DMMSt2024+) that allow us to find Y and π :

• Under the assumption $(B \exp)$ that for some $\varepsilon > 0$, $\mathbb{E}\left[\int_0^T |r_t|dt + \int_0^T \exp(\varepsilon(|\lambda_t| + |\sigma_t^2|))dt\right] < \infty$, there is a unique pair $(Y,Z) \in \mathbb{L}^2 \times \mathbb{L}^2$ which solves the utility crash exposure BSDE. Also, Y is $(\lambda_{[0,t]} \otimes \mathbb{P}\text{-a.e.})$ nonnegative and bounded.

Theorems and corollaries (DMMSt2024+) that allow us to find Y and π :

- Under the assumption $(B \exp)$ that for some $\varepsilon > 0$, $\mathbb{E} \left[\int_0^T |r_t| dt + \int_0^T \exp(\varepsilon(|\lambda_t| + |\sigma_t^2|)) dt \right] < \infty$, there is a unique pair $(Y, Z) \in \mathbb{L}^2 \times \mathbb{L}^2$ which solves the utility crash exposure BSDE. Also, Y is $(\lambda_{[0,t]} \otimes \mathbb{P}\text{-a.e.})$ nonnegative and bounded.
- Under assumption (B exp) there is a unique indifference strategy π .

Theorems and corollaries (DMMSt2024+) that allow us to find Y and π :

- Under the assumption $(B \exp)$ that for some $\varepsilon > 0$, $\mathbb{E} \left[\int_0^T |r_t| dt + \int_0^T \exp(\varepsilon(|\lambda_t| + |\sigma_t^2|)) dt \right] < \infty$, there is a unique pair $(Y, Z) \in \mathbb{L}^2 \times \mathbb{L}^2$ which solves the utility crash exposure BSDE. Also, Y is $(\lambda_{[0,t]} \otimes \mathbb{P}\text{-a.e.})$ nonnegative and bounded.
- Under assumption (B exp) there is a unique indifference strategy π .
- If $\pi \leq \pi^M$, then π is pre-crash optimal

Theorems and corollaries (DMMSt2024+) that allow us to find Y and π :

- Under the assumption $(B \exp)$ that for some $\varepsilon > 0$, $\mathbb{E} \left[\int_0^T |r_t| dt + \int_0^T \exp(\varepsilon(|\lambda_t| + |\sigma_t^2|)) dt \right] < \infty$, there is a unique pair $(Y, Z) \in \mathbb{L}^2 \times \mathbb{L}^2$ which solves the utility crash exposure BSDE. Also, Y is $(\lambda_{[0,t]} \otimes \mathbb{P}\text{-a.e.})$ nonnegative and bounded.
- Under assumption ($B \exp$) there is a unique indifference strategy π .
- If $\pi \leq \pi^M$, then π is pre-crash optimal
- In particular, this is the case if $\pi^M \equiv \alpha$ is constant.

- 1 The Worst Case Optimal Investment Problem
- Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations

Markovian Case – PDE-BSDE connection

Market model with $\sigma_t = \overline{\sigma}(z_t)$, $\lambda_t = \overline{\lambda}(z_t)$ where z is a factor process whose evolution is governed by the SDE

$$dz_t = \mu(z_t)dt + \varsigma(z_t)dB_t.$$

Markovian Case - PDE-BSDE connection

Market model with $\sigma_t = \overline{\sigma}(z_t)$, $\lambda_t = \overline{\lambda}(z_t)$ where z is a factor process whose evolution is governed by the SDE

$$dz_t = \mu(z_t)dt + \varsigma(z_t)dB_t.$$

Let π^M be given by $\psi(\lambda, \sigma)$ and let $v \in C^{1,2}$ be a solution to

$$0 = \partial_t v(t, x) + \mu(x) \partial_x v(t, x) + \frac{\overline{\sigma}^2 x}{2} \partial_{xx} v(t, x) + (\Phi_t(\psi(\overline{\lambda}(x), \overline{\sigma}(x))) - r_t)$$

$$- \overline{\lambda}(x) \frac{1 - e^{-(v(t, x) \vee 0)}}{\ell} + \frac{\overline{\sigma}(x)^2}{2} \left(\frac{1 - e^{-(v(t, x) \vee 0)}}{\ell} \right)^2$$

$$- \int_{[0, I^{\text{max}}]} \log \left(1 - \frac{1 - e^{-(v(t, x) \vee 0)}}{\ell} I \right) \vartheta(dI), \quad v(T, x) = 0$$

Markovian Case - PDE-BSDE connection

Market model with $\sigma_t = \overline{\sigma}(z_t)$, $\lambda_t = \overline{\lambda}(z_t)$ where z is a factor process whose evolution is governed by the SDE

$$dz_t = \mu(z_t)dt + \varsigma(z_t)dB_t.$$

Let π^M be given by $\psi(\lambda, \sigma)$ and let $v \in C^{1,2}$ be a solution to

$$\begin{split} 0 = & \partial_t v(t,x) + \mu(x) \partial_x v(t,x) + \frac{\overline{\sigma}^2 x}{2} \partial_{xx} v(t,x) + \left(\Phi_t(\psi(\overline{\lambda}(x), \overline{\sigma}(x))) - r_t \right) \\ & - \overline{\lambda}(x) \frac{1 - e^{-(v(t,x)\vee 0)}}{\ell} + \frac{\overline{\sigma}(x)^2}{2} \left(\frac{1 - e^{-(v(t,x)\vee 0)}}{\ell} \right)^2 \\ & - \int_{[0,I^{\text{max}}]} \log \left(1 - \frac{1 - e^{-(v(t,x)\vee 0)}}{\ell} I \right) \vartheta(dI), \quad v(T,x) = 0 \end{split}$$

- Now suppose that $Y_t := v(t, z_t)$ and $Z_t := \varsigma(z_t) \partial_x v(t, z_t)$ are in \mathbb{L}^2 .
- Then (Y, Z) is the unique \mathbb{L}^2 -solution to the utility crash exposure BSDE.
- Proof: Just apply Itô's formula to $Y_t := v(t, z_t)$.

In Bates' stochastic volatility model, the stock price evolves like

$$dS_t = S_{t-} \left[(\lambda + r)dt + \sqrt{z_t}dW_t - \int_{[0,l^{\mathsf{max}}]} l\nu(dt,dl) \right],$$

and the evolution of z with the corresponding specifications $z=\sigma^2$, $\sigma(x)=\sqrt{x}$ is the Cox-Ingersoll-Ross (CIR) process given by

$$dz_t = \kappa(\theta - z_t)dt + \varsigma \sqrt{z_t}dB_t$$

where B is a second Brownian motion that can be correlated with W.

$$dS_t = S_{t-} \left[(\lambda + r)dt + \sqrt{z_t}dW_t - \int_{[0,I^{max}]} I\nu(dt,dI) \right]$$
 $dz_t = \kappa(\theta - z_t)dt + \varsigma\sqrt{z_t}dB_t$

Assume an appropriate price of risk

$$\lambda_t = \bar{\lambda}(z_t) = \alpha \sigma^2(z_t) + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI) = \alpha z_t + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI).$$

$$dS_{t} = S_{t-} \left[(\lambda + r)dt + \sqrt{z_{t}}dW_{t} - \int_{[0,I^{\text{max}}]} I\nu(dt,dI) \right]$$

$$dz_{t} = \kappa(\theta - z_{t})dt + \varsigma\sqrt{z_{t}}dB_{t}$$

Assume an appropriate price of risk

$$\lambda_t = \bar{\lambda}(z_t) = \alpha \sigma^2(z_t) + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI) = \alpha z_t + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI).$$

Then $\pi^M = \alpha$ is constant.

$$dS_t = S_{t-} \left[(\lambda + r)dt + \sqrt{z_t}dW_t - \int_{[0,I^{max}]} I\nu(dt,dI) \right]$$
 $dz_t = \kappa(\theta - z_t)dt + \varsigma\sqrt{z_t}dB_t$

Assume an appropriate price of risk

$$\lambda_t = \bar{\lambda}(z_t) = \alpha \sigma^2(z_t) + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI) = \alpha z_t + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI).$$

Then $\pi^M = \alpha$ is constant.

In the pure Brownian case: appropriate means linear market price of risk $\lambda_t = \alpha z_t$ (see Kraft (2005)).

Concrete Example: Heston and Bates Model

$$dS_t = S_{t-} \left[(\lambda + r)dt + \sqrt{z_t}dW_t - \int_{[0,I^{max}]} I\nu(dt,dI) \right]$$
 $dz_t = \kappa(\theta - z_t)dt + \varsigma\sqrt{z_t}dB_t$

Assume an appropriate price of risk

$$\lambda_t = \bar{\lambda}(z_t) = \alpha \sigma^2(z_t) + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI) = \alpha z_t + \int_{[0,I^{\max}]} \frac{I}{1-\alpha I} \vartheta(dI).$$

Then $\pi^M = \alpha$ is constant.

In the pure Brownian case: appropriate means linear market price of risk $\lambda_t = \alpha z_t$ (see Kraft (2005)).

We have to solve the PDE

$$\begin{split} &\partial_t v(t,x) + \kappa(\theta-x)\partial_x v(t,x) + \frac{\varsigma^2 x}{2}\partial_{xx} v(t,x) + (\Phi_t(\alpha) - r_t) - \bar{\lambda}(x)\frac{1 - e^{-(v(t,x)\vee 0)}}{\ell} \\ &+ \frac{x}{2}\left(\frac{1 - e^{-(v(t,x)\vee 0)}}{\ell}\right)^2 - \int_{[0,I^{\max}]} \log\left(1 - \frac{1 - e^{-(v(t,x)\vee 0)}}{\ell}I\right)\vartheta(dI) = 0, \ \ v(\mathcal{T},x) = 0 \end{split}$$

To ensure the correspondence $Y_t = v(t, z_t)$, we need some growth, continuity and moment properties of z (DMMSt2024+):

To ensure the correspondence $Y_t = v(t, z_t)$, we need some growth, continuity and moment properties of z (DMMSt2024+):

Let $\frac{2\kappa\theta}{\varsigma^2}>\frac{1}{2}$ and $z^s(x)$ be the process satisfying

$$dz_t^s(x) = \kappa(\theta - z_t^s(x))dt + \varsigma\sqrt{z_t^s(x)}dB_t, \quad z_s^s(x) = x, \quad t \ge s$$

Then for all $p \ge 2$ there is a constant M_p such that

To ensure the correspondence $Y_t = v(t, z_t)$, we need some growth, continuity and moment properties of z (DMMSt2024+):

Let $\frac{2\kappa\theta}{\varsigma^2}>\frac{1}{2}$ and $z^s(x)$ be the process satisfying

$$dz_t^s(x) = \kappa(\theta - z_t^s(x))dt + \varsigma\sqrt{z_t^s(x)}dB_t, \quad z_s^s(x) = x, \quad t \ge s$$

Then for all $p \ge 2$ there is a constant M_p such that

•
$$\mathbb{E}\left[\sup_{s\leq r\leq t}|z_r^s(x)-x|^p\right]\leq M_p(t-s)(1+|x|^p)$$

To ensure the correspondence $Y_t = v(t, z_t)$, we need some growth, continuity and moment properties of z (DMMSt2024+):

Let $\frac{2\kappa\theta}{\varsigma^2}>\frac{1}{2}$ and $z^s(x)$ be the process satisfying

$$dz_t^s(x) = \kappa(\theta - z_t^s(x))dt + \varsigma\sqrt{z_t^s(x)}dB_t, \quad z_s^s(x) = x, \quad t \ge s$$

Then for all $p \ge 2$ there is a constant M_p such that

•
$$\mathbb{E}\left[\sup_{s\leq r\leq t}|z_r^s(x)-x|^p\right]\leq M_p(t-s)(1+|x|^p)$$

•
$$\mathbb{E}\left[\sup_{s \le r \le t} |z_r^s(x) - z_r^s(x') - (x - x')|^p\right] \le M_p(t - s)(|x - x'|^p + |\sqrt{x} - \sqrt{x'}|^p)$$

To ensure the correspondence $Y_t = v(t, z_t)$, we need some growth, continuity and moment properties of z (DMMSt2024+):

Let $\frac{2\kappa\theta}{\varsigma^2}>\frac{1}{2}$ and $z^s(x)$ be the process satisfying

$$dz_t^s(x) = \kappa(\theta - z_t^s(x))dt + \varsigma\sqrt{z_t^s(x)}dB_t, \quad z_s^s(x) = x, \quad t \ge s$$

Then for all $p \ge 2$ there is a constant M_p such that

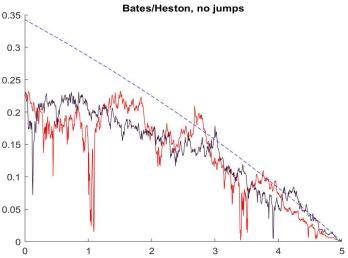
•
$$\mathbb{E}\left[\sup_{s\leq r\leq t}|z_r^s(x)-x|^p\right]\leq M_p(t-s)(1+|x|^p)$$

•
$$\mathbb{E}\left[\sup_{s \le r \le t} |z_r^s(x) - z_r^s(x') - (x - x')|^p\right] \le M_p(t - s)(|x - x'|^p + |\sqrt{x} - \sqrt{x'}|^p)$$

Further, if the Feller condition $\frac{2\kappa\theta}{\varsigma^2}>1$ is satisfied, then there is $\varepsilon>0$ such that $\mathbb{E}[\exp(\varepsilon z_t^s(x))]<\infty$ i.e. $(B\exp)$ is satisfied.

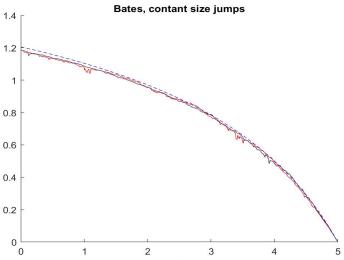
- 1 The Worst Case Optimal Investment Problem
- 2 Solving the Problem
 - The Post-Crash Strategy
 - The Pre-Crash Strategy
- Stochastic Market Coefficients
- 4 The Solution for Stochastic Coefficients
 - BSDEs
- Concrete examples
- 6 Simulations

${\color{red} {\sf III}}{\color{blue} {\sf ustration}}: \ \pi_{{\it Bates}} \ {\tiny (full\ paths)} \ {\scriptsize {\sf VS}} \ \pi_{{\it BS}} \ {\tiny (dashed)}$



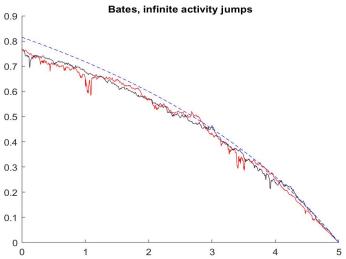
Parameters: $\alpha=2.5,~\theta=z_0=0.014,~^t\!\kappa=3.99,~\varsigma=0.27,~\ell=0.5,~T=5$ $\vartheta\equiv0,~\lambda_t=\alpha z_t$

Illustration: π_{Bates} (full paths) VS π_{BS} (dashed)



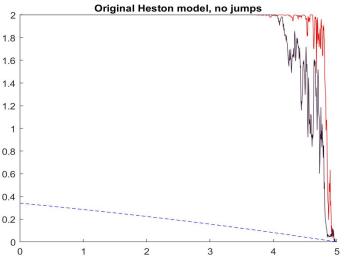
Parameters: $\alpha = 2.5$, $\theta = z_0 = 0.014$, ${}^t\!\kappa = 3.99$, $\varsigma = 0.27$, $\ell = 0.5$, T = 5 $q = I^{\max} = 0.2$, $\vartheta = \delta_q$, $\lambda_t = \alpha z_t + \frac{q}{1-\alpha q}$

Illustration: π_{Bates} (full paths) VS π_{BS} (dashed)



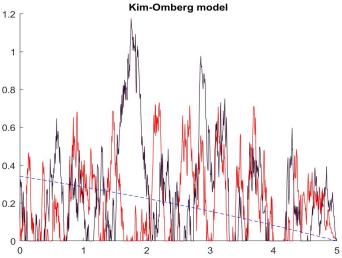
Parameters: $\alpha = 2.5$, $\theta = z_0 = 0.014$, ${}^t_{\kappa} = 3.99$, $\varsigma = 0.27$, $\ell = 0.5$, T = 5 $I^{\max} = 0.2$, $\vartheta(dI) = \frac{1}{I}dI$, $\lambda_t = \alpha z_t - \frac{\log(1 - \alpha I^{\max})}{\alpha}$

${\color{red} {\sf III}}{\color{blue} {\sf ustration}: } \pi_{{\color{blue} {\sf Heston}}} \ \ {\color{blue} {\sf (full paths)}} \ {\color{blue} {\sf VS}} \ \pi_{{\scriptsize BS}} \ \ {\tiny (dashed)}$



Parameters: $\alpha = 2.5$, $\theta = z_0 = 0.014$, ${}^t\!\kappa = 3.99$, $\varsigma = 0.27$, $\ell = 0.5$, T = 5 $\vartheta(dI) = 0$, $\lambda_t = \alpha\theta$, $\pi \nleq \pi^M \not= \text{const}$

${ m III}$ ustration: $\pi_{\it Kim-Omberg}$ (full paths) VS $\pi_{\it BS}$ (dashed)



Parameters: $\theta = z_0 = 0.014$, $\kappa = 3.5$, $\zeta = 0.3$, $\sigma = \sqrt{\theta}$, $\ell = 0.5$, T = 5 $\vartheta(dl) = 0$, $d\lambda_t = \kappa(\theta - \lambda_t)dt + \varsigma dW_t$, $\pi \nleq \pi^M \neq \text{const}$

Perspectives

- What happens if λ, σ are fully Lévy-dependent?
- Jump (small crash) sizes governed by a process g(I) instead of constant I.
- What happens if $\pi \nleq \pi^M$.
- Find ways to treat other utility functions such as Power Utility (no additive structure)!

Selected References

- Korn, R. & Wilmott, P. (2002), 'Optimal portfolios under the threat of a crash', International Journal of Theoretical and Applied Finance.
- Korn, R. & Steffensen, M. (2007), 'On worst-case portfolio optimization, SIAM Journal on Control and Optimization.'
- Seifried, F. T. (2010), 'Optimal investment for worst-case crash scenarios: A martingale approach', Mathematics of Operations Research.
- Kraft, H. (2005), 'Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility', Quantitative Finance.
- Desmettre, S. & Merkel, S. & Mickel, A. & Steinicke, A. (2024+), 'Worst case optimal investment in incomplete markets', arXiv:2311.10021

Thank you for your attention!