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Introduction

Statistical learning is nowadays an unavoidable field of Al:

e it allows to model complex phenomena and provides synthetic summaries,
e it provides theoretical guarantees about its performance and behaviour,

e it can be even combined with advance deep learning model (VAE, GAN, ...).

Despite recent impressive results in supervised learning, many situations remain challenging:

e high-dimensional (p large),
e big or as stream (n large),
e evolutive (evolving phenomenon),

e heterogeneous (categorical, functional, network, interaction data, ...)

The understanding of the results is essential:

e in many applications, practitioners are very interested in visualizing the processed data,

e and to get a synthetic summary of the data for better interpretation.
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Figure 2: Visualisation of an ecclesiastical
network of Bishops of the 5th and 6th century of Figure 3: Frequency of monthly declarations of
our era. adverse drug reactions from 2010 to 2020.
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Dealing with interaction data

Interaction data become ubiquitous for the analysis of:

e recommendation systems, e social networks, co-authorship networks,
pharmacovigilance, ...: bipartite communication networks, ...: networks /
networks / incidence matrices. adjacency matrices.




Dealing with interaction data

Clustering such interaction data is a recurrent task:

e clustering the nodes of a network — detection of influencers, detection of weak signals, ...
e co-clustering of ordinal data — recommendation systems, ...

e co-clustering of count data — bike sharing systems, traffic modeling, ...

With possibilities to apply it to the field of public health:

e detecting safety signals in adverse drug e understand the role of social networks on
reaction data (pharmacovigilance), adverse drug reaction declaration

e model and predict the use of health care (pharmacovigilance),
services of a hospital. e summarizing medical publication

networks to help fighting against a
pandemic.



Co-clustering of interaction data
streams for Pharmacovigilance



Motivation: providing an automatic tool for Pharmacovigilance

Pharmacovigilance:
e it is the study of adverse reactions to drugs and vaccines,
e it aims at detecting safety signals about drugs,
e this task is done manually nowadays,
e it can be complicated in case of important media coverage.

The Nice RCPV data:

Figure 4: Evolution of spontaneous reports (extract) to RCPV from 2010 to 2020.



Data and objectives

The data we consider are organized as follows:

e rows are indexed by i =1,...N;

e columns are indexed by j =1,..., M,

e time instants t € [0, T] during which N and M are fixed;

e the N x M x T tensor X := {Xjj(t)} contains the number of

interactions between any observation and feature pair at any Figure 5: Data structure.

given t.
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The data we consider are organized as follows:

e rows are indexed by i =1,...N;

e columns are indexed by j =1,..., M,

e time instants t € [0, T] during which N and M are fixed;

e the N x M x T tensor X := {Xjj(t)} contains the number of

interactions between any observation and feature pair at any Figure 5: Data structure.

given t.
We aim at estimating:

e The latent variables for the clustering of rows and columns into @ and L groups,

e A latent variable for modeling the evolving sparsity of the data.



The zero-inflated dynamic latent block model (ZI-dLBM)

1) Modeling of the row and column clusters:

e At each time instant t, the ith row of X(t) is assigned to an (unobserved) group among
Q(t), according to:

Zi(t) ~ M(1, at) = (aa (1), ..., (1)),
where a4(t) > 0 and 25:1 ag(t)=1forallt=0,..,T.

e similarly, the jth column of X(t) is assigned to an (unobserved) group among L(t),
according to:

Wj(t) ~ M(L, 5(t) := (Bu(t), - -, Bi(2))),
where ,(t) > 0 and Zézl Be(t) =1, forall t=0,..., T.

e row assignments z;(t) are further assumed to be independent from column assignments
w;(t), for all i, j;



The zero-inflated dynamic latent block model (ZI-dLBM)

2) Modeling of a potential extreme sparsity:

e the observed variable X(t) is assumed to be modeled by a mixture of block-conditional
Zero-Inflated (ZI) distributions:

Xij(t)|Zi(t) = k, Wj(t) = £~ ZI(Che, (1)),

where:
e ( is the block-dependent vector of parameters for the distribution ¢(Xj;(t),.),
e 7(t) is the sparsity probability at any given time period t.



The zero-inflated dynamic latent block model (ZI-dLBM)

The zero-inflated distribution is therefore such that:

{Xy(t)IZ;(t), Wj(t) ~ 0 with probability 7 ()
Xi(t)|Zi(t), W;(t) ~ ¢(X;(); Cz(e)wi(e)) with probability 1 — (t)



The zero-inflated dynamic latent block model (ZI-dLBM)

The zero-inflated distribution is therefore such that:

{Xy(t)IZ;(t), Wj(t) ~ 0 with probability 7 ()
Xi(t)|Zi(t), W;(t) ~ ¢(X;(); Cz(e)wi(e)) with probability 1 — (t)

The modeling of the data sparsity can be re-formulated by introducing a latent variable A(t):
e such that Aj;(t) ~ B(n(t)),

e and we therefore get:

{Xa(t)IZ;(t), Wj(t) ~ 0 if Ay(t) = 1
Xii(t)1Zi(t), Wi(t) ~ 'P(/\z,.(t)ywj(t)) if Aj(t)=0



The zero-inflated dynamic latent block model (ZI-dLBM)

3) Modeling of the dynamic of sparsity and cluster proportions:

The evolving mixing proportion and the sparsity parameter are assumed to be generated by

three systems of ODEs, respectively:

o La(t) = F(a(t)),
o Gb(t) = fw(b(t)),
o Lc(t) = fa(c(1)),

_ aq(t)
with aq(t) = quleq"( ot
_ ebe(t)
with B(t) = L f B(t)’

_ R0
with 7(t) = s



The zero-inflated dynamic latent block model (ZI-dLBM)

3) Modeling of the dynamic of sparsity and cluster proportions:

The evolving mixing proportion and the sparsity parameter are assumed to be generated by
three systems of ODEs, respectively:

d401) = t)), ith e ,
o La(t) = fo(a(t)) with ag(t) = 58"
. ebe(t)
o Lb(t) = f(b(t)), with By(t) = s
. ec(t)
o Ge(t) = falc(t)), with 7(t) = e =

Since we work with discrete time points, the dynamic systems reduce to their Euler schemes:
o a(t+1)=a(t)+ fz(a(t)),
o b(t+1)=b(t)+ fw(a(t)),
o c(t+1)=c(t)+ fa(a(t)).



The zero-inflated dynamic latent block model (ZI-dLBM)

3) Modeling of the dynamic of sparsity and cluster proportions:

The evolving mixing proportion and the sparsity parameter are assumed to be generated by
three systems of ODEs, respectively:

d401) = t)), ith e ,
o La(t) = fo(a(t)) with ag(t) = 58"
. ebe(t)
o Lb(t) = f(b(t)), with By(t) = s
. ec(t)
o Ge(t) = falc(t)), with 7(t) = e =

Since we work with discrete time points, the dynamic systems reduce to their Euler schemes:
o a(t+1)=a(t)+ fz(a(t)),
o b(t+1)=b(t)+ fw(a(t)),
o c(t+1)=c(t)+ fa(a(t)).

We further assume that the functions fz, fiy, and f4 can be modeled by three fully connected
neural networks.



The zero-inflated dynamic latent block model (ZI-dLBM)

a(t — 1)- - - »a(t)—>a(t) B(t) «——b(t)«---b(t —1)
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Figure 6: Graphical representation of the ZIP-dLBM model.



The joint distribution (Poisson case)

Given 6 = (A, a(t), B(t), m(t)), we can compute the likelihood of the complete data:
p(X,Z, W, Al0) = p(X|Z, W, AN, m)p(A | )p(Z|a)p(W|B) (3)

where:

N M T Xii (1) (1=A45(8))
Ay(t) Az
p(X|A,Z, W,/\,ﬂ') HHH {)I(,J(t 0} X( )| exp(il\zi(f)Wj(f)) ) (4)
1t=

i=1 j= 1

N M T

p(Am) = TTTTTT =0 (1 = m(en) "™, )
N Q@ T

p(Zlo) = TTTT T] a. ©)

p(W18) = [TTTIT 8oy (7)
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The inference: variational assumptions assumptions

We rely on the Variational-EM algorithm (VEM) for infering the model:
Given a variational distribution ¢g(-):

log p(X0) = L(q;0) + KL(q(.)[Ip(-|X,0)),

p(X, A, Z, W0
0)=> > a(Z,W,A)l (cKZV|A%\)|)’

zZz W A

p(Z, W, AX,0
KL(G()lIp(1X.0) = =D > "> a(Z. W, A)log (q(zw|A))

zZ W A

where:



The inference: variational assumptions assumptions

We rely on the Variational-EM algorithm (VEM) for infering the model:
Given a variational distribution ¢g(-):

log p(X|0) = L(q;0) + KL(q(.)||p(.|X,8)),
p(X, A, Z, W0
=222 alz.W.A) (q<zwm')

g PLZW.AIX.0)
KL(q()llp(-1X.0)) ;;;qz W, A)log = =

where:

In order to optimize £L(q,0), we further assume that g(A, Z, W) can factorize:

N M T N T M T
a(Z. W, A) = q(A)q = [TITIT oA ITTT az) [T a(wi()
i=1j=1t=1 i=1t=1 j=1t=1

M T N Q T M L T

N
= TTTITT 05O — a5(e)* =4O TT T TT 7ia(t) % HHHW (£)"ie(®

i=1j=1t=1 i=1g=1t=1 j=1t=1t



The inference: the lower Bound

L(q,0) can be finally expressed as:

Q L
+ZZ{ a(E)mje(£)X () og Aqe — g (€)mje( )qu}} (1 — 55(t)) log (X ( ))}+
g=1 /(=1
T N Q T M L Q
+ZZqu ) log(ag(t +ZZZ771‘ t) log(Be(t))— ZZT,q ) log 7ig(t)+
t=1 i=1 q=1 t=1 j=1 ¢=1 t=1 i=1 g=1

t=1 j=1 (=1 t=1 i=1 j=1



The inference: VEM Algorithm

e VE-Step: Lower bound maximization with respect to g(A, Z, W).
The optimal sequential updates of the variational distributions are computed through:
e logg*(A) = Ew z[log p(X,A, Z, W | 0)]
e logq"(2) = Ew.allog p(X, A, Z, W | 0)]
e logq" (W) = Eaz[logp(X,A, Z, W | 0)]
e M-Step: Lower bound maximization with respect to 6 = («(t), B(t), 7(t), A).
e The derived optimal update of A is:

i=1 j=1 t=

=>>

at = N M

> Z{Tiq(t)nje(t)(1—5u(t))}

i=1 j=1 t=1

e The optimal updates of a(t), 3(t) and 7(t) are obtained through a stochastic gradient
descent optimization process.



inference: VEM Algorithm

Algorithm 1 VEM-SGD Algorithm (for the Zero-Inflated Poisson distribution)
Require: X, Q. L, max.iter, a(t), 3(t),7(t). A from Initialization.

Initialization of 7(t) and (t): sampling from M(a(t)) and M(/3(t)), respectively;
Initialization of (): matrix of 1, then setting 3(f) = 0 when X > 0;
for it = 1 to max.iter do

VE-Step:

for p — 1 to Fixed.Point do
Update d(1), 7(1), n(t):

exp(Ris (1)

Siy(t) = 2B

7O = T el )

where:
QL

Rij(0) = og(r(010x,, (0200 + 2 3 [ = Tia Omse(61Xi5 (6)10g Age + Tig (mse(D)Aqe] +log X (1) — og(1 = w(0).
Pt

L
() = an, (ZZ {u = 83500 [mge (X5 0) (M) = mje(O)Aar] } + m,ﬂm((»)
2N =11

ne(t) = —ap (i‘i’ { (1= 8058 [ria (X151 o8 (Age) = Tia(D] } +lu;(31(1]))
end for

M-Step:

Update 0 = (A, 7(t). a(t), 3(t))

s fraomen(xoo
Age=

a0y (01

for epoch — 1 to Epmm do
Update a(t), 3(1). #(t
Loss Evaluation;
Algorithm backpropagation;
Numerical optimization with SGD.
end for

end for




Introductory example
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Introductory example
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Figure 8: Reorganized incidence matrices at time instants t =10,30, according to the estimates z
and W.



Model Selection example

Row cluster proportions
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Model selection experiment

e 50 simulated dataset;
e The maximum of the given @ and L is 10;
e ZIP-dLBM succeeds 86% of the time to identify the correct model (Q = 3, L = 2).

QL 1 2 3 4 5 6 7 8 9 10
10 0O0O0O0GOTU OGO OO O
2 0 0000 O0O0O0O0 0
308 000000 O0 0
40 2 0000000 0
5 0 20000000 0
6 0 00 00 O0O0O0O0 0
7 0 000O0O0O0O0UO0 0
8 0 40000000 0
90 2 000000 O0 0

10 0 40000000 O

Table 1: Model selection. Percentage of activated components on 50 simulated datasets. The
highlighted cell corresponds to the actual value of Q and L.



Pharmacovigilance: analysis of adverse drug reactions

We consider adverse drug reaction (ADR) data collected by the Regional Center of
Pharmacovigilance (RCPV), located in the University Hospital of Nice:

e 2.3 million inhabitants;

several channels (e.g. website form, email, etc);

time horizon of 7 years (trimester as unity measure);

e 27 754 notifications in the dataset;

only drugs and ADRs notified more than 20 times are considered;

the resulting dataset contains 236 drugs, 324 ADRs and 29 trimesters.



Pharmacovigilance: analysis of adverse drug reactions

Histogram of complete data (2015-2022)

5000
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Frequency
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Figure 9: Frequency of declarations received by the pharmacovigilance center from January 2015 to
March 2022, sorted by month.



Pharmacovigilan analysis of adverse drug reactions
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Figure 10: Estimated Poisson intensities, each color represents a different drug (ADR) cluster.



Pharmacovigilance: analysis of adverse drug reactions

Estimated m(t)
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Figure 11: Evolution of the estimates 7.



Pharmacovigilance: analysis of adverse drug reactions
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Figure 12: Evolution of the estimates & and f3.



The deep latent position model
for network clustering




Introduction: context and motivation

Networks are specific interaction data where receivers are the same individuals as the senders:

e Nodes (or vertices) represent an object or entity such as a person, an email, etc.

e Links (or edges) represent connections between nodes such as "follow”, "send to",etc.

social network email network protein-protein interaction network



Introduction: related work on network clustering

Statistical models:

e Based on probabilistic generation:
- SBM (Nowicki et al., 2001),
- OSBM (Latouche et al., 2011),
- STBM (Bouveyron et al., 2018), etc.

e Based on latent positions:
- LPM (Hoff et al., 2002),
- LPCM (Handcock et al., 2007), etc.

= limitations:
e challenging inference procedure

e scaling difficulties



Introduction: related work on network clustering

Statistical models:

e Based on probabilistic generation:
- SBM (Nowicki et al., 2001),
- OSBM (Latouche et al., 2011),

- STBM (Bouveyron et al., 2018), etc.

e Based on latent positions:
- LPM (Hoff et al., 2002),
- LPCM (Handcock et al., 2007), etc.

= limitations:
e challenging inference procedure

e scaling difficulties

Deep learning approaches:

e Based on VAE architecture:
- VGAE (Kipf et al., 2016),
- ARVGA (Pan et al. 2018),
- DGLFRM (Mehta et al., 2019), etc.

— limitations:

e rely on an external algorithm (e.g.
k-means) for clustering;

e without taking into account edge
features;

e use an simple inner product as decoder.



Deep latent position model (deepLPM)

Extending the idea of graph VAE, we propose the deepLPM model here:

Y
|
A z a4 Decoder
c

Figure 13: A deep-learning-like model view of deepLPM.

)

<>

e take into account edge features

e use a more general latent position-based decoder

e build an end-to-end clustering model



The generative model for deepLPM

A
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The generative model for deepLPM

A
GCN LPM
Encoder Decoder
A
9o fap
Y

Generative model / Decoder

First, each node is assigned to a cluster via a random variable ¢; encoding its cluster
membership:

K
G M(17), with €015, S m =1 (8)
k=1



The generative model for deepLPM

A
GCN LPM
Encoder Decoder
A
9o fap
Y

Generative model / Decoder

First, each node is assigned to a cluster via a random variable ¢; encoding its cluster
membership:

K
G M(17), with €015, S m =1 (8)
k=1

Then, conditionally to its cluster membership, a latent embedding vector z; is generated:

Z,'|(C,'k = 1) ~ N(,uk,a,flp), with O'i e R, (9)



The generative model for deepLPM

A
GCN LPM
Encoder Decoder
A
9o fap
Y

Generative model / Decoder

Finally, the probability of a connection between nodes i and j is modeled by
Aijlzi, 25 ~ Bl(fa,5(2i, 7)), (10)

with
fop(zisz7) = o(a+ BTy — |lzi — 7). (11)

where f, 5 is a decoding neural network parametrized by o and 3. Moreover, o is the logistic
sigmoid function and yj; is the covariate of the edge connecting / with j.



Model inference: a variational auto-encoding procedure

Denoting by © = {m, ux, 0%, @, 3}, we want to maximize the integrated log-likelihood:
g p(Al8) = log [ 3 p(A. Z, ClO)az. 12)
5 C

with respect to ©.

Since Equation (12) is not tractable, we use a variational approach to approximate it

log p(A[©) = L(q(Z, C);©) +Dki(q(Z, C)[[p(Z, C|A, ©)).
ELBO

(13)

where Dy, denotes the Kullback-Leibler divergence.



Model inference: variational assumptions
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Model inference: variational assumptions

T T T T T :
: : X A
| GCN =

A i En;o:er :g z i
| o ¥
| |
;7 f;r;u; r;age/_/ En?oger_

Assumption 1.
N N
a(Z) = [ a(@) = [ [N(@ii is(A)i, 8.2 (A)ile), (14)

i=1 i=1

where [W)(A) Iog 542(A)] = g4(A), g, is a two-layer GCN encoder parametrized by ¢.
A=D":AD"? kipf2016semi is the normalized adjacency matrix.



Model inference: variational assumptions

T T T T T :
: : X A
| GCN =

A i En;o:er :g z i
| o ¥
| |
;7 f;r;c; r;age/_/ En?oger_

Assumption 1.
N N
a(2) = [[ a(@) = [ [N (@i fis(A)i, 6.2 (A)ile), (14)

i=1 i=1

where [fi,(A),log 5,%(A)] = g4(A), g, is a two-layer GCN encoder parametrized by ¢.
A= D":AD~* kipf2016semi is the normalized adjacency matrix.

Assumption 2.
q(C) = HM(C, ,7),  with ny,k =1, (15)

where v, represents the varlatlonal probability that node i is in cluster k.



Model inference: a j

With the above assumptions, £(ELBO) can be further developed as

N K N K
L= [Z Ajjlognjj + (1 — Aj) log(1 — n;)] — Z Z’YikDKL(N(ﬁ@(Z)iv 552 (A)ilp)[IN 1k, o 1p)) + Z Z%‘k |0g(%),

i#j i=1 k=1 i=1 k=1

implicit optimization explicit optimization + implicit optimization explicit optimization

where 7; = o(a + 8Ty — ||z — z||?).



Model inference: a joint optimization

With the above assumptions, £(ELBO) can be further developed as

N K N K
L= [Z Ajjlognjj + (1 — Aj) log(1 — n;)] — Z Z%‘kDKL(N(ﬁé(Z)i» 552 (A)ilp)[IN 1k, o 1p)) + Z ZW’ik |0g(%),

i£j i=1 k=1 i=1 k=1

implicit optimization explicit optimization + implicit optimization explicit optimization

where 7; = o(a + 8Ty — ||z — z||?).

Algorithm 2 Estimation of deepLPM

Input: adjacency matrix A, edge features Y
pretrain_model = pretrain(A, 50 epochs) > pre-training to save initial weights of
encoder/decoder
while L increases do
ﬁ¢,&§5 = GCN(A)
explicit optimization (closed formulas):
update Fi, %, fik, 6%
calculate loss —L
implicit optimization (SGD):
update encoder parameter ¢ and decoder parameters «, 3




Numerical experiments: scena

Scenario A: 3 communities simulated according to LPCM, the mean of each cluster is set to
H1 = [070]
po = [1.5%0,1.5% 0]
pz =[—15%0,1.5% 7]

where ¢ € [0.2,0.95].
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Figure 15: Clustering ARI with different proximity
rate § in Sc.A.

Figure 14: Network simulated on scenario A.



Numerical experiments: scena

Scenario B: 1 cluster with large external connectivity and 2 communities with high internal
connectivity based on SBM

M=

L L T
o L L
L T L

where a =0.25, b=0.01 + (1 — ¢ ) * (a — 0.01), with & € [0.2,1.0]

14
Py

Clustering ARI

1
=

SBM
- DeepLPM |
- VGAE
- LPCM
- ARVGA |

e

0.2 03 0.4 05 06 0.7 08 09 1.0
Rate of proximity (5')

Figure 17: Clustering ARI with different proximity
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Model selection

A key element of our model is to be able to automatically determine P and K thanks to the
auto-penalization of the deep encoder (Kingma et al., 2016; Dai et al., 2017).
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Figure 18: Averaged training loss (-ELBO) and clustering ARI 50 networks based on scenario B.
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* 025 et
aag00] N

Training loss

R \h

30 B

5 1o 15 5 1 s
Different latent dimension Different latent dimension

Figure 18: Averaged training loss (-ELBO) and clustering ARI 50 networks based on scenario B.
2) Fix P =16, vary K € [2,6]:
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Figure 19: Averaged training loss (-ELBO) on 50 synthetic data in scenario B.



Application to Digital Humanities: analysis of a medieval network

The considered data (Lamassé et al., 2014) report the ecclesiastical councils that took place in
Merovingian Gaul during the 5th and 6th centuries.
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Figure 20: Visualisation of the ecclesiastical network,

highlighting the temporality of the relationships. Figure 21: Visualisation of 8 cluster partitions

with covariates on medieval data.



Conclusion

The ZI-dLBM model:

e a model for the co-clustering of sparse evolving count data matrices,
e an interesting tool to summarize massive pharmacovigilance data and detect patterns,
e we plan to extend this model to the online setup to handle streams of ADR declarations.

@ C. Bouveyron, M. Corneli and G. Marchello, A Deep Dynamic Latent Block Model for the Co-clustering of
Zero-Inflated Data Matrices, Preprint HAL 03800210, Université Cote d'Azur, 2022

@ G. Marchello, A. Fresse, M. Corneli and C. Bouveyron, Co-clustering of evolving count matrices in
pharmacovigilance with the dynamic latent block model, Statistics & Computing, in press, 2022.
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The deepLPM model:

e a (deep) latent model to represent and cluster network data with covariates,
e we applied it for visualizing and clustering a historical network,
e we plan to extend this model to handle text data as covariates on the nodes.

@ C. Bouveyron, M. Corneli, P. Latouche D. Liang, Clustering by Deep Latent Position Model with Graph
Convolutional Network, Preprint HAL n°03629104, Université Céte d'Azur, 2022.



Conclusion

" Ce qui est simple est toujours faux.
Ce qui ne l'est pas est inutilisable.”

Paul Valéry
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