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The problem

▶ An old problem in statistics (Savage 1971, Bernardo 1979):
pay a single respondent so that he reveals his true belief about
a probability distribution.

▶ An extension to a game of many respondents: to design
survey questionnaires/scoring rules that are truth
inducing and/or help identify individuals who have expertise.
For example, we want responses that help
- predicting political or other events
- providing useful information in market research and focus
groups ....

▶ The issues:
- What questions to ask?
- How to reward the responses?



Outline and preview of results

▶ Two parts:
(i) A new truth-incentive algorithm called ”Choice-matching”.

(ii) A uniqueness result: under a “locality” condition, the only
algorithm that ranks respondents according to the posterior
probabilities of the true state of nature is Bayesian Truth
Serum, BTS, (D. Prelec., “Science” 2004).



Example

▶ A company wants to evaluate a new product on a sample of
customers:
they are asked to evaluate it on a scale of 1 to 5.

▶ Choice-matching, in a nutshell:
Each respondent picks a number from 1 to 5 and is also asked
to predict what percentage of other respondents pick each of
the numbers.
The respondents are paid according to the accuracy of their
own prediction and the accuracy of those who pick the same
number.



Choice-matching

▶ No knowledge of prior by designer.

▶ unverifiable truth

▶ Transparent and comprehensible payment rule.

▶ Rests on mild assumptions.

▶ Extends scope of truth-serums:
the additional question need not be about the predictions of
others; not all respondents need to respond to it.



Basic Framework and Notation

▶ There is a multiple-choice question with answer options
A = {1, ...,M}.

▶ Each respondent r ∈ {1, ..., n} submits a report (x r , y r ): An
answer x r , for example x r = (1, 0, 0, 0, 0), and a prediction
y r , for example y r = (10%, 40%, 5%, 30%, 15%).

▶ The average answer, that is, the vector of actual percentages
is denoted x̄ . The answers of respondents other than r are
denoted x−r , the average of those is x̄−r .

▶ The truthful answer of r is his x-type tr ∈ A with
t =

(
t1, ..., tn

)
.



Assumptions in Basic Framework

Let E r denote the event that each i ∈ A is the honest answer of at
least one respondent other than r .

1. Common Prior. The prior distribution of x-types is common
and known to all respondents.

2. Non-Degeneracy. For any respondent r and any x-type t:
Pr (E r | t) > 0.

3. Stochastic Relevance. For any two respondents r , s:

E
[
t̄−r | E r , tr

]
̸= E

[
t̄−s | E s , ts

]
if tr ̸= ts

4. Universal Updating. For any two respondents r , s:

E
[
t̄−r | E r , tr

]
= E

[
t̄−s | E s , ts

]
if tr = ts



Strictly proper scoring rules

Given an integer M > 1, we say that functions f (p; j), j = 1, ...,M,
form a strictly proper scoring rule (SPSR) if, for any probability
vectors p = (p1, . . . , pM), q = (q1, . . . , qM), q ̸= p, we have:

M∑
j=1

pj f (p; j) >
M∑
j=1

pj f (q; j) (1)

Define

S(p) = S(p, x̄) :=
M∑
j=1

x̄j f (p; j) (2)



Choice-matching

▶ Notation: ρ (y r ) ≡ S (y r , x̄−r ), with S a strictly proper
scoring rule: r ’s prediction score.

▶ ρ̄−r (k): Average prediction score of all the respondents other
than r who reported answer k .

▶ Choice-matching Payment Rule:
If there is no k ∈ A such that x̄−r

k = 0, then, for 0 < λ < 1,

R (x r , y r ) = λρ (y r ) + (1− λ) ρ̄−r (x r )

and otherwise R (x r , y r ) = 0.



Choice-matching – Bayesian Nash Equilibrium
Proposition.
Assume the respondents aim to maximize the expected reward.
Under the baseline assumptions, truth-telling is a Bayesian Nash
equilibrium.

▶ The first term is maximized if r declares y r truthfully.

▶ If every respondent other than r tells the truth, then the
truthful y r is, if r ’s type is k ,

y r = y r ,k := E
[
t̄−r | E r , tr

]
▶ The corresponding difference between non-deviation and

deviating from tr to some other response x r with x ri = 1 is:

Pr(E r | tr )× (1− λ)E
[
S̄−r (trx)− S̄−r (x r ) | tr , E r

]
= Pr(E r | tr )× (1− λ)E

[
S(y r ,k)− S(y r ,i ) | tr , E r

]
> 0



Relaxing Assumptions

▶ Most controversial assumptions: Common Prior and Universal
updating.

▶ Relaxation: Result holds when posteriors of individuals with
same x-type are more similar to each other than those of
individuals with different x-types, in the appropriate distance,

d
(
y r ,k , y s,k

)
< d

(
y r ,k , y s

′,k ′
)

and

d
(
p1, q

)
≤ d

(
p2, q

)
⇐⇒

∑
i

qi f (p
1; i) ≥

∑
i

qi f (p
2; i)

▶ For example, d is entropy and f (x) = log(x).



Extending the general principle behind
choice-matching

▶ The second question does not need to be a prediction.

▶ In the example, each respondent could choose from a list of
other, existing products. Respondent r receives the product
he chooses with probability λ and otherwise receives the
product chosen by a respondent randomly selected among
those giving the same star rating.

▶ Example: MCQ asks respondent to dis/agree with “the fiscal
stimulus applied in 2009 accelerated the recovery of the US
economy”. The auxiliary question could be a prediction about
GDP, or interest rates or the unemployment rate.

▶ Reducing the burden: respondents could be asked to predict
the percentages of ratings higher and lower than 3 stars.

▶ Not necessary that all respondents submit the prediction
response.



Other mechanisms
▶ Bayesian Truth Serum, Prelec (2004): infinite number of

respondents; complex; it identifies experts.
▶ Peer prediction:

- Miller, N., Resnick, P. and Zeckhauser, R. (2005): requires
knowing the common prior.
- Zhang and Chen (2014) modified the method without the
knowledge of common prior; relatively complex.

▶ No prediction question, but requires distributional assumptions
on prior or estimating it from a large amount of data:
Radanovic and Faltings (2015); Radanovic, Faltings and Jurca
(2016); Shnayder et al. (2016); Agarwal, Mandal, Parkes and
Shah (2017); Liu and Chen (2017).

▶ Witkowski and Parkes (2012): binary choice; complex
▶ Baillon (2017): trading, not responses: binary choice

▶ Radanovic and Faltings (2013): assumption y r ,kk > y r ,ℓk .
▶ Radanovic and Faltings (2014): score for type-declaration

depends on prediction – all must submit prediction.



Budget balancing: sum of rewards = zero

▶ To prevent collusion

R0(x r , y r ) = R(x r , y r )− 1

n

n∑
s=1

R(x s , y s)

▶ Alternatively, each respondent receives the score from each of
the n − 1 subsamples of which he is part, minus the total
score of the subsample of which he is not part:

R1(x r , y r , x−r , y−r )

=
1

n − 1

∑
s ̸=r

[
R(x r , y r , x−r ,s , y−r ,s)− R(x s , y s , x−r ,s , y−r ,s)

]
where x−r ,s excludes the answers r and s.



Choice-matching – Summary

▶ Easy to explain: plenty of experimental experience in
explaining scoring rules. Choice-matching adds a minimal
amount of additional difficulty.

▶ Weak set of assumptions: Although conditioning on E r has
disadvantages, not important if n is moderately large.

▶ Can be extended to cover a large variety of settings.



Mechanisms monotone in posteriors

▶ The aim: to characterize such mechanisms.

▶ Assumption: equilibrium scores depend only on local posterior
probabilities

▶ Result 1: such scores rank the respondents in terms of their
posterior probabilities, in any type-separating equilibrium.

▶ Result 2: under smoothness conditions, the only such
equilibrium payoffs are logarithmic, up to a linear
transformation.



Recalling Bayesian Truth Serum (BTS)

X r
i ∈ {0, 1}: equal to one for the chosen response i ∈ {1, . . . ,M}.

Y r
i ∈ [0, 1]: respondent’s r response on what percentage will

choose i as the correct answer. State of nature:

X̄ = lim
n

1

n

n∑
r=1

X r

Geometric mean ȳj :

log ȳj := lim
n→∞

1

n

n∑
r=1

log y rj

The Bayesian Truth Serum (BTS) score function:

BTS r =
M∑
j=1

x rj log
x̄j
ȳj

+
M∑
j=1

x̄j log
y rj
x̄j



Theorem. (Prelec 2004, CPRS 2017)
Assume the types are iid conditionally on the state of nature Ω.
BTS scoring is equivalent to the budget-balanced logarithmic
payoffs. More precisely, we have

BTS r = logPr(X̄ = x̄ |X r = x r )− lim
n→∞

1

n

n∑
s=1

logPr(X̄ = x̄ |X s = x s)

or, in a different notation,

BTS r = log(Pr(Ω = i | T r = k))

−
M∑
j=1

Pr(T r = j | Ω = i) log(Pr(Ω = i | T r = j))



The model

- Infinitely many players of M > 1 different types.
-T r ∈ {1, . . . ,M}: player r ’s type. Exchangeable random
variables, independent conditional on the true state of nature
Ω ∈ {1, ...,N}, N > 1.

Q = [qki ] = [Pr(T r = k ,Ω = i)]

The common prior matrix Q is known to the players, but not to
the planner, who knows only M.



Introduce type probabilities

sk = Pr(T r = k)

and posteriors

Z = [z ik ] = [Pr(Ω = i | T r = k)]

- ar : response vector from a set of at least M possible responses;
- f (ar , a−r ) : scoring function (mechanism);



Locality Condition

Assumption. Fix M > 1.
- (i) Scoring function f (ar , a−r ) is symmetric in the elements of
a−r , and for every prior matrix Q, f allows a strictly separating NE.
- (ii) Locality condition. In that equilibrium, the payoffs are
functions Fi : (0, 1)

2M → R, of the form Fi (z
i
k , z

i
−k ; sk , s−k).

Moreover, F does not change with permutations of z−k , s−k , and

N∑
i=1

z ikFi (z
i
k , z

i
−k ; sk , s−k) >

N∑
i=1

z ikFi (z
i
j , z

i
−j ; sj , s−j)

We call the family {Fi} a Posterior-Local Equilibrium Payoff
System (PLEPS).



Examples

Logarithmic PLEPS:

Fi (z
i
k , z

i
(−k)) = log(z ik)

A PLEPS different from logarithmic, M = 3 types:

pi = z ik , (qi , r i ) = z i−k

F (p, q, r) = K · log(p) + p4 − 2p3(q + r)− 6p(qr2 + q2r)



▶ However, up to first order it has to be log:
First, the solution to the problem

min
qi

{∑
i

pi [Fi (p
i , qi , r i )− Fi (q

i , pi , r i )] + λ
∑
i

qi

}

is qi = pi , where λ is a Lagrange multiplier for the constraint∑
i q

i = 1. The first order condition is

∂qFi (p
i , pi , r i )− ∂pFi (p

i , pi , r i ) = − λ

pi

▶ Thus, for q ≈ p,

F (p, q, r)− F (q, p, r) ≈ [∂qF (p, p, r)− ∂pF (p, p, r)](q − p)

= λ(1− q

p
) ≈ λ(log(p)− log(q))



Score rankings

Theorem. Functions Fi comprising a PLEPS satisfy:

If z ik > z ij , then Fi (z
i
k , z

i
−k) > Fi (z

i
j , z

i
−j) (3)

Thus, if a scoring rule results in an SSNE realized via a PLEPS, the
players will be ranked according to their posteriors in that SSNE.



When are the SSNE payoffs logarithmic?

We assume here N ≥ 3.
Assumption A. For all i , and all type probabilities sp, sq, sr , the
second mixed derivative (assumed to exist)

∂pq
[
Fi (p

i , qi , r i ; sp, sq, sr )− Fi (q
i , pi , r i ; sq, sp, sr )

]
of the difference in scores of two types with posteriors pi and qi

respectively, does not depend on other type’s posteriors r i .



Proposition.
Consider a PLEPS system {Fi} such that Assumption A holds.
Then, if, for some p0 ∈ (0, 1) and for any fixed type probabilities
sp, sq, sr the function Fi (p

i , qi , r i ; sp, sq, sr ) can be expanded as an
infinite Taylor series around the point
(pi , qi , r i ) = (p0, . . . , p0) ∈ (0, 1)M , then, necessarily, the following
Additive Representation (AR) holds:

Fi (p
i , qi , r i ; sp, sq, sr ) = Gi (p

i ; sp, sq, sr ) + Hi (p
i , qi , r i ; sp, sq, sr )

(4)
where Hi is a function that is symmetric in all the pairs
(pi , sp), (q

i , sq), (r
i , sr ), i = 1, . . . ,N.



Theorem.
Consider a PLEPS consisting of functions Fi (p

i , qi , r i ; sp, sq, sr ),
i = 1, 2, . . . ,N, that satisfy the assumptions of the proposition.
Assume also that Fi is such that Gi is symmetric in all sk variables,
for every fixed pi , i = 1, . . . ,N. Then, we have, for some functions
λ and B of type probabilities S = (sp, sq, sr ),

Gi (p
i , sp, sq, sr ) = λ(S) log pi + Bi (S)

In particular, if the corresponding PLEPS is budget-balanced, the
EP with posterior pi is given by

Fi (p
i , qi , r i ; sp, sq, sr ) = λ(S) log pi − λ(S)

∑
t=p,q,r

s it log t
i (5)

where s it is the conditional probability of the type with posterior t
in state i .



Proofs

Proof of the theorem.
From the FOC for truth-telling for function G we obtain

−λ
1

p
= ∂q[G (p; S)− G (q;S)]

∣∣∣∣
q=p

= −G ′(p; S)

This implies, for some B = Bi (Si ),

G (p;S) = λ log(p) + B



Ranking by posteriors.
Lemma.
Let 0 < a ≤ 1, p, q ∈ (0, a), and p > q. If A,B are such that

pA+ (a− p)B > 0 , q(−A) + (a− q)(−B) > 0

then A > 0 and B < 0.
Proof. If A = 0 then (a− p)B > 0 and (a− q)(−B) > 0, a
contradiction. Then, B ̸= 0, and sign(A) = −sign(B). Suppose
A < 0. Then B > 0. From (a− p)B > −pA we get −B < p

a−pA.
From the second inequality we get a contradiction:

0 < q(−A) + (a− q)(−B) < q(−A) +
a− q

a− p
pA = Aa

p − q

a− p
< 0



Assume M = 2,N = 2. Denote

p := z11 , q := z12 , so that Z =

[
p 1− p
q 1− q

]
Suppose p > q. The truth-inducing property implies

pF1(p, q)+(1−p)F2(1−p, 1−q) > pF1(q, p)+(1−p)F2(1−q, 1−p)

qF1(q, p)+(1−q)F2(1−q, 1−p) > qF1(p, q)+(1−q)F2(1−p, 1−q)

This leads to

p[F1(p, q)−F1(q, p)]+(1−p)[F2(1−p, 1−q)−F2(1−q, 1−p)] > 0

q[F1(q, p)−F1(p, q)]+(1−q)[F2(1−q, 1−p)−F2(1−p, 1−q)] > 0

We set a = 1,A = F1(p, q)− F1(q, p) and
B = F2(1− p, 1− q)− F2(1− q, 1− p), and apply the lemma to
obtain F1(p, q) > F1(q, p) and F2(1− p, 1− q) < F2(1− q, 1− p).



BTS implementing log-posterior payoffs.

Denote pij = Pr(X r
i = 1,X s

j = 1), so that

Pr(X r
i = x r |X s

j = x s) =
pij∑M

k=1 pkj

- Property I: y rj =
∑M

i=1 x
r
i

pij∑M
k=1 pki

- Property II: logPr(X s = x s | X r = x r ) =
∑M

j=1 x
s
j log y

r
j ,

- Property III:
logPr(X r = x r | X̄ = x̄) = log

∑M
k=1 x

r
k x̄k =

∑M
k=1 x

r
k log x̄k .



Let x s be any values such that

x̄k = lim
n

1

n

∑
s

x sk

From Property II we have

M∑
k=1

x̄k log y
r
k = lim

n

1

n

∑
s

logPr(X s = x s |X r = x r )

and
M∑
k=1

x rk log ȳk = lim
n

1

n

∑
s

logPr(X r = x r |X s = x s)



M∑
k=1

x rk log
x̄k
ȳk

+
M∑
k=1

x̄k log y
r
k

= logPr(X r = x r |X̄ = x̄) + lim
n

1

n

∑
s

log
Pr(X s = x s |X r = x r )

Pr(X r = x r |X s = x s)

= log

(
Pr(X r = x r |X̄ = x̄) lim

n
Πn
s=1

Pr1/n(X s = x s |X r = x r )

Pr1/n(X r = x r |X s = x s)

)

= log

(
Pr(X r = x r |X̄ = x̄)

limn Π
n
s=1Pr

1/n(X s = x s)

Pr(X r = x r )

)
= logPr(X̄ = x̄ |X r = x r )− logPr(X̄ = x̄) + lim

n

1

n

∑
s

logPr(X s = x s)

= logPr(X̄ = x̄ |X r = x r )− lim
n→∞

1

n

n∑
s=1

logPr(X̄ = x̄ |X s = x s) ,

since the last two terms do not depend on r , and
∑

r BTS
r = 0.



Logarithm as the only payoff of a PBEPS.

Proof of the proposition:
Set M = 3. Denote

p̄ = p − p0, q̄ = q − p0, r̄ = r − p0

By the smoothness assumption, we can write

F (p, q, r) =
∞∑
n=0

anp̄
n +

∞∑
n=1

bn(q̄
n + r̄n)

+
∞∑

m,n=1

cm,np̄
m(q̄n + r̄n) +

∞∑
m,n=1

dm,nq̄
m r̄n +

∞∑
l ,m,n=1

el ,m,np̄
l q̄m r̄n



Sufficient to show:

cm,n(sp, sq, sr ) = dm,n(sq, sp, sr ) , el ,m,n(sp, sq, sr ) = en,l ,m(sq, sp, sr )

because then we can write

F (p, q, r) =
∞∑
n=0

[an(sp, sq, sr )− bqn(sq, sp, sr )]p̄
n + H(p, q, r)

We get that from

−λ = ∂qF (p, p, r , sp, sq, sr )− ∂pF (p, p, r , sq, sp, sr )

and
0 = ∂pqr [F (p, q, r)− F (q, p, r)]



Conclusions

- (i) Any strictly separating equilibrium corresponding to PLEPS
necessarily ranks the respondents according to the relative size of
their posterior value;
(ii) Under additional assumptions on the sensitivity of score
differences, the budget balanced strictly separating equilibria
necessarily result in logarithmic payoffs.


