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General motivation

Oil price fluctuations have adverse macroeconomic implications

Hamilton (1983, 2009); Kilian (2009); Ravazzolo and Rothman (2013);
Baumeister and Hamilton (2019)

Oil price is a key variable in generating macroeconomic projections and in
assessing macroeconomic risks

Central banks, private sector forecasters and international organizations

But also crucial for how some sectors operate their business

Airlines, utilities and automobile manufacturers

...But the price of oil is not easy to forecast
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Specific Motivation 1: Given the changing data pattern in
the real price of oil which is subjected to shocks and
volatility, how to forecast it ?
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More on Motivation 1

Hamilton (2009) documents that the statistical regularities of changes in
the real price of oil have historically tended to be

permanent
difficult to predict
governed by very different regimes at different points in time

He further argues that the price of oil seems to follow a random walk
without drift

It is widely accepted to either use the current spot price or the price of oil
futures contracts as the forecast of the price of oil.
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Oil Price forecasting literature: point forecasting

Recently academic and professional researchers have explored numerous
alternative models and methods in order to forecast the most likely future
realisation of the oil price

Alquist and Kilian (2010); Alquist et al. (2013); Baumeister and Kilian (2012,
2015); Manescu and Robays (2016); Bernard et al. (2018); Pak (2018);
Garratt et al. (2019); Baumeister et al. (2020)

These papers focus on evaluating point forests and find that

It’s hard to beat a random walk in out-of-sample oil price forecasting
exercises
But careful attention to the economic fundamentals that are driving energy
markets can lead to practical improvements in forecasts
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Specific Motivation 2: How to model and forecast the
changing distribution of real price of oil ?
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Promising approach: Combine information from different
sources

Basic practice of combining information in macroeconomic and financial
forecasting is to make use of a weighted combination of forecasts from many
sources, say experts, models and/or large micro-data sets. Let yt be the
variable of interest, and let ỹ1t , . . . , ỹn,t be forecasted values from i = 1, ...,n
models, with weights w1t , . . . ,wn,t where n maybe small (from a committee of
experts) or large (from a large micro-data set). Then, basic practice is to make
use of:

yt =
n

∑
i=1

wit ỹit (1)

where ỹit should be a good approximation to yt .

Problem with Practice Many agencies handle this averaging and updating
informally.
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Our approach in combining information from different
sources

Challenge Give this practice a Bayesian probabilistic foundation in order
to evaluate practical issues as follows: Make use of Forecast Density
Combinations (FDC) features which, given information on data en model
specification allows the evaluation of Conditional Probabilities of
(extreme) events: Recession probability; Turning point probability;
Probabilistic warnings about defaults and crises in macroeconomics
and finance; Value-at-Risk etc etc.

Fast growth in Big Data gives opportunity of more accurate forecast
measures. Analogy with weather forecasting using many satellite pictures.
But in economics issue like multimodality, skewness, diverging ratio’s of, for
instance, government expenditures and GDP are not trivial and time-varying.

New Tool:Parallel Computing: New Hardware and Software give
openings to solve complex problems. Machine learning with several
hidden layers using neural networks have a direct connection with
filtering methods in nonlinear time series models.
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Relation to literature on combining probabilistic forecasts

Combining forecast densities using weighted linear combinations of
prediction models, evaluated using various scoring rules

Hall and Mitchell (2007); Amisano and Giacomini (2007); Jore et al. (2010);
Hoogerheide et al. (2010); Kascha and Ravazzolo (2010); Geweke and
Amisano (2011, 2012); Gneiting and Ranjan (2013); Aastveit et al. (2014)

Complex combination approaches that allows for time-varying weights
with possibly both learning and model set incompleteness

Koop and Korobilis (2012); Billio et al. (2013); Casarin et al. (2015);
Pettenuzzo and Ravazzolo (2016); Del Negro et al. (2016); Aastveit et al.
(2018); McAlinn and West (2019); McAlinn et al. (2020); Takanashi and
McAlinn (2020); Casarin et al. (2020)

No studies on how to quantify forecast uncertainty associated with the
dynamic behaviour of the real price of crude oil.
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Plan of talk

Theoretical contributions: Structure of Forecast Density Combination
(FDC): Probability Model, Equation System and Algorithm

Choice of model set for our empirical application

Empirical Contributions: Working of FDC in measuring time-varying
uncertainty and risk in the real price of oil

Conclusion
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Theoretical Contributions: Summary

Flexible Bayesian Forecast Density Combination allows for cross-section
and time dependent Bayesian weight learning and Diagnostic learning
about model incompleteness. This self-learning is closely related to
Machine-Learning.

Model Representation and Efficient Computation Model is a
Generalised Linear State Space Model which allows the use of
numerically efficient standard Markov Chain Monte Carlo simulation
methods. Filtering methods from State Space models are directly
connected to the integration of the hidden layers in machine learning.
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Structure of our FDC: Probability Model

Let ỹt
′ = (ỹ1t , . . . , ỹnt) be the forecasted values from i = 1, ...,n models for

the variable of interest yt . In a simulation context ỹit is a draw from the
forecast distribution of model Mi with density p(ỹit |Iit−1,Mi ) and data
set Iit−1.

Let vt
′ = (v0t ,v1t , . . . ,vnt) be latent continuous random variable

parameters which are used to weight the different forecasts and
combine these forecasts

The decomposition of the joint density of (yt ,v t , ỹ t) for the case of
continuous random variables is:

p(yt |It−1,M) =
∫ ∫

p(yt |v t , ỹt)p(v t |ỹt)p(ỹt |It−1,M)dv td ỹt , (2)

where It−1 is the joint information set of all models and M the union of all
models. The integrals are of dimension n and n+ 1 for each time observation.
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Structure of our FDC: Choice of the different densities

A key step is to give content to the different densities.

p(yt |v t , ỹt) is labeled the multivariate normal combination density :

p(yt |v t , ỹt) = n(yt |v0t +
n

∑
i=1

vit ỹit ,σ
2
t ), (3)

where time-varying constant v0t in the conditional mean allows for forecast
adjustments to shocks and regime changes in the data. σ 2

t allows for
time-varying volatility.

p(v t |ỹt) is labeled the density of latent time-varying parameter weights
and specified as:

p(v t |v t−1,Σt) = n(v t |v t−1,Σt), (4)

where the parameter Σt = σ 2
t Wt and Wt is a diagonal matrix with elements

wit given in the paper.
p(ỹt |It−1,M) is labeled the joint forecast density of the different models.
Due to the conditional independence assumption it is given as:

p(ỹt |It−1,M) =
n

∏
i=1

p(ỹit |Ii(t−1),Mi ). (5)
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Structure of our FDC: The corresponding equation system
is an econometric interpretation of Bayesian Predictive
Synthesis approach from Mike West et al

The Equation System: a multivariate regression model with generated
regressors ỹt , given as draws from the forecast distributions of the different
models and time-varying parameters vit draws:

yt = v0t +
n

∑
i=1

vit ỹit + εt :: εt ∼ NID(0,σ 2
t ), t = 1, . . . ,T . (6)

where the latent time-varying parameters are specified to follow a Random
Walk learning process:

vit = vit−1 + εvt :: εvt ∼ NID(0,σ 2
vt = σ

2
t wt), i = 0, . . . ,n. (7)

where σ 2
vt is defined via a standard single discount factor specification (see

Prado and West (2010)) and σ 2
t is the residual variance in predicting yt

based on past information and the set of individual forecast distributions.It
follows a beta-gamma volatility model (also based on discounting)

Mike West et al calls this a DLM (Dynamic Linear Factor Model).
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Learning from errors: Forecast errors and model set
incompleteness

The disturbance εt implied by the combination density is given as:

εt = yt − (v0t +
n

∑
i=1

vit ỹit). (8)

It is a weighted combination of forecast errors: yt − ỹit , i = . . .n.
Forecast errors are due to:

Sudden shocks in the series, volatility
Misspecification errors from model set incompleteness

The dynamic behaviour of the individual disturbance εit from model Mi given
as:

εit = yt − (v0,it + vit ỹit), (9)

which indicates the weighted forecast error in the i-the model.
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Road Map of the Probability model as Generalised Linear
State Space System

Time series models

Mi (i = 1, . . . ,n):

ỹit ∼ p(ỹit |Ii(t−1),Mi )

Stochastic volatility model:

εt ∼ NID(0,σ 2
t )

σ 2
t =

δσ2
t−1

γt

γt ∼ Beta( δht−1
2 , (1−δ )ht−1

2 )

ht = δht−1 + 1
↘ ↙

Central equation:

yt = v0t + ∑
n
i=1 vit ỹit + εt

x

Random walk learning for

unrestricted latent variables:

vit = vi(t−1 + εvt

εvt
iid∼N (0,σ 2

vt = σ 2
t wt)

wt = β−1
β

wt−1
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Outline of Algorithm

3 stage Markov Chain Monte Carlo
1 Forecast from n models. Generate draws from the forecast distributions

from the n different models which gives ỹit , i = 1, . . . ,n

2 Latent variable parameters. Using the Kalman/Normal Filter method
(which includes updating) with initial value vi0, i = 1, . . . ,n, generate
variable parameters vit , i = 1, . . . ,n from the RW process.

3 SV parameters. Given draws ỹit , i = 1, . . . ,n, vt , i = 1, . . . ,n, generate draw
of the SV parameters from inverted Gamma distribution.

1 Forecasting proceeds as follows:
2 Given a generated vit , i = 1, . . . ,n, a generated SV value, a generated

ỹit , i = 1, . . . ,n and using (6) generate a one step predicted value yt+1.
3 Repeating this process gives a synthetic sample of future values and a

forecast density at time t + 1.
4 Very Important feature from this MCMC procedure: The uncertainty in the

generated forecasts from the different models is directly carried
forward in the uncertainty of the combined forecast density. In
contrast, frequentists methods use a two-step method and they suffer
from the generated regressor problem.
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ỹit , i = 1, . . . ,n and using (6) generate a one step predicted value yt+1.
3 Repeating this process gives a synthetic sample of future values and a

forecast density at time t + 1.
4 Very Important feature from this MCMC procedure: The uncertainty in the

generated forecasts from the different models is directly carried
forward in the uncertainty of the combined forecast density. In
contrast, frequentists methods use a two-step method and they suffer
from the generated regressor problem.

Van Dijk November 19, 2021 17 / 45



Individual models
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General framework for constructing forecast densities from
individual models

General stochastic volatility model with Student’s t-distributed errors given by

St+h|t − Ŝt+h|t = εt+h|t , εt+h|t ∼ T (µ,eht+h|t ,ν), (10)

ht+h|t = µ + φ(ht+h−1|t −µ) + ζt+h|t , ζt+h|t ∼ NID(0,ω2), (11)

in which |φ |< 1 and Ŝt+h|t is a point forecast of the real price.

Obtain draws from the forecast distribution of S̃t+h|t , conditional on the
model estimates

S̃t+h|t = Ŝt+h|t + ε̂t+h|t , εt ∼ T (0,e ĥt+h|t , ν̂), (12)

in which ε̂t+h|t , ĥt+h|t and ν̂ are posterior draws from the estimated
stochastic volatility model.
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Individual forecasting models

No-change model (NC)

Ŝt+h|t = St . (13)

Changes in the price index of non-oil industrial raw materials (CRB)

Ŝt+h|t = St|t(1 + π
h,rm
t −Et [π

(h)
t+h]). (14)

Futures & West Texas Intermediate (WTI) oil futures prices (Futures)

Ŝt+h|t = St|t(1 + fWTI ,h
t − sWTI

t −Et [π
(h)
t+h]), (15)
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Individual forecasting models

Spread & Spread Between the Spot Prices of Gasoline and Crude Oil
(Spread)

Ŝt+h|t = St|t exp(β̂ [sgas
t − sWTI

t ]−Et [π
(h)
t+h]), (16)

Time-Varying Parameter Model of the Gasoline and Heating Oil
Spreads (TVspread)

Ŝt+h|t = St|t exp(β̂1,t [s
gas
t − sWTI

t ] + β̂2,t [s
heat
t − sWTI

t ]−Et [π
(h)
t+h]), (17)

Oil market Vector Autoregression (VAR)

yt = b+
p

∑
i=1

Biyt−i + et , (18)
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Ŝt+h|t = St|t exp(β̂1,t [s
gas
t − sWTI

t ] + β̂2,t [s
heat
t − sWTI

t ]−Et [π
(h)
t+h]), (17)

Oil market Vector Autoregression (VAR)

yt = b+
p

∑
i=1

Biyt−i + et , (18)

Van Dijk November 19, 2021 21 / 45



Empirical contributions
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Empirical work

Forecast monthly real price of crude oil

Real-time data as in Baumeister and Kilian (2012, 2015)

Training sample: 1992:01-1998:02

Evaluation sample: 1998:03-2017:12

Forecast evaluation: Root Mean Squared Forecast Error (RMSFE), Log
Predictive Score (LPS) and their time behaviour, Time behaviour of weights
and diagnostic measures.

Forecast horizons: h = 1, h = 6, h = 12, h = 24

Consider different model combinations

BPS, BMA, BMA with rolling window weights, and equal weights
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Density and point forecast results relative to a no-change
benchmark, Evaluation sample 1998:03-2017:12

LPS

Horizon CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0,46 1,69* -0,55 -3,62 -14,26 -298,95** -297,04** -91,44** -13,23
6 -0,21 3,11 -5,10* -8,14 -29,57** -161,18** -158,22** -2,55* 12,59**

12 -12,50 10,02* -16,56** -19,14** -28,74** -141,46** -139,63** 25,85* 47,73**
24 -32,48** 26,10** -16,91** -35,25** 2,34 -152,15** -142,21** 59,14** 110,96**

RMSFE

Horizon CRB Futures Spread TVspread VAR Equal BMA BMA2 BPS

1 0,95 0,99* 1,00 1,01 0,99 0,96* 0,96* 0,90* 0,97
6 1,06* 0,97* 1,01 1,04 1,05* 0,99 0,99 0,96** 0,89**

12 1,05 0,91** 1,01 1,02 1,04 0,96** 0,96** 0,88** 0,71**
24 1,13** 0,89** 1,07 1,21** 1,01** 0,98 0,97** 0,78** 0,57**
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Time patterns of forecast means of cumulative Log
Predictive Scores relative to a no-change model benchmark
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Time patterns of forecast means of Root Mean Squared
Forecast Errors relative to a no-change model benchmark
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Observed data densities and estimated forecast density
combinations pooled over specific subperiods
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Time patterns of forecast means of model weights (vit) in
the FDC model based on BPS
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Time pattern of forecast means of intercept (v0t) in the
FDC model based on BPS
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Time pattern of forecast means of variance (σ 2
t ) for the

central equation in BPS model.
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Time patterns of forecast means of variances (σ 2
it) for

individual models in the central equation in BPS model
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Robustness checks

Robustness check: Alternative oil price series We focused on forecasting
the IRAC price of crude oil, which is commonly viewed as a proxy for the
global price of oil. Two alternative series that are frequently cited in the press
are the Brent and West Texas Intermediate (WTI) prices of crude oil.

Robustness check: Alternative model sets We estimated alternative
models, see Table earlier. The main insight is that none of the additional
models increase the forecast accuracy of the main BPS specification.

Robustness check: Alternative weighting procedures Are time-varying
parameter models as important as allowing for time-varying combination
weights for our data set? In our data set time-varying combination weights in
the main BPS specification are more important (give more accuracy) than
individual time-varying parameter models.
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Robustness checks: Alternative oil price series
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Figure: Real oil price series at monthly frequency over the forecast evaluation period:
1998:03-2017:12.
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Summary of results

1 Our combination approach systematically outperforms all benchmarks we
compare it to

Gains in relative forecast accuracy are particularly substantial for density
forecast and at longer horizons

2 The favourable forecast performance from our combination approach is not
specific to certain time periods

Large time variation in the relative performance of the various individual
models

3 Considerable time variation in the weights attached to each model

Weights are not restricted to be a convex combination in the unit interval
and can be negative.

4 Our combination is robust to model set incompleteness and misspecification

Time-varying intercept component that can adapt during episodes of low
frequency signals
Built-in diagnostic information measures about forecast inaccuracy and/or
model set incompleteness
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Risk analysis

Analyze the risk and return properties of investing in the global market for
oil using our BPS modelling approach as an investment tool

Profit and loss distribution

Value-at-Risk (VaR)

Minimum Variance Hedge (MVH)
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Profit and loss distribution (profit positive and loss
negative) over the forecast evaluation period
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Value at Risk for BPS over the forecast evaluation period
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Minimum Variance Hedge ratios over the forecast
evaluation period
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Conclusion

We have introduced a basic probabilistic and numerically efficient
Forecast Density Combination model

Our combination approach extends earlier approaches that have been applied
to oil price forecasting models, by allowing for three key features

1 Time-varying and self-learning combination weights.
2 Explicitly modelling and estimation of time-varying forecast biases and facets

of miscalibration of individual forecast densities and time-varying
inter-dependencies among models

3 Provide a diagnostic learning analysis of model set incompleteness and
learn from previous forecast mistakes.

We have provided an extensive set of empirical results about time-varying
forecast uncertainty and risk for the real price of oil
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Topics for Further Research

Modelling and Data. Use more information using many micro-data and
explore diagnostic analysis about model incompleteness and richer model set.

More on efficiency of filter methods: Different filter methods like in
machine learning: neural networks.

Policy. Applications to Policy Issues: In the field of Finance using Decision
Models. Related paper by me and co-authors in Journal of Econometrics
2019 is on Forecast Density Combinations of Dynamic Models and
Data Driven Portfolio Strategies based on the concept of momentum
patterns in the financial return data using US industrial portfolios 1929-2015.
Challenge to do this for macro-models.

More efficient parallel computing.
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