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Introduction

SIRS Model (Kermack and McKendrick (1927))

Ṡ(t) = −βS(t) I(t)
N + ρR(t) Susceptible

İ(t) = βS(t) I(t)
N − γI(t) Infected

Ṙ(t) = γI(t) − ρR(t) Recovered

System of ODEs for X = (S, I, R)⊤ : Ẋ (t) = F (X (t))

Basic reproduction number R0 = β

γ

Effective reproduction number R(t) = β

γ

S(t)
N
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ODE Models: Properties and Limitations
Description and prediction of relative subpopulation sizes and

“average” absolute subpopulation sizes
for large total populations size N
No information about deviations from the average.
Interesting for absolute subpopulation sizes and models with

small and moderate total population size N,
small compartments such as hospitals, intensive care units (ICU).

ODE models do not address
uncertain parameters and initial conditions,
forecast uncertainties,
not directly observable subpopulation sizes
(partial information, statistical learning of dark figures, nowcast uncertainties).
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COVID-19 Model with Partial Information

I− Infected, non-detected I+ Infected, detected
R− Recovered, non-detected R+ Recovered, detected
S Susceptible H Hospitalized

U ICU
D Death

Charpentier et al. (2020), Meyer-Hermann et al. (2021)
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COVID-19 Model with Partial Information

I− Infected, non-detected I+ Infected, detected
R−

1 /R−
2 Recovered, non-detected/fading immunity R+

1 , . . . , R+
L Recovered, detected

S Susceptible H Hospitalized
U ICU
D Death
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COVID-19 Model with Hospital

I− Infected, non-detected I+ Infected, detected
R−

1 /R−
2 Recovered, non-detected/fading immunity R+

1 , . . . , R+
L Recovered, detected

S Susceptible H Hospitalized
C Intensive Care Unit
D Death
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COVID-19 Model with Hospital and Vaccination

I− Infected, non-detected I+ Infected, detected
R−

1 /R−
2 Recovered, non-detected/fading immunity R+

1 , . . . , R+
L Recovered, detected

S Susceptible H Hospitalized
C Intensive Care Unit
D Death
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COVID-19 Model with Hospital and Vaccination
I− Infected, non-detected I+ Infected, detected

R−
1 /R−

2 Recovered, non-detected/fading immunity R+
1 , . . . , R+

1 Recovered detected
S Susceptible H Hospitalized
V − Vaccinated, fading immunity C Intensive Care Unint

D Death
V1, . . . , VL Vaccinated

Parameters β, α, µ may be time-dependent and controlled
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Multi-Group Models
Models with several regions, age groups, vaccination states, . . .
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Microscopic Stochastic Epidemic Models

Similar to models of chemical reaction networks (Anderson, Kurtz (2011))

Divide population of size N into d compartments
Xi(t) ∈ {0, . . . , N} absolute size of subpopulation

in compartment i = 1, . . . , d

X i(t) = 1
N Xi(t) ∈ [0, 1] relative size of subpopulation

State X = X (t) = (X1, . . . , Xd)⊤ (or X = (X 1, . . . , Xd)⊤ )
Individuals may undergo K ∈ N transitions between compartments
Transition vectors ξk = ∆X (t) = X (t) − X (t−) ∈ Zd

if the transition k occurs at time t, k = 1, . . . , K ,
typical entries of ξk are −1, 0, +1

Counting processes Mk(t) : number of transition k in [0, t]

X (t) = X (0) +
K∑

k=1
ξkMk(t)
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Example: Stochastic SIRS Model

d = 3, X = (S, I, R)⊤, K = 3 transitions
k Transition Transition vectors ξk intensity λi(x)
1 Infection of susceptible (−1, 1, 0)⊤ βS I

N = βx1
x2
N

2 Recovering of infected ( 0, −1, 1)⊤ γI = γx2

3 Losing immunity ( 1, 0, −1)⊤ ρR = ρx3
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Microscopic Stochastic Epidemic Models (cont.)

Recall: XN(t) = XN(0) +
K∑

k=1
ξkMk(t) state for population of size N

Assume P(Mk(t + ∆t) − Mk(t) = 1|XN(t)) = λk(XN(t))∆t + o(∆t)
Describe counting processes Mk by independent Poisson processes

Continuous–Time Markov Chain (CTMC)

XN(t) = XN(0) +
K∑

k=1
ξk Πk

( ∫ t

0
λk(XN(s))ds

)

where Π1, . . . , ΠK are independent standard Poisson processes
State-dependent intensities λk = λk(XN(s)), for k = 1, · · · , K
Assume scaling property λk(x) = λN

k (x) = Nνk(N−1x)
where νk(z) is the intensity
in terms of relative subpopulation size z = N−1x
and independent of N

Intensities may depend on time: λk = λk(t, x)
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Macroscopic Models & Large Population Limit

Law of Large Numbers for Poisson Process∣∣∣ 1
N Π(Nu) − u

∣∣∣ −−−−→
N→∞

0 a.s., uniformly for all u ≤ u0

implies XN(t) −−−−→
N→∞

X∞(t) uniformly for all t ≤ T

X∞ satisfies ODE Anderson & Kurtz (2011), Britton & Pardoux (2018)

Large Population Limit for Relative Subpopulation Sizes

d
dt X∞(t) = F (t, X∞(t)) with F (t, z) =

K∑
k=1

ξkνk(t, z)
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Macroscopic Models & Diffusion Approximation
Central Limit Theorem for Poisson Process

1√
N

(Π(Nu) − Nu) ====⇒
N→∞

W (u) Brownian motion

Scaling property W
( ∫ t

0 a(s)ds
) d=

∫ t
0

√
a(s)dW (s)

Diffusion Approximation of X N and X N by SDEs
Absolute dXD(t) = F (t, XD(t))dt + σ(t, XD(t))dW (t)

Relative dXD(t) = F (t, XD(t))dt + 1√
N

σ(t, XD(t))dW (t)

with F (t, x) =
K∑

k=1
ξkλk(t, x), σ(t, x) = (ξ1

√
λ1(t, x), . . . , ξK

√
λK (t, x))

σ(t, z) = (ξ1
√

ν1(t, z), . . . , ξK
√

νK (t, z))

17



Macroscopic Models & Diffusion Approximation
Central Limit Theorem for Poisson Process

1√
N

(Π(Nu) − Nu) ====⇒
N→∞

W (u) Brownian motion

Scaling property W
( ∫ t

0 a(s)ds
) d=

∫ t
0

√
a(s)dW (s)

Diffusion Approximation of X N and X N by SDEs
Absolute dXD(t) = F (t, XD(t))dt + σ(t, XD(t))dW (t)

Relative dXD(t) = F (t, XD(t))dt + 1√
N

σ(t, XD(t))dW (t)

with F (t, x) =
K∑

k=1
ξkλk(t, x), σ(t, x) = (ξ1

√
λ1(t, x), . . . , ξK

√
λK (t, x))

σ(t, z) = (ξ1
√

ν1(t, z), . . . , ξK
√

νK (t, z))

18



Macroscopic Models & Diffusion Approximation
Central Limit Theorem for Poisson Process

1√
N

(Π(Nu) − Nu) ====⇒
N→∞

W (u) Brownian motion

Scaling property W
( ∫ t

0 a(s)ds
) d=

∫ t
0

√
a(s)dW (s)

Diffusion Approximation of X N and X N by SDEs
Absolute dXD(t) = F (t, XD(t))dt + σ(t, XD(t))dW (t)

Relative dXD(t) = F (t, XD(t))dt + 1√
N

σ(t, XD(t))dW (t)

with F (t, x) =
K∑

k=1
ξkλk(t, x), σ(t, x) = (ξ1

√
λ1(t, x), . . . , ξK

√
λK (t, x))

σ(t, z) = (ξ1
√

ν1(t, z), . . . , ξK
√

νK (t, z))

19



Macroscopic Models & Diffusion Approximation
Central Limit Theorem for Poisson Process

1√
N

(Π(Nu) − Nu) ====⇒
N→∞

W (u) Brownian motion

Scaling property W
( ∫ t

0 a(s)ds
) d=

∫ t
0

√
a(s)dW (s)

Diffusion Approximation of X N and X N by SDEs
Absolute dXD(t) = F (t, XD(t))dt + σ(t, XD(t))dW (t)

Relative dXD(t) = F (t, XD(t))dt + 1√
N

σ(t, XD(t))dW (t)

with F (t, x) =
K∑

k=1
ξkλk(t, x), σ(t, x) = (ξ1

√
λ1(t, x), . . . , ξK

√
λK (t, x))

σ(t, z) = (ξ1
√

ν1(t, z), . . . , ξK
√

νK (t, z))

20



Diffusion Approximation of COVID-19 Model

X =
(

Y
Z

)

dY = f (t, Y , Z )dt + σ(t, Y , Z )dW 1+g(t, Y , Z )dW 2 hidden state
dZ = [h0(t, Z ) + h1(t, Z )Y︸ ︷︷ ︸

linear in Y

]dt + ℓ(t, Y , Z )dW 2 observation

Coefficients f , σ, g , ℓ are non-linear in the hidden state Y
Time discretization, tn = n∆t, n = 0, 1, . . .

Yn+1 = Yn + f (n, Yn, Zn) + σ(n, Yn, Zn)E1
n+1 + g(n, Yn, Zn)E2

n+1

Zn+1 = Zn + [h0(n, Zn) + h1(n, Zn)Yn] + ℓ(n, Yn, Zn)E2
n+1

(E1
n ), (E2

n ) independent sequences of i.i.d. N (0,1) random vectors
Given the observations of Zn we want to estimate hidden state Yn
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Filtering Problem
Decompose state vector X = (Y , Z )⊤ into

Y: hidden (non-observable) state
Z: observation

Given observations Zk for k = 0, . . . , n and
F I

0 initial information about distribution of Y0

Mean-square optimal estimate of Yn given FZ
n = σ{Zk , k = 0, . . . , n} ∨ F I

0 is

Conditional Mean

Mn = E
[
Yn|FZ

n

]
Measure of estimation error

Conditional Covariance

Qn := Var(Yn|FZ
n ) = E[(Yn − Mn)(Yn − Mn)⊤|FZ

n ]

Initial estimates M0 = m0 = E[Y0|FZ
0 ] and

Q0 = q0 = Var(Y0|FZ
0 )
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Kalman Filter for Conditionally Gaussian Sequences

Yn+1 = [f0 + f1Yn] + σ E1
n+1 + g E2

n+1 hidden state/signal

Zn+1 = [h0 + h1Yn] + ℓ E2
n+1 observation

(E1
n ), (E2

n ) independent sequences of i.i.d. N (0,1) random vectors
Coefficients a = f0, f1, h0, h1, σ, g , ℓ are of the form a = a(n, Zn)

may depend on time n
and also on whole observation path Zn = (Zk)k≤n up to time n

Theorem (Liptser & Shiryaev (2001), Theorem 13.4)
Under technical assumptions the conditional distribution of Yn given FZ

n
is N (Mn, Qn) (Gaussian).
Mn and Qn are defined by the following recursions driven by the observations

Mn+1 = [f0 + f1Mn] +
[
gℓ⊤ + f1Qnh⊤

1
] [

ℓℓ⊤ + h1Qnh⊤
1

]+ [
Zn+1 −

(
h0 + h1Mn

)]
Qn+1 = −

[
gℓ⊤ + f1Qnh⊤

1
] [

ℓℓ⊤ + h1Qnh⊤
1

]+ [
gℓ⊤ + f1Qnh⊤

1
]⊤ + f1Qnf ⊤

1 + σσT

with initial values M0 = m0, Q0 = q0 and Y0 ∼ N (m0, q0).
( [A]+ denotes the pseudoinverse of A)

Note that all coefficients may depend on time n and the observation path Zn.
23



Extended Kalman Filter

Yn+1 = Yn + f (n, Yn, Zn) + σ(n, Yn, Zn)E1
n+1+g(n, Yn, Zn)E2

n+1

Zn+1 = Zn + [h0(n, Zn) + h1(n, Zn)Yn] + ℓ(n, Yn, Zn)E2
n+1

Drift coefficient f non-linear w.r.t. signal Y
Diffusion coefficients σ, g , ℓ may also depend on signal Y
Idea: Gelb (1974), Pardoux (1991), Bain, Crisan (2009)

1 Linearize drift coefficient f by Taylor expansion around a “suitable” Y n
2 Substitute signal Y by Y n in diffusion coefficients σ, g , ℓ

Approximation by Conditional Gaussian Sequences

Ỹn+1 = Ỹn + f (n, Y n, Z̃n) + ∂f
∂y (n, Y n, Z̃n)

(
Ỹn − Y n

)
+ σ(n, Y n, Z̃n)E1

n+1 + g(n, Y n, Z̃n)E2
n+1

Z̃n+1 = Z̃n + [h0(n, Z̃n) + h1(n, Z̃n)Ỹn] + ℓ(n, Y n, Z̃n)E2
n+1

3 Apply Kalman filter for conditional Gaussian sequences ⇝ (Mn, Qn)
Extended Kalman filter linearizes around current filter estimate: Y n = Mn.
For theoretical justification and error estimates see Picard (1991)
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Numerical Experiments

COVID-19 model with partial information

Calibrate model parameters to real-world data set for Germany
Time-depending β and α match daily basic reproduction numbers,

positive tests
T = 3 years from March 2020 to February 2023, ∆t = 1 day
Population size N = 100.000
Simulate hidden states and observations
Compute filter estimates of hidden states based on observations
Compare estimated and true values
−→ precision of the filter estimates
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Observations: Detected Infected
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Observations: Detected Infected & Recovered
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Observations: Hospital
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Observations: Vaccinated
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Hidden Signal Simulation: Non-Detected Infected I−
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Hidden Signal Estimation: Non-Detected Infected I−

31



Hidden Signal Estimation: Non-Detected Infected I−

Large initial uncertainty is reduced by learning from observations
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Impact of Initial Estimate & Effect of Learning

Red Large initial uncertainty is reduced by learning from observations
Green Small initial uncertainty is fading out by observation noise

33



Impact of Initial Estimate & Effect of Learning

Red Large initial uncertainty is reduced by learning from observations
Blue “Wrong” initial uncertainty needs long time to be corrected
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Optimal Control Problem
For containment of an epidemics decision makers (government)
try to influence the course of the epidemics by

1 Social distancing / lock-down with (relative) force u1 ∈ [0, 1],
reduces transmission rate from β to (1 − u1)β

2 Tests/Diagnosis with intensity u2 ≥ 0
3 Vaccination with intensity u3 ≥ 0,

These measures have financial or social costs.
Available capacities for testing and vaccination are limited.
Aim: cost-optimal containment of the epidemics

through an appropriate mix of measures
Decision-making problem under uncertainty about

future course of epidemics (forecasts),
current state of epidemics (nowcasts, dark numbers)
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Simplified Model
Model a disease with lifelong immunity after infection or vaccination
Example: measles
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Running and Terminal Cost
Running cost proportional to number x of “affected” individuals,
Penalties if capacity threshold x is exceeded
Ck : R2 → R+, (x , x) 7→ Ck(x , x)
increasing and convex functions w.r.t. x ,

Example: Ck(x , x) =

akx , x ≤ x
akx + bk(x − x)2, x > x

x = 0: quadratic, x → ∞: linear

Social distancing C1(u1X Work, 0), X Work = N − I+

(Lockdown) Charpentier et al. (2020)

Tests C2(u2X Test, xTest), X Test = N − I+ − R+

Vaccination C3(u3X Test, xVacc)
Penalties C±

4 (I±
Nt

, 0) for infected

Running cost Ψ(Xn, un) = C1 + C2 + C3 + C+
4 + C−

4

Terminal cost Φ(XNt ) = C+
T (I+

Nt
, 0) + C−

T (I−
Nt

, 0)
Penalties for infected at terminal time T = Nt∆t
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Performance Criterion
Expected Aggregated Cost: Full Information, X = (Y , Z )

J F (x ; u) = E
[ Nt −1∑

n=0
Ψ(Xn, un) + Φ(XNt )

∣∣∣X0 = x
]

Problem: X = (Y , Z ) depends on hidden state Y
Initial state X0 = x = (y , z) is not known
Decisions (control u) have to based on observable quantities Z only

Take conditional expectation w.r.t. FZ
0 (initial information)

E[J F (X0; u)|FZ
0 ] = E

[ Nt −1∑
n=0

Ψ((Yn, Zn)︸ ︷︷ ︸
=Xn

, un) + Φ(YNt , ZNt )
∣∣∣FZ

0

]
tower law

Fubini
= E

[ Nt −1∑
n=0

E
[
Ψ((Yn, Zn), un)

∣∣∣FZ
n

]
+ E

[
Φ(YNt , ZNt )

∣∣∣FZ
Nt

]∣∣∣FZ
0

]
For Ψ, Φ linear and quadratic in y conditional expectation E[. . . |FZ

n ]
can be expressed in terms of Extended Kalman filter (M, Q) for hidden state Y .
Recall: conditional distribution of Yn is Gaussian N (Mn, Qn)

Performance Criterion: Partial Information, X P = (M, Q, Z )

J (xP ; u) = E
[ Nt −1∑

n=0
ΨP(XP

n , un) + ΦP(XP
Nt

)
∣∣∣XP

0 = xP
]

38



Optimal Control Problem with Partial Information
Replace hidden state Y by filter (M, Q)
Rewrite dynamics of M and Z in terms of innovations process (En)
with En = ([ℓℓ⊤ + h1Qn−1h⊤

1 ]+)1/2(
Zn − (h0 + h1Mn−1)

)
,

(En) i.i.d. N (0,1) r.v.’s with FZ
n = FE

n ∨ F I
0 (Liptser, Shiryaev (2001))

Treat control problem as Markov decision process (MDP) with
state process XP = (M, Q, Z )⊤ taking values in state space X
dynamics XP

n+1 = T (n, XP
n , un, En+1) with transition operator T

and Gaussian transition kernel.

XP = (M, Q, Z ) is adapted to the observable filtration

FZ = (FZ
n )n≥0 with FZ

n = σ{Zk , k ≤ n} ∨ F I
0

Admissible controls
A =

{
(un)n=0,...,Nt−1 | FZ -adapted, integrability cond., Markov control un = ũ(n, XP

n ),
control constraints un ∈ U = [0, 1] × R2

+
}

Performance criterion for n = 0, . . . , Nt , x = (m, q, z)⊤ and u ∈ A

J(n, x ; u) = E
[ Nt−1∑

k=n
ΨP(XP

k , uk) + ΦP(XP
Nt )

∣∣∣XP
n = x

]

Optimization problem
Find u∗ ∈ A such that J(n, x ; u∗) = V (n, x) := inf

u∈A
J(n, x ; u)
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Solution Using Dynamic Programming

Bellman Equation / Dynamic Programming Equation

V (n, x) = inf
ν∈U

{
ΨP(x , ν) + En,x

[
V (n + 1, T (n, x , ν, En+1)︸ ︷︷ ︸

=XP
n+1

)
]}

, n = 0, 1, . . . , N − 1

V (Nt , x) = ΦP(x) (terminal condition)

. . . can be solved by backward recursion

Challenge Compute En,x
[
V (n + 1, T (n, x , ν, En+1))

]
at each time n for all x ∈ X !

No closed-form expressions of the expectation are available.
For high-dimensional state this becomes computationally intractable.
→ Curse of dimensionality
Simplified model: dimension of state XP = (M, Q, Z )⊤ is 7.

Remedies Apply quantization techniques as in Pagès (2015), Callegaro et al. (2017)
Model order reduction: PCA for covariance matrix Q
Q-Learning

...
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