
Worst-Case Optimal Investment in Incomplete
Markets

Alexander Steinicke

Department of Mathematics and Information Technology
Montanuniversitaet Leoben

Austria

Joint work with Sascha Desmettre (University of Linz), Sebastian Merkel (Exeter Business
School) and Annalena Mickel (University of Mannheim)

Research Seminar
Vienna University of Economics and Business

October 23, 2024

Alexander Steinicke Worst-Case Optimal Investment in Incomplete Markets



1 The Worst Case Optimal Investment Problem

2 Solving the Problem
The Post-Crash Strategy
The Pre-Crash Strategy

3 Stochastic Market Coefficients

4 The Solution for Stochastic Coefficients
BSDEs

5 Concrete examples

6 Simulations

Alexander Steinicke Worst-Case Optimal Investment in Incomplete Markets



1 The Worst Case Optimal Investment Problem

2 Solving the Problem
The Post-Crash Strategy
The Pre-Crash Strategy

3 Stochastic Market Coefficients

4 The Solution for Stochastic Coefficients
BSDEs

5 Concrete examples

6 Simulations

Alexander Steinicke Worst-Case Optimal Investment in Incomplete Markets



Worst-Case Optimal Investment in a Nutshell

The Market Model

Usual Black-Scholes model:

dbt = btrdt, b(0) = 1

dSt = St [(λ+ r)dt + σdWt ] , S0 = s

with constant market coefficients λ and σ ̸= 0.
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Worst-Case Optimal Investment

The Market Model

Normal Times:

dbt = btrdt, b(0) = 1

dSt = St [(λ+ r)dt + σdWt ] , S0 = s

with constant market coefficients λ and σ ̸= 0.

At crash time τ , which is modeled as a stopping time and
which is subject to Knightian uncertainty, the stock price can
suddenly fall by a relative (fixed) amount ℓ with 0 ≤ ℓ < 1, i.e. in a
crash scenario (τ, ℓ):

Sτ = (1− ℓ)Sτ−.

In general: Finitely many crashes can happen before the horizon T .

For simplicity in this talk: At most one crash can happen before T .

Studied for the first time in Korn & Wilmott (2002).
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Wealth Equation

Pre-crash strategy π is valid up to and including the crash time.

Post-crash strategy π is implemented immediately afterwards.

The dynamics of the investor’s wealth Xπ,π are the solution X to

dXt

Xt
= (r + πtλ)dt + πtσdWt on [0, τ), X0 = x

Xτ = (1− πτ ℓ)Xτ−
dXt

Xt
= (r + πtλ)dt + πtσdWt on (τ,T ]

where x > 0 denotes the initial wealth.

(X̃π
t )t∈[0,T ]: wealth process in the standard crash-free Black-Scholes

model corresponding to the portfolio process π.

Explicit expression for X̃π:

X̃t = x exp

(∫ t

0

(
r + πsλ− 1

2
π2
s σ

2
s

)
ds +

∫ t

0

πsσsdWs

)
.
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Worst-Case Optimal Investment Problem

The problem to optimally choose a pre- and post-crash strategy
(π, π) ∈ A(t, x)×A(t, x) facing the worst possible crash-scenario τ
with 0 ≤ τ ≤ T , i.e.

sup
(π,π)

inf
τ
E
[
U(Xπ,π

T )
]

(P)

with final wealth Xπ,π
T in the case of a crash of size ℓ at τ given by

Xπ,π
T = (1− πτ ℓ) X̃

π
T

is called the worst-case portfolio problem.
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How to solve the problem:

→ start with post-crash strategy!
After the crash has occurred we face a Merton problem with random
initial time τ , i.e.

sup
π∈A(τ)

E[U(Xπ,π,τ
T )] = sup

π∈A(τ)

E[U(Xπ
T )] (Ppost)

COM Device - Merton Problem with Random Initial Time
We can solve for X explicitly (using e.g. power utility U(x) = x1−γ

1−γ )

U(Xπ
T ) = U(Xπ

τ ) exp
(
(1− γ)

∫ T

τ
Φ(πs)ds

)
MT (π)

with Xπ
τ = (1− πτ ℓ)X

π
τ , a martingale M(π) satisfying Mτ (π) = 1 and

Φ(y) := r + (b − r)y − 1
2γσ

2y2.

Thus: π∗
t = argmaxπ Φ(π) = πM ⇒ π∗

t does not depend on (τ, ℓ)!!!
Optimal post-crash strategy: Merton fraction πM = λ/γσ2.
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Optimal Pre-crash strategy?

A WOC optimal strategy is characterized by an indifference property, i.e.
the investor’s utility is independent of the timing of a crash ℓ.

Worst-case problem (P) decouples into the post-crash problem (Ppost)
and the problem to choose a pre-crash strategy such that

sup
π

inf
(τ,ℓ)

E
[
V (τ, (1− πτ ℓ)X

π
τ )
]

(Ppre)

where V denotes the value function of the post-crash (Merton) problem:

V (t, x) =
x1−γ

1− γ
e((1−γ)

∫ T
t

Φ(π̄) ds) = U(x)e((1−γ)
∫ T
t

Φ(π̄) ds) .

Controller-vs-Stopper Game

(Ppre) is a controller-vs-stopper game and Seifried (2010) has shown
that this is solved by rendering

t 7→ V (t, (1− πtℓ)X
π
t )

a continuous martingale, since then the market’s (stopper’s) actions
become irrelevant to the investor (controller).
Apply Itô’s formula to V : ⇒ WOC-ODE.
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Apply Itô’s formula to V : ⇒ WOC-ODE.

Alexander Steinicke Worst-Case Optimal Investment in Incomplete Markets



Optimal Pre-crash strategy?
A WOC optimal strategy is characterized by an indifference property, i.e.
the investor’s utility is independent of the timing of a crash ℓ.

Worst-case problem (P) decouples into the post-crash problem (Ppost)
and the problem to choose a pre-crash strategy such that

sup
π

inf
(τ,ℓ)

E
[
V (τ, (1− πτ ℓ)X

π
τ )
]

(Ppre)

where V denotes the value function of the post-crash (Merton) problem:

V (t, x) =
x1−γ

1− γ
e((1−γ)

∫ T
t

Φ(π̄) ds) = U(x)e((1−γ)
∫ T
t

Φ(π̄) ds) .

Controller-vs-Stopper Game

(Ppre) is a controller-vs-stopper game and Seifried (2010) has shown
that this is solved by rendering

t 7→ V (t, (1− πtℓ)X
π
t )

a continuous martingale, since then the market’s (stopper’s) actions
become irrelevant to the investor (controller).
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Solutions to the WOC Problem

Optimal pre-crash strategy: Unique solution of the ODE

π
′
t =

1− πtℓ

ℓ

[
−γσ

2

2

(
πt − πM

)2
]
, πT = 0 .

[⇒ V̄ is a martingale Argument/reason behind: An investor has to
be indifferent between a crash happening immediately or not at all.]

Optimal post-crash strategy: Merton fraction πM = λ/γσ2.

Log: Explicit calculations as given in Korn & Wilmott (2002).

Power: Solution of HJB systems as in Korn & Steffensen (2007) or
using the martingale approach of Seifried (2010).
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Illustration: π̂ (red) and πM (blue)
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Parameters: γ = 1, λ = 0.15, σ = 0.4, ℓ = 0.2, T = 10
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Stochastic Lévy Market Coefficients
Choose pre-crash and post-crash strategy (π, π) ∈ A(t, x)×A(t, x) as to
maximize the log-utility of terminal wealth in the worst-case scenario:

sup
(π,π)

inf
τ
E[logXπ,π

T ]. (PSM)

Now, Xπ,π is the solution X to

dXt

Xt−
= (rt + πtλt)dt + πtσtdWt −

∫
[0,lmax]

πt lν(dt, dl) on [0, τ)

Xτ = (1− πτ ℓ)Xτ−

dXt

Xt−
= (rt + πtλt)dt + πtσtdWt −

∫
[0,lmax]

πt lν(dt, dl) on (τ,T ]

and initial condition X0 = x > 0, where ν is a Poisson random measure
with Lévy measure ϑ with lmax ≪ ℓ.
Analogous to the constant case, we define the function

Φt : [0,∞) → RΩ, y 7→ rt + λty − 1

2
σ2
t y

2 −
∫
[0,lmax]

log(1− yl)ϑ(dl).
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Post-Crash Problem

Recall: Xt = (1− πτ ℓ) X̃t , where X̃ is the crash-free setting.

The solution to the crash-free SDE is given by

X̃t = x exp

(∫ t

0

(
rs + π̃sλs −

1

2
π̃2
s σ

2
s +

∫
[0,lmax]

log(1− π̃s l)ϑ(dl)

)
ds

+

∫ t

0

π̃sσsdWs +

∫
(0,t]×[0,lmax]

log(1− π̃s l)ν̃(ds, dl)

)
,

which for τ < t can be rewritten as

X̃t =x exp

(∫ τ

0

Φs(πs)ds +

∫ t

τ

Φs(πs)ds +

∫ τ

0

πsσsdWs +

∫ t

τ

πsσsdWs

+

∫
(0,τ ]×[0,lmax]

log(1− πs l)ν̃(ds, dl) +

∫
(τ,t]×[0,lmax]

log(1− πs l)ν̃(ds, dl)

)
.
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Post-Crash Problem

Taking the logarithm, our objective function reads (using
boundedness of π, π):

E
[
logX

(π,π),τ
T

]
= E

[
log

(
(1− πτ ℓ) X̃T

)]
= E

[
log

(
(1− πτ ℓ) x exp

(∫ τ

0

Φs(πs)ds +

∫ T

τ

Φs(πs)ds

))]
= log x + E

[
log (1− πτ ℓ) +

∫ τ

0

Φt(πt)dt

]
+ E

[∫ T

τ

Φt(πt)dt

]
.

Thus, post-crash strategy as before: π∗
t = πM

t = argmaxπ Φt(π)

In the case without Lévy jumps πM
t is given by λt

σ2
t
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Pre-Crash Problem
Rewrite the objective as follows:

E
[
log (1− πτ ℓ) +

∫ τ

0

Φt(πt)dt

]
+ E

[∫ T

τ

Φt(π
M
t )dt

]
=

E
[
log (1− πτ ℓ) +

∫ τ

0

(
Φt(πt)− Φt(π

M
t )
)
dt︸ ︷︷ ︸

(A)

]
+ E

[∫ T

0

Φt(π
M
t )dt

]
︸ ︷︷ ︸

(B)

Consequences of this representation:

(B) is independent of τ and π and can therefore be ignored.

(A) is Fτ -measurable.

Our objective is to choose a pre-crash portfolio strategy π ∈ A as
to maximise

sup
π

inf
τ
E
[
log (1− πτ ℓ) +

∫ τ

0

(
Φs(πs)− Φs(π

M
s )
)
ds

]
(PSM

pre )
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A BSDE Characterisation of Optimal Strategies

Controller-vs-stopper game approach:

Υπ
t := log (1− πtℓ) +

∫ t

0

(
Φs(πs)− Φs(π

M
s )
)
ds → martingale!

Υt depends on the path of rt , λt , σt ! ⇒ we cannot solve it through
an ODE!

In such a case, we need a backward stochastic differential equation
(BSDE)!
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Backward stochastic differential equations

BSDE ̸= SDE solved backward in time!

Motivation: conditional expectation

Consider a random variable ξ ∈ L1(FT ) and its conditional expectation,

Yt = Et [ξ] := E[ξ | Ft ].

By the martingale representation, we can write ξ = E[ξ] +
∫ T

0
ZsdWs and

get

Yt = Et [ξ] = ξ −
∫ T

t

ZsdWs and YT = ξ

So we found two adapted processes (Y ,Z ) such that, given ξ,
∫ T

t
ZsdWs

subtracts the ’right amount of randomness’ from ξ to yield an adapted
process (which is Y ).
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Backward stochastic differential equations

Next: nonlinear conditional expectation

Just like before, but we have an additional function f and want:

Yt +

∫ t

0

f (s,Ys)ds = Et

[
ξ +

∫ T

0

f (s,Ys)ds

]
.

→ not explicit anymore in Y ! It becomes an equation.

Using the martingale representation again,

ξ +
∫ T

0
f (s,Ys)ds = E

[
ξ +

∫ T

0
f (s,Ys)ds

]
+
∫ T

0
ZsdWs , we get

Yt +

∫ t

0

f (s,Ys)ds = ξ +

∫ T

0

f (s,Ys)ds −
∫ T

t

ZsdWs , YT = ξ

⇔ Yt = ξ +

∫ T

t

f (s,Ys)ds −
∫ T

t

ZsdWs , YT = ξ
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Backward stochastic differential equations

One may even involve the Z -process:

Yt = ξ +

∫ T

t

f (s,Ys ,Zs)ds −
∫ T

t

ZsdWs

This is the standard form of a BSDE. Its solution consists of a pair (Y ,Z )
of adapted processes. ξ is the terminal value and f is the generator.

Differential notation:

dYt = −f (t,Yt ,Zt)dt + ZtdWt , YT = ξ, t ∈ [0,T ].
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Applications of of BSDEs

Nonlinear expectations

Strategies for hedging problems

Risk measures representations

Utility maximization and optimal control

One-to-one relationship with a class of parabolic, quasilinear PDEs

Back to our problem!
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A BSDE Characterisation of Optimal Strategies
Controller-vs-stopper game approach:

Υπ
t := log (1− πtℓ) +

∫ t

0

(
Φs(πs)− Φs(π

M
s )
)
ds → martingale!

Υt depends on the path of rt , λt , σt ! ⇒ BSDE instead of ODE!

Proposition [Utility Crash Exposure BSDE, DMMSt2024+]

Assume that E
[∫ T

0
|rt |dt +

(∫ T

0
|λt |+ |σt |2dt

)2
]
<∞ (B2), λ, σ

FW -measurable, let ϱ be a stopping time with 0 ≤ ϱ ≤ T , π ∈ A. Then:

(i) π is an indifference strategy on [ϱ,T ] ∪ {∞} and, equivalently,

(ii) ∃ Z ∈ L2, such that (Y ,Z ) is on [ϱ,T ] a solution to the BSDE

dYt =

(
Φt

(1− e−Yt

ℓ

)
− Φt(π

M
t )

)
dt + ZtdWt , YT = 0,

where π = 1−e−Yt

ℓ and the utility crash exposure Y π of strategy
π ∈ A is defined by Y π

t := − log (1− πtℓ).
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Existence and Uniqueness

Theorems and corollaries (DMMSt2024+) that allow us to find Y and π:

Under the assumption (B exp) that for some ε > 0,

E
[∫ T

0
|rt |dt +

∫ T

0
exp(ε(|λt |+ |σ2

t |))dt
]
<∞, there is a unique pair

(Y ,Z ) ∈ L2 × L2 which solves the utility crash exposure BSDE.
Also, Y is (λ[0,t] ⊗ P-a.e.) nonnegative and bounded.

Under assumption (B exp) there is a unique indifference strategy π.

If π ≤ πM , then π is pre-crash optimal

In particular, this is the case if πM ≡ α is constant.
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Markovian Case – PDE-BSDE connection

Market model with σt = σ(zt), λt = λ(zt) where z is a factor process
whose evolution is governed by the SDE

dzt = µ(zt)dt + ς(zt)dBt .

Let πM be given by ψ(λ, σ) and let v ∈ C 1,2 be a solution to

0 =∂tv(t, x) + µ(x)∂xv(t, x) +
σ2x

2
∂xxv(t, x) + (Φt(ψ(λ(x), σ(x)))− rt)

− λ̄(x)
1− e−(v(t,x)∨0)

ℓ
+
σ(x)2

2

(
1− e−(v(t,x)∨0)

ℓ

)2

−
∫
[0,lmax]

log

(
1− 1− e−(v(t,x)∨0)

ℓ
l

)
ϑ(dl), v(T , x) = 0

Now suppose that Yt := v(t, zt) and Zt := ς(zt)∂xv(t, zt) are in L2.

Then (Y ,Z) is the unique L2-solution to the utility crash exposure BSDE.

Proof: Just apply Itô’s formula to Yt := v(t, zt).
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Now suppose that Yt := v(t, zt) and Zt := ς(zt)∂xv(t, zt) are in L2.

Then (Y ,Z) is the unique L2-solution to the utility crash exposure BSDE.

Proof: Just apply Itô’s formula to Yt := v(t, zt).
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Concrete Example: Heston and Bates Model

In Bates’ stochastic volatility model, the stock price evolves like

dSt = St−

[
(λ+ r)dt +

√
ztdWt −

∫
[0,lmax]

lν(dt, dl)

]
,

and the evolution of z with the corresponding specifications z = σ2,
σ(x) =

√
x is the Cox-Ingersoll-Ross (CIR) process given by

dzt = κ(θ − zt)dt + ς
√
ztdBt

where B is a second Brownian motion that can be correlated with W .
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∫
[0,lmax]

l

1− αl
ϑ(dl) = αzt +

∫
[0,lmax]

l

1− αl
ϑ(dl).

Then πM = α is constant.
In the pure Brownian case: appropriate means linear market price of risk
λt = αzt (see Kraft (2005)).

We have to solve the PDE

∂tv(t, x) + κ(θ − x)∂xv(t, x) +
ς2x

2
∂xxv(t, x) + (Φt(α)− rt)− λ̄(x)

1− e−(v(t,x)∨0)

ℓ

+
x

2

(
1− e−(v(t,x)∨0)

ℓ

)2

−
∫
[0,lmax]

log

(
1− 1− e−(v(t,x)∨0)

ℓ
l

)
ϑ(dl) = 0, v(T , x) = 0
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Concrete Example: Heston and Bates Model - CIR results

To ensure the correspondence Yt = v(t, zt), we need some growth,
continuity and moment properties of z (DMMSt2024+):

Let 2κθ
ς2 > 1

2 and z s(x) be the process satisfying

dz st (x) = κ(θ − z st (x))dt + ς
√

z st (x)dBt , z ss (x) = x , t ≥ s

Then for all p ≥ 2 there is a constant Mp such that

E
[
sups≤r≤t |z sr (x)− x |p

]
≤ Mp(t − s)(1 + |x |p)

E
[
sups≤r≤t |z sr (x)− z sr (x

′)− (x − x ′)|p
]
≤

Mp(t − s)(|x − x ′|p + |
√
x −

√
x ′|p)

Further, if the Feller condition 2κθ
ς2 > 1 is satisfied, then there is ε > 0

such that E[exp(εz st (x))] <∞ i.e. (B exp) is satisfied.
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Illustration: πBates (full paths) vs πBS (dashed)

Parameters: α = 2.5, θ = z0 = 0.014, κ = 3.99, ς = 0.27, ℓ = 0.5, T = 5
ϑ ≡ 0, λt = αzt
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Illustration: πBates (full paths) vs πBS (dashed)

Parameters: α = 2.5, θ = z0 = 0.014, κ = 3.99, ς = 0.27, ℓ = 0.5, T = 5
q = lmax = 0.2, ϑ = δq, λt = αzt +

q
1−αq
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Illustration: πBates (full paths) vs πBS (dashed)

Parameters: α = 2.5, θ = z0 = 0.014, κ = 3.99, ς = 0.27, ℓ = 0.5, T = 5
lmax = 0.2, ϑ(dl) = 1

l dl , λt = αzt − log(1−αlmax)
α
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Illustration: πHeston (full paths) vs πBS (dashed)

Parameters: α = 2.5, θ = z0 = 0.014, κ = 3.99, ς = 0.27, ℓ = 0.5, T = 5
ϑ(dl) = 0, λt = αθ, π ≰ πM ̸=const
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Illustration: πKim−Omberg (full paths) vs πBS (dashed)

Parameters: θ = z0 = 0.014, κ = 3.5, ς = 0.3, σ =
√
θ, ℓ = 0.5, T = 5

ϑ(dl) = 0, dλt = κ(θ − λt)dt + ςdWt , π ≰ πM ̸=const
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Perspectives

What happens if λ, σ are fully Lévy-dependent?

Jump (small crash) sizes governed by a process g(l) instead of
constant l .

What happens if π ≰ πM .

Find ways to treat other utility functions such as Power Utility (no
additive structure)!
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