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An intensity–duration–frequency (IDF) curve describes the relationship between rain-
fall intensity and duration for a given return period and location. Such curves are obtained
through frequency analysis of rainfall data and commonly used in infrastructure design,
flood protection, water management, and urban drainage systems. However, they are
typically available only in sparse locations. Data for other sites must be interpolated as
the need arises. This paper describes how extreme precipitation of several durations can
be interpolated to compute IDF curves on a large, sparse domain. In the absence of local
data, a reconstruction of the historical meteorology is used as a covariate for interpo-
lating extreme precipitation characteristics. This covariate is included in a hierarchical
Bayesian spatial model for extreme precipitations. This model is especially well suited
for a covariate gridded structure, thereby enabling fast and precise computations. As an
illustration, the methodology is used to construct IDF curves over Eastern Canada. An
extensive cross-validation study shows that at locations where data are available, the
proposed method generally improves on the current practice of Environment and Cli-
mate Change Canada which relies on a moment-based fit of the Gumbel extreme-value
distribution.
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1. INTRODUCTION

Reliable estimates of the frequency andmagnitude of extreme rainfall events are essential
for designing flood protection, water management, and urban drainage infrastructures such
as dams, reservoirs, and sewer systems.When sufficient data are available at a given gauging
station, extreme-value analysis techniques can be used to produce an estimate Q of the
T -year return level of rainfall accumulation, usually expressed in millimeters (mm), during
a period of D hours (h). To facilitate comparisons between durations, the accumulation Q
is typically converted to an hourly rate I = Q/D.

In hydrology and engineering, estimates of the intensity I of short-duration (5 min–24 h)
rainfall extremes are commonly used for the construction of intensity–duration–frequency
(IDF) curves, which summarize the relationship observed at a given location between dura-
tion D and mean intensity I of precipitation events characterized by the same return period
T ; see, e.g., Koutsoyiannis et al. (1998) for a review.

1.1. IDF CURVES

To illustrate the concept, Fig. 1 displays a log–log plot of six IDF curves derived from
data collected at the Pierre Elliott Trudeau International Airport in Montréal, QC. This
chart, released by Environment and Climate Change Canada (ECCC) in 2019, is based on

Figure 1. IDF curves for the Pierre Elliott Trudeau International Airport in Montréal, QC. Source: Environment
and Climate Change Canada (ECCC).
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pluviometric data recorded every 5 min using tipping bucket rain gauges at this site, which
was operational from 1943 to 2014, inclusively.

For each of nine durations identified on the x-axis, six crosses mark the estimated quan-
tiles of the rain intensity distribution corresponding to a return period of 2, 5, 10, 25, 50,
and 100 years, respectively. For example, this chart suggests that a D = 30 min rainfall of
I = 84mm/h occurs on average once every T = 100 years. In other words, an accumulation
of precipitation in excess of Q = 42 mm per half-hour is expected to occur on average once
in a hundred years.

As interpolation at intermediate durations is often necessary in practice, six regression
lines are superimposed in Fig. 1, each of which is based on the nine points corresponding
to a given return period. This choice of model is based on the stylized fact that, for short-
duration events, the relationship between I and D can be represented adequately by a power
law, viz.

I = A × DB, (1)

where B is the slope of the line on the log scale and A measures the intensity of a rain event
of unit duration (Sherman 1931; Koutsoyiannis et al. 1998). The regression line is intended
as a visual guide only. Confidence bands for each regression line on the log–log scale are
also available (not shown).

1.2. METHODOLOGICAL ISSUES

The predictive accuracy of an IDF curve depends critically on a set of assumptions, most
importantly the stationarity of the series of historical extreme rainfall observations, and
the statistical reliability of the quantile estimates Q from which the intensity values I are
obtained at any given gauging station. In their study of Canadian short-duration extreme
rainfall, Shephard et al. (2014) concluded to a general lack of a detectable trend signal, at
the 5% significance level, at any monitored site; however, they could identify upward and
downward patterns at some regional levels.

As for quantile estimation at its gauging stations, ECCC currently computes the accumu-
lation of precipitation over all periods of length D, and the annual maximum is recorded.
A Gumbel extreme-value distribution is then fitted to the series of annual maxima using the
method of moments, and an estimate of Q is provided by the upper quantile of level 1/T of
this fitted distribution (Hogg et al. 2015). A similar approach is used in various countries,
even though the appropriateness of Gumbel’s distribution in extreme rainfall modeling has
been questioned; see, e.g., Koutsoyiannis (2003).

Beyond the reliance of ECCC on Gumbel’s model, the sparsity of the Canadian meteoro-
logical station network is a major limitation which has long been identified by the Canadian
Standards Association; see, e.g., CSA (2012). While 596 weather stations have been oper-
ated in Canada for periods extending from 10 to more than 80 years, most of them are
located in the southern part of the country, where the population is concentrated.

Figure 2 shows the distribution of the stations located east of the Ontario–Manitoba
border.When predictions are needed at northern latitudes, wheremany dams, reservoirs, and
power transformation sites are located, the nearest meteorological station can sometimes be
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Figure 2. Distribution of ECCCweather stations in Eastern Canada. The color associatedwith each station reflects
the magnitude (in mm/h) of the 20-year return level of a 30-min rainfall, based on a Gumbel distribution.

quite far. In such cases, current engineer practice—often enforced by law, as in the province
of Québec—relies on data from the closest gauging station.

1.3. OBJECTIVES AND PLAN OF THE PAPER

This paper has a threefold objective:

(a) to propose a more flexible and realistic choice than Gumbel’s extreme-value distribu-
tion for the estimation of high quantiles of short-duration rainfall events at gauging
stations throughout Eastern Canada;

(b) to describe an efficient computational strategy for spatial interpolation and temporal
extrapolation throughout the domain while taking into account regional weather
patterns;

(c) to present an extensive comparison showing the benefits of the proposed approach
versus the engineering standard of using the IDF curve at the closest monitored
location, wherever it may be.

However, the traditional two-step approach of building IDF curves based on Eq. (1) is
not questioned. For ways to resolve inconsistencies that may arise from estimating high
quantiles separately at each duration, see, e.g., Koutsoyiannis et al. (1998), Lehmann et al.
(2016) or Ulrich et al. (2020).

To enhance the flexibility and realism of extreme rainfall modeling and estimation for
any given duration and location, it is proposed here tomodel annual rainfall maxima through
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a Generalized Extreme-Value (GEV) distribution with location μ ∈ R, scale σ ∈ (0,∞),
and shape parameter ξ ∈ R. Its distribution function is given, for all y ∈ R, by

Pr(Y ≤ y) =
{
exp[− exp{−(y − μ)/σ }] if ξ = 0,

exp
[
−{1 + ξ(y − μ)/σ)}−1/ξ

+
]
if ξ �= 0,

(2)

where x+ = max(0, x) for any x ∈ R. From the Fisher–Tippett–Gnedenko theorem,
this class of distributions includes all possible limits of properly normalized maxima of
a sequence of independent and identically distributed observations, including Gumbel’s
model corresponding to ξ = 0.

The parameters of the GEV distribution can all vary with duration and site but to take into
account both the local and global nature of precipitations, as well as possible trends over
time, the locationμ and scale σ at any given site are also modeled as a function of orography
and mean precipitation. Based on evidence described later in this paper, the shape parameter
ξ is assumed constant across the spatial domain for a given duration. This assumption, which
is fairly common in the literature, increases the reliability of this parameter estimate and
avoids unidentifiability issues.

To secure values of the covariates throughout the spatial domain, information about
the relief is derived from the Elevation Application Programming Interface from Natural
Resources Canada and a run of the 5th generation of the Canadian Regional Climate Model
(Martynov et al. 2013; Šeparović et al. 2013) is averaged over the period 1981–2014. The
results, which reproduce past climatology and daily precipitation data, are available on a fine
grid throughout the Canadian landmass. The use of such a synthetic covariate for extreme
rainfall modeling and interpolation is not new per se but constitutes a major advance over
ECCC’s current approach.

The model proposed in Sect. 3 enables information sharing across locations without the
need to delineate homogeneous areas through a regional frequency analysis before quantiles
at a given site can be estimated. The errors are governed by an isotropic Gaussian random
field so that the variability at any given site is more largely influenced by sites which are
nearby than by sites which are distant.

To ensure that uncertainty is quantified in a coherent manner, inference is conducted in
a Bayesian framework. As argued by Davison et al. (2012), Sebille et al. (2017) and Cao
and Li (2019), Bayesian hierarchical models are well suited for interpolation of marginal
characteristics such as return levels. Moreover, missing values and non-concomitant record
periods of different stations can be readily handled. According to these authors, Bayesian
hierarchical models also tend to be more robust than competing approaches based, e.g., on
extreme-value copulas or max-stable processes. For descriptions of these other modeling
strategies, see Joe (1994), Schlather (2002), Cooley et al. (2007), Reich and Shaby (2012),
and references therein.

The use of Bayesian modeling to estimate extreme precipitation is not new; see, e.g.,
Rohrbeck and Tawn (2021). Bayesian modeling of extreme precipitation simulated from
a climate model has also been considered, e.g., by Jalbert et al. (2017), Reich and Shaby
(2019), and Sharkey and Winter (2019). The model proposed here is different from those



466 J. Jalbert et al.

because it focuses on interpolating the observed precipitation at sites without observations
by relating the simulated extreme to the observed extreme precipitation.

One limitation of Bayesian hierarchical models is that they are not designed to generate
stationary max-stable spatial random fields of extreme precipitation. However, this is not
considered to be an issue in the present context, considering that IDF curves are used on a
site-by-site basis in applications. Moreover, given the paper’s focus on the interpolation of
annual maximum precipitation accumulations over a large spatial domain, the inter-duration
dependence present in IDF curve construction is not addressed.

For recent work on inter-duration dependence using max-stable processes, see, e.g., Le
et al. (2016) and Tyralis and Langousis (2019). See also Lehmann et al. (2016) for a Bayesian
approach for linking the GEV parameters at the data level between durations. Finally, for an
alternative way of deriving quantile estimates at an ungauged site by pooling information
from monitored sites with similar characteristics via quantile regression, see Ouali and
Cannon (2018) and references therein.

The ECCC data used here, which are public, are described in Sect. 2. Section 3 details the
construction of the Bayesian hierarchical model and its interpretation. As shown in Sect. 4,
this model not only allows for interpolation at ungauged locations but also improves esti-
mation at most monitored sites. Further comparisons are made in Sect. 5, where supporting
evidence for some model assumptions is presented. Challenges surrounding the construc-
tion of consistent IDF curves are mentioned in Sect. 6, where conclusions and avenues for
future research can also be found.

An Appendix provides a short overview of the computational approach and points to
a GitHub site where documented Julia code and the data are stored so that all results
presented herein can be reproduced easily.

2. DATA

Various sources of pluviometric data are available in Canada. The most abundant and
reliable source is Environment andClimateChangeCanada (ECCC),whose data are publicly
available and fulfill the quality standards set by the World Meteorological Organization. In
contrast, it is not unusual to find blatant errors in data collected by weather stations operated
by state utilities or the private sector such as Hydro-Québec or Rio Tinto.

Figure 2 shows ECCC’s network of weather stations in Eastern Canada. The number of
sites at which data are available varies slightly, e.g., from 329 to 336 for the 30 min and 24 h
duration, respectively. At each site, precipitations (in mm) are recorded every 5 min and are
available for a period ranging from 10 to 81 years. The oldest gauging station, located in the
capital, Ottawa, collected data from 1905 to 2011, with significant interruptions, e.g., from
1908 to 1934 and from 1939 to 1953. The annual maxima for the nine durations specified
on the x-axis of Fig. 1 are available directly at

https://climate.weather.gc.ca/prods_servs/engineering_e.html.

For each station and duration, the stationarity of the series of maxima was checked using
the standardMann–Kendall test at the 5%nominal level. For each duration, the proportion of

https://climate.weather.gc.ca/prods_servs/engineering_e.html
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Figure 3. Mean daily precipitation (in mm) from the Canadian Regional Climate Model CRCM5 driven by the
Era-Interim reanalysis, averaged from 1981 to 2014.

stations for which the null hypothesis of absence of a monotonic trend was rejected hovered
around 5%. Given the amount of data currently available, the overall stationarity assumption
appears to be sensible for all durations. These results are consistent with those of Shephard
et al. (2014) and Ouali and Cannon (2018).

As is commonly known, the main factors which influence precipitation are orography
(elevation) and local weather conditions. Preliminary analyses revealed that elevation above
sea level (in meters, m) is indeed an important predictor, and hence it was retained for
modeling purposes.

To emulate local weather conditions, one possibility would be to extract variables from
a reanalysis such as ERA5, the fifth generation of the atmospheric reanalyses of the global
climate released by the European Centre for Medium-Range Weather Forecasts. See

http://climate.copernicus.eu/products/climate-reanalysis

ERA5 combines vast amounts of observations into global estimates using advanced
model and data assimilation systems but the 30 × 30 km2 resolution of this reconstruction
was deemed too coarse for the purpose at hand.

As an alternative, it was decided to rely on a run of the 5th generation of the Canadian
Regional Climate Model (CRCM5) driven by the Era-Interim reanalysis (Martynov et al.
2013; Šeparović et al. 2013). The data, which were generated for the Northeastern part of
North America and archived at 3-h intervals (Bresson et al. 2017), are available on a regular
lattice with 90,000 grid cells, each of which corresponds to a 12 × 12 km2 parcel.

Analogously to Geirsson et al. (2015), the average daily precipitation over the period
1981–2014 was used as the spatial covariate. A heat map of this variable is shown in Fig. 3.
Once this variable was incorporated into the model, standard geophysical variables such as

http://climate.copernicus.eu/products/climate-reanalysis
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latitude, longitude, surface roughness, slope, aspect, and shortest distance from coast line
were found to be insignificant, as they were already accounted for in the CRCM5.

3. STATISTICAL MODEL

ABayesian hierarchical approach is proposed to interpolate extreme precipitation for any
specific duration. It is then applied independently to each and every duration. At the data
level, maxima are assumed to follow a GEV distribution, as described in Sect. 3.1. At the
second level of the hierarchy, considered in Sect. 3.2, the GEV parameters are assumed to
vary as a function of spatial covariates, which represent fixed effects, and a latent Gaussian
field modeling residual deviations that may be spatially correlated. An interpretation of
the model is given in Sect. 3.3 and the selected priors for the parameters are specified in
Sect. 3.4.

3.1. DATA LEVEL

As mentioned in Sect. 2, the covariates that were selected for the analysis are elevation
and weather conditions through a run of the CRCM5. However, the latter are not available
everywhere in the domain but rather on a high-resolution, regular lattice. It was thus resolved
to define themodel on the same fine grid, in contrast to the common approachwhich consists
of interpolating the gridded covariates; see, e.g., Dyrrdal et al. (2015) and Geirsson et al.
(2015). In addition to ensuring a simple correspondence between the covariates and the return
levels of extreme precipitation, this proposal yields substantial computational benefits, as
described in Sect. 4.1.

To justify defining the model on the same grid as the CRCM5 data, one must assume that
within a grid cell, the extreme precipitations are governed by the same GEV distribution
and hence lead to a unique return level. This assumption does not appear to be unduly
restrictive, given the high grid resolution of 12 × 12 km2. Data-based evidence in support
of this simplification is provided in Sect. 5.2.

LetV be the set of grid cells covering Eastern Canada; the size of this set is |V| = 48,694.
Further let S ⊂ V be the subset of grid cells containing at least one meteorological station,
e.g., |S| = 310 or |S| = 315 for the 30 min and 24 h duration, respectively. Indeed, some
grid points contain more than one station. In such cases, the series of maxima from the
station with the longest record was selected; when relevant, maxima of non-overlapping
years recorded at the other stations within the same grid cell were added.

While the above procedure ignores the relation between concurrent maxima for different
stationswithin the samegrid cell, this issue is negligible because of the small number of cases
involved. As the overlapping series of maxima are also very short (5–10 points), multivariate
extreme-value modeling of these concurrent maxima was not considered worthwhile.

For grid element i ∈ S where data are available, let Y i = (Yi1, . . . ,Yini ) be the series of
the ni annual maxima, which can be assumed to be mutually independent and identically
distributed in view of the stationarity of the precipitation series. From the classical Fisher–
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Tippett theorem, as described, e.g., by Coles (2001), the common marginal distribution of
these maxima is well approximated by a Generalized Extreme-Value (GEV) distribution
of the form (2) with location parameter μi ∈ R, scale parameter σi ∈ (0,∞), and shape
parameter ξ ∈ R, assumed constant across the spatial domain.

Evidence in support of a common shape parameter ξ is presented in Sect. 5.4. This
assumption makes it possible to obtain a reliable estimation of this critical parameter and
circumvents the identifiability issues that can occur when all GEV parameters are spatially
varying. If ξ < 0, then Yi j has a Weibull distribution which is bounded above, i.e., Yi j <

μi − σi/ξ with probability 1 for every j ∈ {1, . . . , ni }. When ξ = 0, the distribution of Yi j
is Gumbel and its right tail decays exponentially. If ξ > 0, then Yi j has a Fréchet distribution
and its right tail decays only polynomially.

3.2. SPATIAL MODEL

Let x be the design matrix of covariates defined on the complete set V of grid cells. It is
assumed that for each site i ∈ V with (column) vector xi of covariate values,

μi = x�
i βμ +Ui , φi = ln(σi ) = x�

i βφ + Vi , (3)

where βμ and βφ are regression coefficients whileUi and Vi are independent spatial effects
defined on the complete set of grid cells. This choice is consistent with evidence that μi

is proportional to the mean annual precipitation at site i (Benestad et al. 2012; Geirsson
et al. 2015). Because extreme precipitation data are often such that the scale parameter is
proportional to the location parameter, one could also have used ln(x) as an explanatory
variable for ln(σi ) but in the present context, this made no substantial difference in terms of
prediction.

In Model (3), the error between the overall regression and the true value is assumed to
be spatially dependent. The GEV parameters of a given grid cell are therefore influenced
by the regression residuals of its neighbors.

That the model was defined on a grid has the added benefit that the spatial effect can be
captured by a Gaussian Markov random field (GMRF). Such models have a consistent set
of conditional distributions that are both jointly (and conditionally) Gaussian with a sparse
precision matrix; see, e.g., Rue and Held (2005). These models are also computationally
convenient because the Markov property implies that at any site i ∈ V , the conditional
distributions of μi and σi only depend on the neighboring sites.

Because the precision matrix of GMRFs must be positive definite, the range of site-
to-site marginal correlations is limited (Besag and Kooperberg 1995). As these bounds
were too narrow for the high-resolution grid considered here, it was necessary to resort to
intrinsic Gaussian Markov random fields (iGMRFs). The latter models have an improper
joint distribution because the corresponding precision matrix is not of full rank, but this
feature is not problematic as long as the posterior distribution is proper.
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The class of iGMRFs scales a pre-defined structure matrixW for the graph configuration;
see Rue and Held (2005). The improper joint distribution is given by

f(U |κu)(u) ∝ κ
(m−r)/2
u exp

( − κuu�Wu/2
)
,

where κu is the precision parameter, m = Card(V) is the total number of grid cells, and r
corresponds to the rank deficiency of the structure matrix W . Taking a constant precision
parameter κu amounts to assuming that the spatial dependence is invariant across the spatial
domain, i.e., the dependence between two grid cells does not depend on their location but
only on their relative position.

In iGMRFs, the coarseness of the field is controlled by both the precision parameter κu

and the dependence pattern of the structure matrix, which specifies the number of neighbors
and their weights. For each i ∈ V , the conditional distribution of Ui given all the other grid
cells is given by

f(Ui |U−i=u−i )(ui ) = N [
ui | ūi , 1/(κuWii )

]
,

where N (u | ν, φ2) denotes the Gaussian density with mean ν and variance φ2 evaluated
at u, and where

ūi = − 1

Wii

∑
j �=i

Wi j u j .

A similar expression holds for Vi .
In the present context, two pre-definedmatrix structuresW were considered which corre-

spond to the first- and second-order iGMRF. In the first-order iGMRF, the precision matrix
has rank deficiency 1 while for the second-order iGMRF, the rank deficiency is 3.

Second-order iGMRFs are much smoother than first-order iGMRFs. It is also shown by
Rue and Held (2005) that

(a) the first-order iGRMF is invariant to the inclusion of an overall constant and the
second-order iGMRF is invariant to that of a plane;

(b) first-order iGMRFs approximate the two-dimensional Brownian motion while
second-order iGMRFs approximate the thin plate spline.

In comparing first- and second-order iGMRFs, Paciorek (2013) found that the former
are preferable for capturing small-scale variation while the latter are more apt at describing
large-scale variation.

In the final analysis, a first-order iGRMF was selected on the basis of the predictive
power revealed through the cross-validation study described in Sect. 4. Therefore, it can be
safely assumed that the synthetic covariate removes the large-scale variation and that the
first-order iGMRF suitably models the small-scale residuals between the covariates and the
parameters.
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3.3. MODEL INTERPRETATION

For any grid point i ∈ S, i.e., containing a meteorological station, the conditional distri-
bution of the location parameter is given by

f(μi |−)(μi ) ∝
ni∏
j=1

GEV(yi j | μi , e
φi , ξ) × N

[
μi | μ̄i , (κuWii )

−1
]

while the conditional distribution of the scale parameter is given by

f(φi |−)(φi ) ∝
ni∏
j=1

GEV(yi j | μi , e
φi , ξ) × N

[
φi | φ̄i , (κvWii )

−1
]
,

where ni is a number of observations available at grid point i , and where

μ̄i = x�
i βμ − 1

Wii

∑
j �=i

Wi j u j , φ̄i = x�
i βφ − 1

Wii

∑
j �=i

Wi jv j .

See Sect. 5.3 for some discussion concerning the conditional independence assumption.
In the expression for f(μi |−), the first factor is the likelihood while the second represents
the spatial prior for μi . The Bayesian estimate is thus a compromise between the spatial
information and the local features imparted by the data. A similar interpretation holds for
f(φi |−).
In the spatial prior distribution for μi , the marginal mean x�

i βμ is corrected by the error
surrounding grid point i . For example, if the linear relationship x�

i βμ overestimates μi for
the region around grid point i , then ui = x�

i βμ − μi is negative to account for the regional
effect in the regression.

Similar approaches were adopted by Dyrrdal et al. (2015) and Geirsson et al. (2015) but
they used a continuous Gaussian model even though their explanatory variables lay on a
grid in the latent layer. In contrast to Geirsson et al. (2015), an unstructured error term was
not added here to the latent layer as the Gaussian Markov random field was deemed flexible
enough to model the error between the covariates and the GEV parameters. In modeling the
simulated precipitation maxima by a climate model, Cooley and Sain (2010) did include an
unstructured random error in a Gaussian Markov random field at the process layer, but their
approach was not developed for interpolation of extreme characteristics.

3.4. PRIOR AND HYPERPRIOR DISTRIBUTIONS

Relatively vague proper prior gamma distributions were assigned to the hyperparameters
κu and κv , viz.

fκu (κu) = G(κu | 1, 1/100), fκv (κv) = G(κv | 1, 1/100),
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where G(·|α, β) denotes the Gamma density with mean α/β and variance α/β2. Note,
however, that the posterior is relatively insensitive to this prior choice given the large number
of grid cells.

For the GEV shape parameter ξ , the Beta prior proposed byMartins and Stedinger (2000)
was adopted, viz.

fξ (ξ) = B(ξ + .5 | 6, 9).

In this prior, which is commonly used for precipitation data, the shape parameter ξ is
restricted to the interval [−0.5, 0.5]. A constant improper prior would also be adequate.
However, the posterior distribution is not sensitive to this choice either, given the large
number of combined stations to estimate this parameter.

For the regression parameters βμ and βφ , constant improper distributions were used as
hyperpriors, viz.

fβμ
(βμ) ∝ 1, fβφ

(βφ) ∝ 1.

While informative or vaguely hyperpriors would also be possible, the posterior distribution
is once again insensitive to this choice because of the large number of stations that were
combined to estimate these parameters.

4. MAIN RESULTS

The model was implemented in Julia. The code is available on the public repository
GitHubwith a copy of the data and detailed documentation, as described in the Appendix.

4.1. COMPUTATIONAL DETAILS

An overview of the computational approach is given in the Appendix. As stated there,
a posterior sample of size 10,000 for the parameters of the model was obtained via Gibbs
sampling with 215,000 iterations, including a warm-up of size 15,000 and 95% thinning of
the rest.

The time needed to generate a sample from the posterior distribution is short considering
the large number of grid cells: it takes about 10 min to perform 100,000 MCMC iterations
on a personal laptop (Intel Core i7, 2.7 GHz). The gridded structure facilitates the use of
Gaussian Markov random fields, which yields substantial computational benefits. Thanks
to the conditional independence assumption, the parameters of half the grid points can be
updated simultaneously (i.e., in parallel) in the MCMC procedure.

In the first-order Gaussian Markov random field, a point, knowing its four neighbors in
the cardinal directions, is independent of the other points. The conditionally independent
points can be updated in a single step in the Gibbs sampling scheme, as first described by
Besag (1974) and used, e.g., by Jalbert et al. (2017) to reduce the computation time in a
latent variable model. No additional feature (e.g., an integrated Laplace approximation) is
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Figure 4. Trace of the shape parameter ξ for the first 500 iterations of theGibbs sampling algorithm after warm-up.

needed to speed up the algorithm. Moreover, very efficient routines for sampling a GMRF
or evaluating the density are available.

Figure 4 shows the trace of the shape parameter ξ for the first 500 iterations of the
Gibbs sampling algorithm after warm-up. Traces for all other components of the vector
(μ,φ, ξ,βμ,βφ, κu, κv) with μ = (μi : i ∈ V) and φ = (φi : i ∈ V) show similar
stationary behavior.

The 10,000 observations in the posterior sample allow for the computation of credibility
intervals for any return level and are the source of the credibility bands appearing in the
QQ-plots of Figs. 8 and 9 in Sect. 4.2.

The diagnostic of Gelman and Rubin (1992) and Brooks and Gelman (1998) was com-
puted for the model parameters βμ, βφ , κμ, κφ , ξ ,μi , and φi at all grid cells i ∈ S containing
a station. As a rule of thumb, convergence is rejected if the 97.5th centile of the potential
scale reduction factor is greater than 1.2. In the present case, this never occurred. The maxi-
mum value was 1.152 and it corresponds to the log-scale factor of Station i = 122 (Quaqtaq,
QC). According to this diagnostic, the chain reaches its stationary state after approximately
1000 iterations.

The diagnostic of Raftery and Lewis (1992a,b) was also run. It assesses the number of
autocorrelated samples required to estimate a specified parameter quantile θq of order q with
a given accuracy r , viz. Pr(θq − r < θ̂q < θq + r) = 0.95, where θ̂q is the estimate of θq .
The diagnostic for each model parameter was computed using q = 0.025 and r = 0.005.

In the absence of autocorrelation, only 3746 iterations would be needed to reach the set
precision for all parameters. With strong autocorrelation, however, this is not enough. In
particular for κu and κv , about a million iterations are needed to reach the desired precision.
For the other parameters, the required number of iterations hovers around 100,000. Since



474 J. Jalbert et al.

interest centers not on κu and κv but rather on the GEV parameters at each grid cell, it can
be argued that 215,000 iterations suffice for the purpose at hand.

4.2. COMPARISONS WITH THE NEAREST-NEIGHBOR APPROACH

It is clear from Fig. 4 that the shape parameter is strictly positive in all cases. Therefore,
a two-sided credible interval would exclude the case ξ = 0. This is in sharp contrast to the
current modeling strategy of ECCC which, as described in Sect. 1.2, assumes independent
Gumbel extreme-value distributions and hence ξ = 0 at all stations.

The computational efficiency of the code resulting from the discretization of the latent
field on the same lattice as the covariate makes it feasible to compare the proposed
approach with alternative imputation methods through various diagnostic tools based on
cross-validation.

In the absence of a local IDF curve, the engineering standard in many Canadian juris-
dictions consists of relying on the nearest station, as this is deemed to be the station whose
characteristics are most likely to resemble that of the site of interest. In Québec, for instance,
this is the standard imposed by the Ministère de l’Environnement et de la Lutte contre les
changements climatiques to ensure the legal compliance of stormwater management sys-
tems as per Section 22 of Order in Council 871–2020, August 19, 2020; see Gouvernement
du Québec (2020).

For each given duration, the quality of the probabilistic forecasts of extreme precipitations
was assessed using a leave-one-out cross-validation at each of the grid cells in S containing
at least one station. For each i ∈ S, let (μ−ik, σ−ik, ξ−ik) denote the GEV parameters at
iteration k of the MCMC procedure without using the data in grid cell i . A Monte Carlo
estimate of F̂i which encompasses parameter uncertainty was obtained by averaging the
GEV distributions with parameters (μik, σik, ξik) with k ∈ {1, . . . , 10,000}. The index i on
the shape parameter accounts for the possibility that its value changes when the observations
from Station i are discarded.

The quality of the predictive distribution F̂i can then be assessed with a Cramér–von
Mises statistic measuring the (squared) distance between the predictive distribution F̂ik for
grid cell i at MCMC iteration k and the empirical distribution function Fi of the maxima
recorded at grid cell i , viz.

ω̂ik =
∫ ∣∣F̂ik(y) − Fi (y)

∣∣2 dFi (y).
A mean score ω̂i is then obtained by averaging over all iterates.

The L2 distance associated with the Cramér–von Mises statistic was preferred here to
the L1 distance corresponding to the Kolmogorov–Smirnov analog, as the former is widely
known to be more powerful than the latter. The use of Anderson–Darling or other statistics
emphasizing goodness of fit in the tails was also deemed unnecessary as the distributions
of interest already pertain to annual precipitation maxima.

The coefficient ω̂i is a squared distance between the two distributions: the smaller it is, the
better is the fit between them. For comparison with the current nearest-neighbor approach
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Table 1. For each given duration, the table gives the percentage of values of �̄i which are strictly positive and
the median of the set {100 × �̄i : i ∈ S}

Duration 5 min 10 min 15 min 30 min 1 h

Proportion 72% 74% 75% 77% 77%
Median 52% 57% 57% 61% 60%

Duration 1 h 2 h 6 h 12 h 24 h

Proportion 77% 77% 80% 78% 72%
Median 60% 57% 56% 51% 52%

based on the ECCC curves, one can also compute, for each i ∈ S,

ω̄i =
∫ ∣∣F̄i (y) − Fi (y)

∣∣2 dFi (y),
i.e., the squared distance between Fi and the (Gumbel) IDF curve F̄i for the meteorological
station which is closest to location i . The ratios

�̄i = (ω̄i − ω̂i )/ω̄i , �̂i = (ω̂i − ω̄i )/ω̂i

give measures of the relative performance of the two methods.
The proposed method is preferable to the standard whenever �̄i > 0 or �̂i < 0. In �̄i ,

the size of the improvement is taken with respect to the current approach, and hence limited
above by 1. In �̂i , the reference point is the new method, so that one can better assess the
relative loss induced by the use of the current nearest-neighbor approach favored by ECCC.

Table 1 reports, for each duration, the proportion of the grid cells for which �̄i > 0 and
the median of the set {100 × �̄i : i ∈ S}. The proportion of stations at which the proposed
method improves over the current practice hovers around 75%. The median distance to the
empirical distribution function Fi of the maxima at grid cell i is also cut in half.

Additional insight into the performance of the proposed method is provided by Fig. 5,
which pertains to a 30-min duration. The plot shows the values of �̄i (left) and �̂i (right)
for i ∈ S as a function of the distance (in km) as the crow flies between Station i and the
closest neighboring station, whose data were used in computing ω̄i . In both graphs, about
75% of the points are red; they correspond to stations where the proposed method performs
better than the nearest-neighbor imputation approach.

Note the widely different scales of the two graphs in Fig. 5: while negative values of �̄i

range from 0 to −12, negative values of �̂i range from 0 to −180. Thus, when the proposed
approach does worse than the ECCC nearest-neighbor approach, i.e., the deterioration �̄i ∈
(−12, 0) is generally small, while the gain−�̂i ∈ (0, 180) accrued over the current method
is often quite large. There is thus an order ofmagnitudemore to gain in favoring the proposed
approach over ECCC’s nearest-neighbor technique.

Figures 6 and 7 show the values of �̄i for i ∈ S for a 30-min and 24-h duration,
respectively. About 75%of dots are red; they represent grid cells where an improvement over
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Figure 5. Values of �̄i (left) or �̂i (right) for i ∈ S as a function of the log10 distance from Station i to its closest
neighbor for a 30-min duration. The red dots indicate the stations where the proposed method performs better than
the nearest-neighbor method and the blue dots indicate the opposite.
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Figure 6. Values of �̄i for i ∈ S for a 30-min duration.

the current methodology occurred. The blue dots are those where the current methodology
led to a smaller value of �̄i .

In Figs. 6 and 7, the blue dots are widely scattered and occur mostly in areas with mul-
tiple meteorological stations. The new approach can be seen to perform very well overall,
especially where stations are few and far between. In some cases, it improves the interpo-
lation for one duration but worsens the other. To solve this issue, one would need to model
inter-duration dependence. Happily, there is no station at which the new method worsens
the interpolation for all durations.
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Figure 7. Values of �̄i for i ∈ S for a 24-h duration.

Figure 8. QQ-plot of Fi versus F̄i (left) or versus F̂i (right) for a 30-min duration at grid cell 271, Charlottetown
Station, Prince Edward Island.

As a complement of information, the QQ-plots in Figs. 8 and 9 show the fit of F̄i (left)
and F̂i (right) for a 30-min duration at two grid cells corresponding to the smallest and
largest values of �̄i , respectively.

Additional evidence in favor of the new approach is given by Fig. 10, which shows IDF
curves for the Pierre Elliott Trudeau International Airport in Montréal, QC, based on the
proposed model and data from all grid cells except the airport. In comparison with Fig. 1,
which is the current reference for this location, one can see that information pooling across



478 J. Jalbert et al.

Figure 9. QQ-plot of Fi versus F̄i (left) or versus F̂i (right) for a 30-min duration at grid cell 243, Lac Témis-
camingue Dam Station, Québec-Ontario border.
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Figure 10. IDF curve for the International Airport in Montréal, QC, based on the proposed model and data from
all grid cells except the airport.

locations yields estimates of high quantiles, and hence IDF curves, that are quite consistent
across durations.

Finally, Fig. 11 shows the 25-year return levels for all grid points in the spatial domain.
At most grid cells, no data are available but when there are, they dominate when they are
inconsistent with the covariate, as captured by a dot effect on themap. It is also obvious from



Interpolation of Precipitation Extremes on a Large Domain 479

30

40

50

60

70

80

90

Figure 11. Spatial variation over all grid cells of the model’s estimate of the 25-year return level intensity (in
mm/h) for a 30-min duration.

this map that the bias between the observations and the covariate is smoothly interpolated
in the surrounding grid cells until it disappears once the station effect vanishes.

5. ADDITIONAL MODEL COMPARISONS AND VALIDATION

This section reports additional proof of the good performance of the new model, as well
as evidence in support of some of its underlying assumptions.

5.1. COMPARISON WITH OTHER MODELS

The current approach used by ECCC is simplistic in the sense that the GEV shape param-
eter is taken to be zero. Therefore, the superior performance of the proposed model may not
come as a surprise. As additional evidence in favor of the proposal, the new methodology
was thus compared to two more sophisticated approaches involving

I. a GEV distribution independent at each site;

II. a GEV distribution at each site, but with a common and unknown ξ .

Model I and Model II were implemented. Because there are very few observations for
some of the stations, the constraint ξi ∈ (−0.5, 0.5) was imposed for the shape parameter
at every site i ∈ S in Model I to ensure that the maximum likelihood procedure converges.

Judging from the Bayesian Information Criterion (BIC), Model II with a common
unknown shape parameter is preferable to Model I with a free shape parameter at each sta-
tion. For the 24 h duration for instance, the BIC for Model II is −37,944 against −36,708
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for Model I. The common shape parameter estimate is ξ̂ML = 0.0856, which suggests
heavy-tailedness. With the proposed spatial model, the common shape parameter estimate
is lower, ξ̂ = 0.0788, but the 95% credible interval (0.0597, 0.0981) includes ξ̂ML.

Although Model II with an unknown common shape parameter provides a better fit than
the Gumbel distribution, naive interpolation at a given site by taking the GEV parameters
of the nearest station is worse than the approach using the Gumbel model. In 54% of the
stations in the cross-validation analysis, the method using the GEV distribution with ξ̂ML

increases the Cramér–von Mises distance compared to the Gumbel model, suggesting an
erosion in the fit between the interpolated model and the data.

A possible explanation for this phenomenon is that the naive interpolation method taking
the parameters of the nearest station is inadequate over such a large territory, no matter what
model is used. When the observation network is dense, this method can be advantageous,
e.g., in densely populated regions, but a genuine spatial model is otherwise required.

The proposed spatial model was also compared to a Bayesian hierarchical model without
the iGMRF component accounting for the error between the covariate and the weather
stations. The assumption was that the spatial covariate could be sufficiently informative to
carry all the spatial information. This model assuming independent errors at the process
level increases the Cramér–vonMises criterion for 50.2% of the stations. It is nevertheless a
relatively good model even if the improvement is on half of the stations. Indeed, the size of
each improvement is important: the difference between ω̂i and ω̄i is large for many stations.
The model is easy to interpret and quick to fit. However, the spatial model with the iGMRF
term remains preferable.

5.2. EXTREME-VALUE HOMOGENEITY WITHIN A GRID CELL

The proposed model assumes constant GEV parameters within each 12 × 12 km2 grid
cell. This assumption was checked independently for all durations and grid cells having
more than one station. For the 30-min duration, there are eight grid cells with two stations,
five with three stations, and one with four stations. In each case, a model based on a single
GEV distribution for the pooled annual maxima of all stations in the grid cell was compared
with a model using different sets of GEV parameters per station. For all durations and
grid cells, the model with a single GEV distribution was favored by the BIC, in support of
the homogeneity assumption.

One drawback of assuming that the GEV parameters are the same for precipitation inside
a 12×12 km2 is that the parameters are then discontinuous at the edges. In the present case,
the transition turned out to be quite smooth compared to the Thiessen polygon interpolation
method currently used at ECCC, which can induce abrupt changes at the edges. While
the use of a continuous model in the latent layer would fix this issue, it would lead to a
major loss in computational efficiency. Additionally, the gridded covariate would have to
be interpolated, too.

5.3. CONDITIONAL INDEPENDENCE ASSUMPTION

The proposed model also assumes conditional independence at the data level. This
assumption can be violated when for example a single intense rain event affects several
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weather stations. While this may not unduly affect point estimates of marginal return levels
as shown by, e.g., Davison et al. (2012), it can still have a strong effect on the associated
credible intervals.

In a frequentist framework, Smith (1990) used a misspecified likelihood to tackle spatial
dependence. He assumed that the maximum likelihood estimator θ̂ of the parameter vector
θ is asymptotically Gaussian, viz.

θ̂ ≈ N
(

θ ,
1

n
H−1V H−1

)
,

where n is the number of observations and H−1V H−1 is the modified covariance matrix
under model misspecification. Here,

H = E

{
− ∂2

∂θ2
ln f(Y |θ)( y)

}

is the information matrix and V to the covariance matrix

V = cov

{
∂

∂θ
ln f(Y |θ)( y)

}
.

Under independence, H = V and the asymptotic variance of maximum likelihood estima-
tors is recovered. In the dependent case, the point estimates remain the same but the sample
variance is larger. A similar approachwas used by Fawcett andWalshaw (2007) for temporal
dependence.

In a Bayesian framework, Ribatet et al. (2012) proposed to inflate the posterior vari-
ance under the misspecification of conditional independence by raising the misspecified
likelihood f(Y |θ)( y) to the power k ∈ (0, 1]. The parameter estimates are unchanged but
the posterior variance increases by 1/k. The same authors proposed a method to estimate
k using the eigenvalues of the matrix H−1V . Sharkey and Winter (2019) used a similar
approach for modeling the spatio-temporal dependence. They found that the standard devi-
ation of parameter estimates increases by up to 20%comparedwith theirmisspecified spatial
model.

In the present framework, the approach of Ribatet et al. (2012) or Sharkey and Winter
(2019) could be adapted to relax the conditional independence assumption and obtain a
more accurate posterior distribution variance. However, this would affect the computational
efficiency of the model. Also, when it comes to IDF curves, the marginal estimates are the
quantities of interest to engineers, who use safety factors anyway. It is nevertheless important
to stress that the credibility intervals derived from the proposed approach are likely shorter
than they should be.

5.4. SPATIALLY INVARIANT SHAPE PARAMETER ASSUMPTION

A third important ingredient of the proposed approach is the assumption that for a given
duration, the shape parameter of the GEV distribution does not vary across space. To assess
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the plausibility of this condition, an attempt was made to model ξ using an iGMRF compo-
nent with an informative prior to avoid unreasonable shape parameter values. Unfortunately,
it proved impossible to fit this model as such, perhaps due to identifiability issues.

As an alternative, an exploratory analysis was conducted in which maximum likelihood
estimates of the shape parameter were obtained independently at each station. These esti-
mates did not exhibit any sign of spatial correlation. While this finding is not surprising in
view of the large uncertainty on this parameter, it is consistent with the assumption that the
shape parameter is spatially invariant.

6. CONCLUSION

In this paper, a Bayesian hierarchical model was proposed for interpolating GEV param-
eters in a large spatial domain. Although its implementation was described in a Canadian
pluviometric context, it could easily be adapted to other regions and variables, given that the
spatial model is formulated in terms of departures from fixed effects derived from a climate
reconstruction.

While the general approach used is not new per se, the context to which it is applied
is definitely novel, and an application to such a large domain does not seem to have been
attempted before. In Québec, the model’s excellent performance, coupled with the avail-
ability of open-source Julia code which is easily understandable and well documented,
has recently led to its adoption by Hydro-Québec and the Ministère de l’Environnement et
de la Lutte contre les changements climatiques as a new engineering standard.

The key features of the approach described herein are as follows:

(a) the discretization of the latent Gaussian field on the same lattice as the covariate to
enable efficient and precise computation;

(b) the avoidance of an unstructured error term through a first-order iGMRFwhich allows
for random deviations from the expected level;

(c) a quality assessment of spatial interpolations via cross-validation.

In the cross-validation framework, the new approach improves the quantile prediction
for a vast majority of stations. Enhancement on current practice in 100% of cases would
clearly be desirable but it is an unreasonable expectation. The chances are approximately
3 to 1 that the proposed method provides a better estimate that the old one, and that the
improvements are large; in contrast, the deterioration is small when it occurs. Overall, the
new approach marks a substantial advance over current ECCC practice.

In future work, two of the assumptions of the modeling approach presented here could
possibly be relaxed.

First, improper, and hence marginally uninformative, priors were chosen for the location
and log-scale parameters μ and φ. Given the wealth of data available, it did not seem
worthwhile to try and elicit more specific prior distributions that could account, e.g., for
dependence between these two spatial priors. Such dependence is incorporated into the
posterior distribution via the likelihood, on which the posterior distribution is largely based.
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In other applications, however, it might be beneficial to introduce prior dependence between
the GEV parameters, e.g., as done by Cooley and Sain (2010).

Second, it was assumed that the marginal GEV distributions share the same shape param-
eter, ξ . This common assumption avoids unidentifiability issues (Davison et al. 2012). Here,
ξ was estimated from data, which already represents a vast improvement over the current
methodology employed by Environment and Climate Change Canada, which fixes ξ = 0.

By allowing ξ to depend on covariates, one might possibly alleviate the identifiability
issue. This option was considered, e.g., by Dyrrdal et al. (2015), Geirsson et al. (2015), and
Lehmann et al. (2016) for the analysis of extreme rainfall in Norway, Iceland, and Australia,
respectively. In all cases, however, the assumption that ξ is spatially invariant could not be
rejected. Therefore, the benefits of such an extension are likely to be limited.

Finally, one aspect of this work that could definitely be improved pertains to the con-
struction of IDF curves per se, based on the high-quantile estimates derived from the model
for different durations. First, as already mentioned in the Introduction, the linear relation (1)
between intensity and duration on the logarithmic scale was not questioned. While it did
seem to provide a good fit, as portrayed in Fig. 10, more complex relations could be envis-
aged. Specifically, Koutsoyiannis et al. (1998) showed that all commonly observed empirical
relations can be expressed in the form

I = A × (Dν + θ)B, (4)

where θ ∈ [0,∞) and νB ≤ −1.
Second, and more importantly, given that GEV distributions were fitted separately for

a certain number of durations, a potential problem is that the estimated return level curves
might not be consistent with each other. For example, if the shape parameter ξ is estimated
to be larger for shorter durations, then the corresponding return level curves might cross
each other as the return period increases, thereby leading to inconsistent results.

While these consistency issues did not occur for the durations and return periods con-
sidered in this particular analysis, they might arise in other contexts. Different ways of
dealing with the problem were considered, e.g., by Lehmann et al. (2016) and Ulrich et al.
(2020). For example, the latter proposed to incorporate relation (4) as a constraint in the
model. However, their work assumes that the shape parameter is constant over all durations,
whereas it varied between 0.0198 and 0.1105 for the ECCC data. Fitting regression curves
simultaneously with order constraints would be another way of dealing with the issue. This
may be the object of future work.
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APPENDIX: TECHNICAL DETAILS

This appendix describes, in broad terms, the computational strategy used to fit the model
and interpolate at unmonitored locations. It provides guidance for the Julia code which is
available on the public repository GitHub with a copy of the data and detailed documen-
tation; see

https://github.com/jojal5/Publications/tree/master/JalbertGenestPerreault2022

All the results obtained herein can easily be reproduced with this code.
Available for modeling are the values of the two covariates at 48,694 grid points and,

for each of the nine durations provided by Environment and Climate Change Canada, the
vectors of maxima at the grid cells i ∈ S where the agency has meteorological stations.

The first step is to sample from the posterior joint distribution of the vector
(μ, φ, ξ, βμ, βφ, κu, κv), where μ = (μi : i ∈ S) and φ = (φi : i ∈ S), ξ , βμ, βφ ∈ R,
and κu, κv ∈ (0,∞). This is done through Gibbs sampling with 215,000 iterations, the first
15,000 of which are discarded as the warm-up. To reduce autocorrelation in the MCMC
sample, only every 20th iteration is retained. The resulting length of the posterior sample is
thus 10,000.

Let S̄ = V \S be the set of grid cells containing no meteorological station. To determine
the spatial effect at grid cells i ∈ S̄, one proceeds conditionally on the realized values of
spatial effects (Ui = ui : i ∈ S) defined in Eq. (3).

Let QS̄,S = κuWS̄,S and QS̄,S̄ = κuWS̄,S̄ , where

WS̄,S = (Wi j : i ∈ S̄, j ∈ S), WS̄,S̄ = (Wi j : i ∈ S̄, j ∈ S̄).

Sampling from the distribution

f(U S̄ |US=uS )(uS̄) = N
[
uS̄ | −Q−1

S̄,S̄QS̄,SuS , Q−1
S̄,S̄

]

can be achieved efficiently using the algorithm provided in Appendix B of Rue and Held
(2005). This algorithm relies on the notion of sparse precision matrix. Details of the imple-
mentation are given in the Julia code.

http://creativecommons.org/licenses/by/4.0/
https://github.com/jojal5/Publications/tree/master/JalbertGenestPerreault2022
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