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Herding Effect

Herding effect is a well-documented social phenomenon.
Fund managers: Chevalier and Ellison (1999), Hong et al.
(2000), Clement and Tse (2005);
Models of analysts/experts: Hong and Kubik (2003), Ottaviani
and Sørensen (2006);
Scientific peer review: Park et al. (2014);
Social influence: Muchnik et al. (2013);

Has been studied in different disciplines.
Biological sciences: Baddeley (2010);
Cognitive sciences: Raafat et al. (2009);
Economics: Keynes (1936), Scharfstein and Stein (1990),
Morris and Shin (2002).

Career concerns, peer pressure, social psychological reasons...
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Expert Herding in Point Forecasting
Morris and Shin (2002) develop a model of information and
herding among experts who make point forecasts
simultaneously.
Disclosure of public information reduces the typical forecasting
accuracy when herding is strong and public information is
sufficiently inaccurate relative to private information.
Many follow-up papers on the externality of public
information; e.g., Angeletos and Pavan (2007), Bergemann
and Morris (2013) and Ui and Yoshizawa (2015).
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Probabilistic Forecasting
Probabilistic forecasting is common in many applications, such as
weather (Gneiting and Raftery, 2005), energy (Hong et al., 2019),
macroeconomic forecasting (Garratt et al., 2003).

Example:

Point forecast: 100 billions.
Probabilistic forecast: normal distribution with mean 100 billions
and std. dev. 10 billions.
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Probabilistic Forecasting

Compared to point estimation, a probabilistic forecast is
more informative (conveying uncertainties and confidence);
necessary for decision makers:

weather, macroeconomic, financial forecast, banking
regulation: managing tail risk;
newsvendor problem: estimating demand distribution;
multi-objective decision making: evaluating correlations.
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Scope of the Current Work

Herding
Probabilistic
Forecasting?
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Contributions (1/2)

We generalize the model in Morris and Shin (2002) from
point to probabilistic forecasts.
Under our model, experts can herd in two different ways:

1 Shrink the mean towards public information.
2 Spread out the variance.

Conclusions in Morris and Shin (2002) are no longer true
when experts consider variance.

Disclosure of public information improves typical forecasting
accuracy when herding is strong or public information is
sufficiently inaccurate relative to private information.
Numerical results suggest that more accurate information
(both public and private) always improves typical forecasting
accuracy.
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Contributions (2/2)

Both point and probabilistic accuracy become less accurate as
herding strengthens.
We explore model identification in a one-shot forecasting
setup. Our model can be identified

up to two parameter values based on probabilistic forecasts of
a single outcome, and
uniquely based on probabilistic forecasts of two or more
outcomes.

We implement a Bayesian procedure and estimate herding in
professional forecasts of economic indicators.
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Experts’ Information Structure

Morris and Shin (2002) consider the following model:
Consider K experts, indexed by k = 1, . . . ,K , forecasting
θ ∈ R.
A flat prior π(θ) ∝ 1
Public information y |θ ∼ N (θ, τ−1

y ).
Private information xk |θ ∼ N (θ, τ−1

x ).
Expert k’s Bayes-optimal belief

θ|xk , y ∼ N
(

τx
τx + τy

xk + τy
τx + τy

y , 1
τx + τy

)
.
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Point Forecasts: Dual Objective

Based on xk and y , expert k chooses a value µMS
k ∈ R that

minimizes
1 forecasting error and
2 deviation from others.

Expert k chooses

µMS
k = arg min

µ∈R

E

(1− r) (µ− θ)2︸ ︷︷ ︸
Error

+r Dk︸︷︷︸
Deviation

∣∣∣∣xk , y


 ,

where Dk = 1
K−1

∑
j 6=k

(
µ− µMS

j

)2
and r ∈ [0, 1] defines the

strength of herding.
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Point Forecasts: Equilibrium Solution

The (unique) equilibrium solution:

µMS
k = (1− r)τx

(1− r)τx + τy
xk + τy

(1− r)τx + τy
y . (1)

Herding experts overemphasize public information.
Under no herding (r = 0), µMS

k is the Bayes-optimal mean
prediction.
Under full herding (r = 1), µMS

k is the public signal y .
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Point Forecasts: Value of Public Information

Typical forecasting error

E[(µMS
k − θ)2|θ]

is monotone decreasing in private signal precision τx but not
in public signal precision τy .
Series of discussions on this topic: Morris and Shin (2002),
Hellwig (2005), Svensson (2006), Morris et al. (2006),
Cornand and Heinemann (2008) and James and Lawler
(2011).
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Probabilistic Forecasts: Accuracy

Expert k describes their belief with N (µk , σ
2
k) by reporting

ak = (µk , σ
2
k).

Experts measure accuracy with a proper scoring rule (Gneiting
and Raftery, 2007).
The (negative) logarithmic score

E (ak ; θ) = (µk − θ)2

2σ2
k

+ 1
2 log σ2

k + 1
2 log 2π, (2)

has many desirable properties (Du, 2021), is common in the
information theory, economics, and decision science literature
(e.g., Sims 2003 and Prelec 2004), and has become one of the
most popular proper scoring rules for continuous variables in
practice (Jordan et al., 2018).
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Probabilistic Forecasts: Deviation
Other personal objectives besides accuracy.
The score divergence from aj to ak :

Ez∼N (µj ,σ2
j )E (ak ; z)− Ez∼N (µj ,σ2

j )E (aj ; z).

“How much worse is my forecast if I am wrong and they are
right?”
The score divergence associated with the logarithmic score is
the Kullback-Leibler (KL) divergence:

DKL(aj , ak) = 1
2

[
σ2

j
σ2

k
+ (µk − µj)2

σ2
k

− 1 + log σ2
k − log σ2

j

]
.

Expert k’s average deviation from the other experts’ forecasts
then is

D(ak , a−k) = 1
K − 1

∑
j 6=k

DKL(aj , ak). (3)
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Probabilistic Forecasts: Dual Objective

Following Morris and Shin (2002), we model the experts’ strategic
complementarity with a dual objective:

ak = arg min
a

E

(1− r) E (a; θ)︸ ︷︷ ︸
Error

+r D(a, a−k)︸ ︷︷ ︸
Deviation

∣∣∣∣xk , y

 , (4)

where r ∈ [0, 1] quantifies the level of herding.
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Equilibrium Solution

Theorem 1 (Equilibrium Forecasts)
The unique equilibrium for our probabilistic forecasting model is a
normal distribution with mean

µk = µMS
k = (1− r)τx

(1− r)τx + τy
xk + τy

(1− r)τx + τy
y , (5)

and variance

σ2
k = a(xk − y)2 + d (6)

for all k ∈ {1, ...,K}, where

a =
r(1− r)τ2

x τ
2
y

[(τx + τy )2 − rτ2
x ][(1− r)τx + τy ]2 d = (1 + r)τx + τy

(τx + τy )2 − rτ2
x
.
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Equilibrium Solution: Remarks

The equilibrium mean aligns with Morris and Shin (2002).
If r = 0, ak is the Bayes-optimal forecast.
If r = 1, ak = (y , τ−1

y ).
Herding spreads variance: σ2

k ≥ σ̂2
θ .

The expected variance prediction is

E[σ2
k |θ] = (1− r 2)τx + τy

[(1− r)τx + τy ]2 ,

which is increasing in r and decreasing in τx and τy .



22/48

Typical Forecasting Error

Theorem 2
Typical forecasting error E [E (ak ; θ)|θ]

rises in the herding level r ; and
falls in τy and τx if one the following holds:

(a) τy
τx

is sufficiently small,
(b) τx

τy
is sufficiently small,

(c) r is sufficiently close to 0,
(d) r is sufficiently close to 1.
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Forecast Under Herding

High Public information precision

Low Public information precision

-2 -1 1 2
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Figure 1: The reported distribution in equilibrium. The equilibrium solution under low and high public information
precision. The public signal precision is taken as τy = 0.05, 0.5 respectively. The other model primitives are
r = 0.75 and τx = 1. In addition, we assume θ = 0 and the realized signals are xi = 0, y = 1. The mean and
variance parameter is (0.167, 5.121) and (0.667, 1.556) respectively.
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Related Work on Model Identification

Structural estimation of one-shot incomplete information games is
notoriously challenging:

Bergemann and Morris (2013) prove that a wide class of
normally distributed incomplete information games are
unidentifiable.
The model in Morris and Shin (2002) is only identifiable up to
infinitely many specifications of the parameters.
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Quadratic Regression Model

Our structural model can be written as:

σ2
k = a

w2 (µk − y)2 + d ,

for a constant weight term w = (1− r)τx/[(1− r)τx + τy ].

Assumption A1 (Structural Error)
Denote each expert k’s reported mean and variance forecasts with
mk and vk , respectively. Then, in estimation, we assume for all
k ∈ {1, ...,K} that

log(vk) = log
[ a

w2 (mk − y)2 + d
]

+ εk , (7)

where each error term εk ∼ N (0, τ−1
ε ) is independent of all other

model variables.
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Model Identifiability: One Outcome

The parameters are Θ = (θ, y , τx , τy , τε, r).

Theorem 3 (One-Shot Identification)
Under an increasingly large crowd forecasting a single outcome, we
have the following:

(i) Given mean forecasts alone, Θ is identifiable up to infinitely
many specifications.

(ii) Given mean and variance forecasts, Θ is identifiable up to two
possible specifications. Furthermore, in the specification with
a larger level of herding, private information is more precise.
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Model Identifiability: Multiple Outcomes

Theorem 4 (Identifiability Under Multiple Outcomes)
Consider multiple simultaneous forecasting games with common
level of herding.

If information levels are not all identical, then the model
parameters can be identified with sufficiently many probabilistic
forecasts per outcome.

However, under the same conditions, the model parameters are
identifiable up to infinitely many specifications based on point
forecasts alone.
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ECB Survey

Implement a Bayesian procedure for estimating the model.
Apply to Surveys of Professional Forecasters by the European
Central Bank (ECB):

HICP, RGDP, and UNEMP between 1999 - 2019.
Current and next 4 years.
On average 40 forecasts per outcome.
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ECB: Level of Herding

Indicator−Specific Lower Bound
Common Estimate
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(a) Annual average estimate of the herding level r .
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ECB: Impact of Herding on Typical Accuracy
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(b) Annual relative loss in the typical probabilistic accuracy due to herding.
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Remarks on Data Analysis

Level of herding fluctuates over time.
Herding can be more detrimental to probabilistic accuracy
than to point accuracy
Under longer horizons (four-year and five-year horizons), the
level of herding fluctuates less and remains at a lower level.
Robustness: Similar results under data from the Federal
Reserve Bank of Philadelphia.
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Summary of Results

Herding is a well-known bias in forecasting. Probabilistic
forecasting has become more common. We investigated the
largely unexplored intersection.
In probabilistic forecasting, an expert can herd in two ways:

1 Shrink the mean towards the public information.
2 Spread out the variance.

Both point and probabilistic forecasts under herding are less
accurate ...
... but probabilistic forecasts react more naturally to new
information than point forecasts.

Robustness: Several extensions in the Electronic Companion.
Probabilistic forecasts hold more information about the
experts’ information structure, which facilitates estimation.
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Extensions and Robustness

Normally distributed signals:
Log-score + Rényi’s α-divergence
Quadratic accuracy score + L2 distance

Beta-binomial model
Multinomial model
General model of first two moments.
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Future Studies

Some future directions:
1 Allow heterogeneity in experts’ parameters.
2 Mechanism design for reducing herding behavior.
3 Aggregation of forecasts under herding.
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Thank you!
Any questions?
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Simulation Results
Outcome−Specific Upper Bound Outcome−Specific Lower Bound True Value of the Parameter

Figure 4: Estimated model parameters under increasingly large sets of simulated forecasts. The shaded regions
are the 95% (pointwise) credible intervals under varying numbers of forecasters. The solid lines in the middle of
each shaded region are the estimated posterior means. Horizontal dashed lines are the true parameter values. The
parameter estimates converge to the two indistinguishable specifications of the parameters as the crowd grows
larger. Model parameters: θ = 0.2, τ−1/2

ε = 0.01, and (r, τx , τy ) = (0.1, 1, 1), with an alternative parameter
specification (r′, τ ′x , τ

′
y ) ≈ (0.31, 2.20, 0.64).
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Contours of Typical Error

(a) Point Error
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(b) Probabilistic Error
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Figure 5: Typical point and probabilistic errors as measured by the expected squared error and the expected
negative logarithmic score, respectively. Typical point error does not reduce monotonically in τy , whereas typical
probabilistic error does. Here the herding level is r = 0.75.
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Model Validation

Table 1: Model comparison between our model and the no-herding baseline model in terms of in-sample
log-likelihood (In-Sample ML) and leave-one-out cross validation (LOO ELPD).

In-Sample ML LOO ELPD
Survey Subset # of

Tasks
Tasks with
Improvement

Likelihood
Ratio

Tasks with
Improvement

Likelihood
Ratio

ECB All 471 58.4% 2.36 45.0% 1.66
r̂ > 0.1 350 70.6% 2.89 57.4% 1.98
r̂ > 0.2 227 80.6% 3.80 71.4% 2.51
r̂ > 0.3 134 85.8% 5.13 79.1% 3.03
r̂ > 0.4 56 87.5% 7.35 82.1% 3.47

FED All 232 67.7% 3.80 56.5% 2.47
r̂ > 0.1 167 81.4% 4.86 71.3% 3.17
r̂ > 0.2 82 87.8% 7.34 86.6% 4.92
r̂ > 0.3 31 90.3% 8.10 90.3% 6.40
r̂ > 0.4 9 88.9% 9.38 77.8% 6.60
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Model Connection

A symmetric equilibrium forecast satisfies

πk = (1− r)π̂k + r 1
K − 1

∑
j 6=k

E (πj |xk , y) . (8)

Morris and Shin (2002) solution is

µMS
k = (1− r)θ̂k + r 1

K − 1
∑
j 6=k

E
(
µMS

j
∣∣xk , y

)
, (5)

where in general θ̂k = E (θ|xk , y).
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