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Introduction



Dependence

• Measuring and modelling dependence between random
variables is at the heart of statistics and of paramount
importance in every empirical discipline.

• Two key approaches:
• (Mutual) dependence measures, e.g. Pearson correlation
• Regression, e.g. least-squares regression

1



Measures of Dependence

• We are interested in the mutual dependence between two
random variables X and Y (direction and strength of
dependence).

• Joint CDF: FX,Y
• Marginal CDFs: FX, FY; assume continuity for this talk
• A measure of dependence for X and Y, δ(X, Y) := δ(FX,Y) ,
maps FX,Y to a real vector space, usually the real line.
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Desirable Properties

Going back to Rényi’s axioms (Rényi, 1959) for measures of
dependence, often modified (see e.g. Schweizer and Wolff
(1981); Embrechts et al. (2002); Balakrishnan and Lai (2009)):

• Independence: δ(X, Y) = 0 if X and Y are independent.
• Normalisation: δ(X, Y) ∈ [−1, 1].
• Attainability: δ(X, Y) = ±1 if X and Y have perfect positive
(negative) dependence, i.e. are comonotonic
(countermonotonic): Y = g(X) for some increasing
(decreasing) g.

• Invariance to strictly increasing transformations: Let g be a
strictly increasing function: δ(g(X), Y) = δ(X,g(Y)) = δ(X, Y)
(⇐⇒ invariance to marginals FX, FY)

• Sometimes: symmetry (δ(X, Y) = δ(Y, X)) and the reverse
direction for independence and attainability 3



Literature on Measures of Dependence

• Pearson correlation is the most widely-used measure of
dependence, but has major shortcomings, in particular
non-attainability (see e.g. Embrechts et al. (2002)).

• Rank correlations, i.e. Spearman’s ρ and Kendall’s τ are
popular alternatives with nice properties.

• Many other measures have been proposed (see e.g.
Balakrishnan and Lai (2009); Tjøstheim et al. (2022) for
overviews).
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Motivation i: Beyond Average Dependence

• Usually those are scalar-valued measures of global
dependence, trying to summarise overall/average
dependence between X and Y in a single number
→ very limited information on dependence structure
contained in FX,Y

• Measures of local dependence?
• Measures that characterize full dependence structure?
• Work going in that direction: Holland and Wang (1987),
Tjøstheim and Hufthammer (2013)
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Example: Center vs. Tails
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Figure 1: scatter plot of 1000 draws from a bivariate Cauchy copula
with Spearman’s ρ equal to 0 6



Recap: Pearson Correlation

Covariance and Pearson correlation

Cov(X, Y) = E[(X− µ(X))(Y− µ(Y))], r(X, Y) = Cov(X, Y)√
Var(X)Var(Y)

They measure co-movements of X and Y around their means.
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Motivation ii: Quantile or even Generalised Correlation?

• Can we also measure co-movements around quantiles or
other statistical functionals?

• Quantile or generalised regression generalises
least-squares regression. Generalisation of Pearson
correlation along those lines?

• Starting point for this project
• Some proposals for quantile correlations exist, e.g. Linton
and Whang (2007); Li et al. (2015)
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This Paper i

Generalised correlation:

• Measures co-movements of X and Y around functionals
other than the mean (e.g. quantiles, expectiles).

• Two key ingredients: generalised covariance and
normalisation

• Desirable theoretical properties
• Many useful measures arise as special cases
• In particular local correlations: quantile and threshold
correlation, allowing to measure local dependence

• Also mean correlation, an improved version of Pearson
correlation
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This Paper ii

Distributional covariances and correlations:

• Two closely related measures: quantile function and CDF
correlation (CDF: cumulative distribution function)

• Basically generalised correlation with quantile function
and CDF as functionals

• Amounts to considering the set of all quantile or
threshold correlations jointly

• Not numbers, but functions on [0, 1]2 and R2

• Uncover the full dependence structure between X and Y
• Desirable properties
• Close relationship to copula and joint CDF FX,Y
• Lead to clear definitions of positive and negative
dependence
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This Paper iii

Tail correlation:

• New measure of tail dependence arising as a limit of
quantile correlation.

• Closely related and improving upon well-known coefficient
of tail dependence.

Summary covariances and correlations:

• If the goal is to summarize dependence in one number:
Natural to integrate over distributional covariances w.r.t.
an arbitrary measure and then normalize

• Spearman’s ρ and mean correlation arise as special cases.
• Other useful measures can be constructed.
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Generalised Covariance



Statistical Functionals

• A statistical functional is a map T : M → R whereM is a
class of probability distributions.

• Examples: Mean, median, expectiles, quantiles,
exceedance probabilities, …

• We can evaluate T for random variables by setting
T(X) := T(FX) for X ∼ FX.
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Generalised Covariance?

• Recall classical covariance:
Cov(X, Y) = E[(X− µ(X))(Y− µ(Y))]

• Independence implies nullity due to the fact that
E[X− µ(X)] = E[Y− µ(Y)] = 0.

• Just replacing µ by some other functional T violates this.
• We need a suitable way to express deviations of a random
variable X from a functional T(X), that is, a generalised
error to replace eµ(X) = X− µ(X).

13



Identification Functions i

We employ identification functions to define generalised
errors.

Definition (Identification function)
A map v : R× R → R is anM-identification function for T if∫
|v(t, x)|dF(x) < ∞ for all t ∈ R, F ∈ M and if

t = T(F) =⇒
∫
v(t, x)dF(x) = 0

for all t ∈ R, F ∈ M. It is a strictM-identification function if
⇐= holds as well.
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Identification Functions ii

Examples:

• Mean T = µ: v(t, x) = x− t
• α-quantile T = qα: v(t, x) = α− 1{x ≤ t}
• Exceedance probability T(F) = F(a): v(t, x) = t− 1{x ≤ a}.

Usual Uses:

• In forecast evaluation, identification functions are used to
check calibration of forecasts.

• In econometrics, they are often called moment functions.
• In estimation, they give rise to Z-estimation.
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Generalised Error

Definition (Generalised error)
Let v(t, x) be an identification function for T : M → R which
is increasing in x for all t. Then

eT(X) = v(T(X), X)

is the generalised error of X for T.

Examples:

• Mean T = µ: eµ(X) = X− µ(X)
• α-quantile T = qα: eqα(X) = α− 1{X ≤ qα(X)}
• Exceedance probability T(F) = F(a):
eF(a)(X) = F(a)− 1{X ≤ a}.
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Properties of the Generalised Error

eT(X) is a suitable way to express deviations of X from T(X):

• It is centred: E[eT(X)] = 0.
• It has the right sign.
• It gets larger when X is further away from T.
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Generalised Covariance

Definition (Generalised covariance)
Let eT1 , eT2 be generalised errors for T1 and T2. Then the
generalised covariance at T1 and T2 is

CovT1,T2(X, Y) = E
[
eT1(X)eT2(Y)

]
.

• CovT1,T2 measures average co-movements of X and Y
around their respective functionals.

• It holds that CovT1,T2(X, Y) = Cov
(
eT1(X), eT2(Y)

)
.

• CovT1,T2(X, Y) = 0 if X and Y are independent.
• CovT1,T2 depends on the choices of the identification
functions, we use the canonical ones from Gneiting and
Resin (2021). This dependence disappears for the
generalised correlation. 18



Generalised Correlation



Normalisation: Cauchy-Schwarz

• The normalisation in Pearson correlation exploits the
Cauchy–Schwarz inequality:∣∣E

[
eT1(X)eT2(Y)

]∣∣ ≤ √
E[eT1(X)2] E[eT2(Y)2].

• Hence, the Cauchy–Schwarz normalisation ensures that

CovT1,T2(X, Y)√
E[eT1(X)2] E[eT2(Y)2]

∈ [−1, 1].

• Problem with attainability (inherited from Pearson
correlation): This quantity may have a maximum
(minimum) that is far away from 1 (-1) and their absolute
values may be very different.
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Normalisation: Co- and Countermonotonicity

• Solution: We need a sharp normalisation that
distinguishes between positive and negative dependence.

• Alternative inequality:

E
[
eT1(X)eT2(Y ′)

]
≤ E

[
eT1(X)eT2(Y)

]
≤ E

[
eT1(X)eT2(Y ′′)

]
where Y, Y ′ and Y ′′ ∼ FY and where

• (X, Y ′) are countermonotonic;
• (X, Y ′′) are comonotonic.

• This inequality is sharp by construction.
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Generalised Correlation

Definition (Generalised Correlation)
Let CovT1,T2 be a generalised covariance at T1 and T2. Then
the corresponding generalised correlation is

CorT1,T2(X, Y) =


CovT1,T2 (X,Y)

|CovT1,T2 (X,Y ′)| , if CovT1,T2(X, Y) ≤ 0

CovT1,T2 (X,Y)
|CovT1,T2 (X,Y ′′)| , if CovT1,T2(X, Y) > 0

• CorT1,T2(X, Y) fulfills independence, normalisation and
attainability.

• Symmetry if T1 = T2.
• Invariance to increasing transformations depends on
choice of functionals T1 and T2.
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Examples: Quantile Correlation i

• Quantiles T1 = qα, T2 = qβ :

QCovα,β(X, Y) = E
[
(α− 1{X ≤ qα(X)})(β − 1{X ≤ qβ(X)})

]
,

• Normalisation:

QCovα,β(X, Y ′) = max(α+ β − 1, 0)− αβ,

QCovα,β(X, Y ′′) = min(α, β)− αβ.

(Fréchet-Hoeffding bounds)
• Relation to the copula of (X, Y), CX,Y:

QCovα,β(X, Y) = CX,Y(α, β)− αβ

• Does not depend on the marginals FX and FY, i.e. is
invariant to strictly increasing transformations
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Examples: Quantile Correlation ii

• Measures local dependence, e.g. tail dependence
• Connection to quantilogram (Linton and Whang, 2007):
Quantile Covariance (with same α) with Cauchy–Schwarz
normalisation. Or the cross-quantilogram of Han et al.
(2016).

• Special case: median correlation with α = β = 0.5,
equivalent to Blomqvist’s β (Blomqvist, 1950)

23



Examples: Threshold Correlation

• Threshold covariance, T1(F) = F(a), T2(F) = F(b):

TCova,b(X, Y) = E
[
(F(a)− 1{X ≤ a})(F(b)− 1{Y ≤ b})

]
• Normalisation:

TCova,b(X, Y ′) = max(FX(a) + FY(b)− 1, 0)− FX(a)FY(b),
TCova,b(X, Y ′′) = min(FX(a), FY(b))− FX(a)FY(b).

(Fréchet-Hoeffding bounds)
• Relation to joint and marginal CDFs:

TCova,b(X, Y) = FX,Y(a,b)− FX(a)FY(b).

• Allows to measure local dependence as well
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Local Correlations

• Quantile and threshold correlation
• Natural complements: measuring dependence on the
quantile scale (and independent of marginals) or on the
observation scale

• Building blocks for further measures: distributional, tail
and summary correlations
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Examples: Mean Correlation

• Mean T1 = T2 = µ: Covµ = Cov(X, Y). But Corµ is generally
different from Pearson correlation Cor due to the
normalisation.

• Normalisation: Cov(X, Y ′) and Cov(X, Y ′′) instead of√
Var(X)Var(Y)

• Mean correlation can be seen as an improved version of
Pearson correlation, ensuring attainability.

• In cases, where Pearson correlation is attainable (e.g.
under multivariate normality), the two coincide.
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Examples: Mean-quantile Correlation

• Quantile and mean, T1 = qα, T2 = µ:

Covqα,µ(X, Y) = E
[
(α− 1{X ≤ qα(X)})(Y− µ(Y))

]
• Connection to what Li et al. (2015) call quantile correlation,
where Cauchy-Schwarz normalisation is used.
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Estimation

Suppose an iid sample (Xi, Yi), i = 1, . . . ,n, is available.

• Estimate T1 and T2 by empirical counterparts T̂1(X) =: t̂1
and T̂2(Y) =: t̂2 and CovT1,T2(X, Y) by

ĈovT1,T2(X, Y) =
1

n

n∑
i=1

vT1 (̂t1, Xi)vT2 (̂t2, Yi).

• For Hoeffding normalisation, use order statistics:
X(1) ≤ X(2) ≤ · · · ≤ X(n) and Y(1) ≤ Y(2) ≤ · · · ≤ Y(n).

ĈovT1,T2(X, Y ′′) =
1

n

n∑
i=1

vT1 (̂t1, X(i))vT2 (̂t2, Y(i)),

ĈovT1,T2(X, Y ′) =
1

n

n∑
i=1

vT1 (̂t1, X(i))vT2 (̂t2, Y(n−i+1)).
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Asymptotics

• ĈovT1,T2 and ĈorT1,T2 are strongly consistent (under mild
conditions).

• Conjecture on the limiting distribution:
• For CovT1,T2 ̸= 0: normal
• For CovT1,T2 = 0: combination of two halves of normals
with mean zero and different variances
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Distributional Covariances and Correlations



Distributional Correlations: Definition

• Idea: Look at all the local information jointly, i.e. consider
quantile correlation at all combinations of quantile levels
(α, β) ∈ (0, 1)2 or threshold correlation at all (x, y) ∈ R2.

• Define distributional correlations accordingly,CDF
correlation and quantile function correlation:

CDFCor(X, Y) =
(

TCora,b(X, Y)
)
a,b∈R

QFCor(X, Y) =
(

QCorα,β(X, Y)
)
α,β∈[0,1]

• Those dependence measures are not numbers, but
two-dimensional functions.

• There is an alternative way to arrive at them...
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Distributional Correlations: Alternative Definition

• One could define generalised covariances for vector- and
function-valued functionals via the outer product of
vector- and function-valued generalised errors induced by
corresponding identification functions.

• Choosing the CDF and the quantile function themselves as
functionals,

TCDF(F) = F, TQF(F) = F−1,

with the identification functions

vCDF(F, x) =
(
F(a)− 1{x ≤ a}

)
a∈R,

vQF(F−1, x) =
(
α− 1{x ≤ F−1(α)}

)
α∈[0,1]

would also lead to the two distributional covariances.
• Normalise pointwise to arrive at the respective
correlations.
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Distributional Correlations: Relation to Copula and Joint CDF i

• Distributional correlations indeed uncover the full
dependence structure between X and Y as the following
representations in terms of copula and joint CDF show.

• For quantile correlation:

QFCor(X, Y;α, β) =


CX,Y(α,β)−αβ
min(α,β)−αβ , QFCov(X, Y;α, β) ≥ 0

CX,Y(α,β)−αβ
−max(α+β−1,0)+αβ , QFCov(X, Y;α, β) < 0

.

• Note that here the three limiting cases from copula theory,
namely the independence, the co- and the
countermonotonicity copula, show up.
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Distributional Correlations: Relation to Copula and Joint CDF ii

• For CDF correlation, we have

CDFCor(X, Y;a,b)

=


FX,Y(a,b)−FX(a)FY(b)

min(FX(a),FY(b))−FX(a)FY(b) , CDFCov(X, Y;a,b) ≥ 0
FX,Y(a,b)−FX(a)FY(b)

−max(FX(a)+FY(b)−1,0)+FX(a)FY(b) , CDFCov(X, Y;a,b) < 0
.

• Thus, distributional correlations are closely related to
copula and joint CDF and make the dependence structure
contained in them explicit and visible.
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Distributional Correlations: Properties

They inherit the properties from the respective local
correlations. Further:
Proposition

(i) X and Y are independent if and only if QFCor(X, Y) = 0.
(ii) X and Y are comonotonic if and only if QFCor(X, Y) = 1.
(iii) X and Y are countermonotonic if and only if

QFCor(X, Y) = −1.

The same results hold for CDFCor.
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Example: QFCor for a bivariate Cauchy copula
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Figure 2: plot of QFCor for a bivariate Cauchy copula with
Spearman’s ρ equal to 0 and scatter plot of 1000 draws from it
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Examples: Normal, Cauchy, Clayton, Gumbel copula
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Figure 3: plots of QFCor for four different copulas, all with
Spearman’s ρ equal to 0.5: Gaussian (upper left), Cauchy (upper
right), Clayton (lower left) and Gumbel (lower right) 36



Defining Positive and Negative Dependence

• How to define positive and negative dependence between
two random variables X and Y?

• Countless proposals in the literature, see e.g. Balakrishnan
and Lai (2009) for an overview.

• Distributional correlations suggest a natural definition:

Definition
X and Y are positively (negatively) dependent if

CDFCor(X, Y) ≥ 0 (CDFCor(X, Y) ≤ 0).

• Positive (negative) dependence correspond to positive
(negative) quadrant dependence due to Lehmann (1966).

• Using QFCor leads to an equivalent definition.
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A Further Property of Generalised Covariance and Correlation

Proposition
If X and Y are positively (negatively) dependent, then for any
T1, T2

CovT1,T2(X, Y) ≥ 0 (CovT1,T2(X, Y) ≤ 0).
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Tail Correlation



Tail Correlation

• It is often of interest to analyse co-movement in the tails.
• Quantile correlation suggests a natural measure of tail
dependence.

Definition (Tail correlations)

The lower tail correlation is defined as

LTCor(X, Y) := lim
α→0

QCorα,α(X, Y).

The upper tail correlation is defined as

UTCor(X, Y) := lim
α→1

QCorα,α(X, Y).
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Relation to Coefficient of Tail Dependence

• The by far most prominent tail dependence measure is the
tail dependence coefficient (see e.g. Joe (1993) or Coles
et al. (1999)).

• Consider e.g. the lower tail dependence coefficient:

λl(X, Y) := lim
α→0

P(Y ≤ qα(Y)|X ≤ qα(X)).

• Under positive dependence, i.e. if there is some α0 ∈ (0, 1)

such that QCovα,α(X, Y) ≥ 0 for all α ∈ (0, α0), we have

LTCor(X, Y) = λl(X, Y).

• However, λl(X, Y) = 0 under negative dependence and
independence, while LTCor(X, Y) shows the desirable
behaviour, i.e. is 0 under independence, negative under
negative dependence and -1 under countermonotonicity.
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Summary Covariances and Correlations



Summary Correlations: Idea

• Idea: Summarize the full dependence structure contained
in the distributional correlations via a single number by
integration.

• Take QFCov(X, Y) =
(

QCovα,β(X, Y)
)
α,β∈[0,1] and integrate

it with respect to a measure π on [0, 1]2:∫
[0,1]2

QCovα,β(X, Y) dπ(α, β)

• Likewise, take CDFCov(X, Y) and integrate it with respect
to a measure on R2.

• Depending on the sign of those integrals, normalise with
the integrals over the corresponding Fréchet-Hoeffding
bound.
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Summary Correlations: Properties

Summary correlations inherit properties of respective local
correlations. Further:
Proposition
The summary correlations fulfil:

– They are 1 if and only if X and Y are comonotonic.
– They are −1 if and only if X and Y are countermonotonic.
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Meeting Some Old Friends

Proposition

(i) If CDFCov(X, Y) is integrated with respect to the Lebesgue
measure on R2, we obtain covariance. Hence, the
respective summary correlation retrieves mean correlation
(or Pearson correlation if the Cauchy-Schwarz
normalisation is used).

(ii) If QFCov(X, Y) is integrated with respect to the Lebesgue
measure on [0, 1]2 and normalised, we obtain Spearman’s
ρ.

This justifies the use of Spearman’s ρ and mean/ Pearson
correlation as measures of overall/average dependence.
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New Measures of Tail Dependence

By integrating only over certain subsets, one can obtain further
interesting summary correlations, e.g. new measures of tail
dependence.
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Conclusion



Summary i: Generalised Correlation

• Generalised correlation: Measures average co-movements
around general functionals.

• Similar paradigm shift as from mean regression to
quantile or generalised regression.

• Nice theoretical properties
• Several interesting measures arise
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Summary ii: A Measure for Every Purpose

• Two families of correlations containing a measure for
every purpose: a local, a distributional and a summary
correlation.

• The quantile family: quantile correlation, quantile
function correlation and Spearman’s ρ.

• The CDF family: threshold, CDF and mean correlation.
• Very natural, closely related to fundamental statistical
concepts, i.e. copula and CDF.
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Outlook

• This paper: applications
• Future work: inference
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Recap: Copulas

• bivariate CDF of RVs X and Y: FX,Y(x, y) = P(X ≤ x, Y ≤ y)
• copula: CDF with U(0, 1) margins
• Sklar’s theorem:

• FX,Y can be written as FX,Y(x, y) = CX,Y(FX(x), FY(y)), where FX
and FY are the marginal distributions.

• CX,Y(u, v) = F(F−1
X (u), F−1

Y (v))



Attainability Lemma

Lemma (Attainability of Pearson correlation)

Let X, Y ∈ L2(R) be non-constant. Pearson correlation
Cor(X, Y) is attainable, that is, there exist joint distributions
F, F̃ with marginals FX, FY and Pearson correlation 1 and −1,
respectively, if and only if X and Y are of the same type, that
is, FY = Fa+bX for some b > 0 and a ∈ R, and the distributions
are symmetric, that is, there exist c,d ∈ R such that
Fc+X = Fc−X and Fd+Y = Fd−Y.



Attainability Problem of the CS Normalization for QCov

For example, it can be shown that

r
(
eqα(X), eqα(Y)

)
≥

(
max(2α− 1, 0)− α2

)
/
(
α(1− α)

)
.

While this yields a desirable lower bound of −1 for α = 1/2,
the lower bound converges to 0 as α gets closer to 0 or 1.

E.g., for α = 0.95 the lower bound is approximately −0.05, for
α = 0.75 it is −1/3.


	Appendix

