

Subjective Well-Being and Social Media

Stefano M. Iacus – JRC

Research Seminar Series, Institute for Statistics and Mathematics, WU Vienna - 24/11/2021

The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.

joint work with:

- A. Hino (Waseda University)
- G. Porro (Uninsubria)
- T. Carpi, S. Salini, E. Siletti (Unimi)
- N. Yoshida (Tokyo University)

"If there were in the world today any large number of people who desired their own happiness more than they desired the unhappiness of others, we could have a paradise in a few years." Bertrand Russell

It started in 2012 in Italy, then moved to Japan in 2015,...

SM data and **happiness**: Twitter has been previously used to build a social media happiness indicator known as **iHappy** (Curini et al. 2015) and similarly for Japan: **iGenki** (Iacus & Yoshida, 2015)

...then moved from "happiness" to "well-being"

University of Milan

Western	Eastern	Emoji	Meaning
:-)	(^_^)	<u>e</u>	Happiness
:-($(1;\omega;1)$	8	Sadness
>:((# °Д°)	S	Anger
>:O	(;)	8	Surprise

Tokyo University

Waseda University

European Commission

University of Insubria

To ask or not to ask ?

★If you want to have a complete and reliable measure of well-being, you have **to ask** people for a self-evaluation of their own well-being conditions (**from "objective" measurement to survey approach**: Kahneman and Krueger (2006), Stiglitz Commission (2009), etc.)

★If you want to have an unbiased estimate of well-being, you have **not to ask** people about their own well-being conditions (drawbacks of survey approach: Deaton (2012), Kahneman et al. (2004), etc.)

European Commission

Wellbeing, well being or well-being?

Wellbeing, Well Being and Well-Being used in the titles of books published in English since 1800 till the year 2000.

How to define "subjective" well-being

According to the OECD (2013) guidelines, **subjective well-being**, can be defined looking at different aspects:

- hedonic or affective: the focus is on a person's feeling or emotion, typically in a given moment in time
- eudaimonic: the type of happiness or contentment that is achieved through self-actualization and having meaningful purpose in one's life.
- life evaluation: an assessment of life <u>"as a whole"</u> and requires a judgment by the individual*, rather than a description of a temporary emotional state.

* How people remember their experiences that differs significantly from how they actually experienced them.

Subjective Well-Being and Social Media

Stefano M. lacus **Giuseppe Porro**

2021: New book!

No, it's not about Buthan

The **Subject Well-Being** (**SWB**) index that we will present today tries to replicate the *Comprehensive Psychological Well-Being* (CPWB) by the New Economic Foundation (2012)

I. personal well-being:

- emotional (emo) well-being: do you express positive feelings? [the overall balance between the frequency of experiencing positive and negative emotions, with higher scores showing that positive emotions are felt more often than negative ones]
- 2. satisfying life (sat): are you satisfied about your life? [having positive evaluation of one's life overall]
- vitality (vit): do you feel healthy? [having energy, feeling well-rested and healthy, and being physically active]
- 4. resilience and self-esteem (res): are you optimistic about you and your condition? [a measure of individual psychological resources, optimism and ability to deal with life difficulties]
- 5. positive functioning (fun): can you make it? [feeling free to choose and having the opportunity to do it; being able to make use of personal abilities and feeling absorbed and gratified in activities]
- II. social well-being:
 - 6. trust and belonging (tru): do you trust or express gratitude toward the others? [trusting other people, feeling to be treated fairly and respectfully and feeling sentiments of belonging]
 - 7. relationships (rel): do you feel alone? [extent and quality of interactions in close relationships with family, friends and others who provide support]

III. well-being at work:

8. quality of job (wor): are you satisfied in your daily work? [feeling job satisfaction, satisfaction with work-life balance, evaluating the emotional experiences of work and work conditions]

SWB-I and SWB-J are simple averages of the 8 indicators. More on this later on...

21 countries Italy missing

Why Buthan ?

In the 60s, the King of Buthan introduced an index called **Gross National Happiness** (GNH)

It is one of the first attempts to define the task of the government action in terms of individual and collective well-being

GNH, in fact, has been officially included in the Constitution of Buthan enacted in 2008, that stipulates:

"The State shall strive to promote those conditions that will enable the pursuit of Gross National Happiness"

From tweets to subjective well-being Textual analysis approach

How do we extract SWB ?

	Type of Learning Algorithm					
	Unsupervised Supervise					
Target of Estimation						
Individual estimation	Corpora approach, NLP, WordFish, topic models, word2vec, clustering methods, etc	SVM, Random Forests, Artificial Neural Network, Deep Learning, WordScores, LLS, etc				
Aggregated estimation	aggregation of the above	ReadMe, iSA				

Document-term matrix

"What is it?" "That is a dolphine." "No, it is a killer whale!"

$\operatorname{Document}/\operatorname{Term}$	what	is	it	that	a	$\operatorname{dolphine}$	no	killer	whale
document 1	1	1	1	0	0	0	0	0	0
document 2	0	1	0	1	1	1	0	0	0
document 3	0	1	1	0	1	0	1	1	1
$s_1 = (1, 1, 1)$ $s_2 = (0, 0, 0)$ $s_3 = (0, 1, 1)$	0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1	$, 0, \ 1, \ 0,$	0, 0, 0, 1,	$egin{array}{c} 0, 0) \ 0, 0) \ 1, 1) \end{array}$)	<= Vec	tors	s of st	ems

Document-term matrix

$$s_1 = (1, 1, 1, 0, 0, 0, 0, 0, 0)$$

$$s_2 = (0, 0, 0, 1, 1, 1, 0, 0, 0)$$

$$s_3 = (0, 1, 1, 0, 1, 0, 1, 1, 1)$$

S_i = unique vector of stems

We want to classify text into *M* categories represented by set *D*, e.g.,

 $D = \{D_0 = \text{OffTopic}, D_1 = \text{positive}, D_2 = \text{neutral}, D_M = \text{negative}\}$

Statistical problem

law of total probabilities

 $D = \{D_0 = \text{OffTopic}, D_1 = \text{positive}, D_2 = \text{neutral}, D_M = \text{negative}\}$

S = vector of stem/words

P(D|S) = any machine learning algorithm, e.g. E(Y|X)!

 $\text{instead of } \begin{array}{c} P(D) = P(D|S)P(S) \\ _{M \times 1} & _{M \times \bar{K}} & _{\bar{K} \times 1} \end{array} \text{ we focus on } \begin{array}{c} P(S) = P(S|D)P(D) \\ _{\bar{K} \times 1} & _{\bar{K} \times M} & _{M \times 1} \end{array}$

 $P(S = S_k | D = D_i)$ = probability of feature vector S_k to appear in a text that expresses opinion D_i

The inverse problem $P(D) = \left[P(S|D)^T P(S|D)\right]^{-1} P(S|D)^T P(S)$ $M \times 1$ $M \times M$ $M \times \bar{K}$ $\bar{K} \times 1$

[hint: $\hat{\beta} = (X^T X)^{-1} X^T Y$]

ReadMe: Hopkins & King (2010, 2013)

iSA: Curini, Ceron, Iacus (2016)

instead of P(D) = P(D|S)P(S) $_{M \times 1}$ $_{M \times \bar{K}}$ $_{\bar{K} \times 1}$ we focus on P(S) = P(S|D)P(D) $_{\bar{K} \times 1}$ $_{\bar{K} \times M}$ $_{M \times 1}$

The inverse problem

The space $S \times D$. When the noise category D_0 is dominant, the estimation of P(S|D) is reasonably more accurate than the estimation of counterpart P(D|S).

Statistically efficient

Fast learner (20x)

iSA is a fast and extended version of ReadMe

European Commission

iSA compared to ReadMe

- works with high number of categories D
- uses very little memory
- replaces bagging with data augmentation in a single run => lower variance of estimates
- provides exact standard errors
- unbiased as ReadMe
- is blazing fast

n = 25,000	\mathbf{RF}	SVM	ReadMe	iSA	iSAX
MAE	0.059	0.099	0.044	0.002	0.014
χ^2	0.116	0.329	0.120	0.000	0.010
Time	798.3s	4640.9s	105s	2.6s	5.7s

From tweets to SWB index

How to code then these dimensions?

I. personal well-being:

- emotional (emo) well-being: do you express positive feelings? [the overall balance between the frequency of experiencing positive and negative emotions, with higher scores showing that positive emotions are felt more often than negative ones]
- 2. satisfying life (sat): are you satisfied about your life? [having positive evaluation of one's life overall]
- 3. vitality (vit): do you feel healthy? [having energy, feeling well-rested and healthy, and being physically active]
- 4. resilience and self-esteem (res): are you optimistic about you and your condition? [a measure of individual psychological resources, optimism and ability to deal with life difficulties]
- 5. positive functioning (fun): can you make it? [feeling free to choose and having the opportunity to do it; being able to make use of personal abilities and feeling absorbed and gratified in activities]

II. social well-being:

- 6. trust and belonging (tru): do you trust or express gratitude toward the others? [trusting other people, feeling to be treated fairly and respectfully and feeling sentiments of belonging]
- 7. relationships (rel): do you feel alone? [extent and quality of interactions in close relationships with family, friends and others who provide support]

III. well-being at work:

8. quality of job (wor): are you satisfied in your daily work? [feeling job satisfaction, satisfaction with work-life balance, evaluating the emotional experiences of work and work conditions]

Hypothetical world

Example (En)	Example (JP)	Classification
how lucky I am !	ラッキだ!	positive
what a beautiful day :)	美しく晴れ渡った日	positive
finally I passed the exam!	やっと合格した。	positive
there are good and bad people	いい人と悪い人がいる。	neutral
tonight I have a date with my	今晩彼女とデートする予定	positive
girlfriend <3	<3。	
my girlfriend quit me last night	昨晩彼女に振られちゃった。	negative
I feel sick and I have headache	風邪を引いて、頭が痛いんだ。	negative

TABLE 3.2

Example of classification rule from fictitious texts with the aim of classifying the *emotional* (emo) component of the *personal* well-being.

🔅 👤 Follow

頭がぼーっとする眠れぬ夜。風邪でまたお熱が 出てきてしまいました。38.6度..... ♀早く回復 して自分。健康は気力から。明日は元気にな る!心と身体が一致しますように↓神様、仏 様、まる子様。みんなも流行ってるから気をつ けてね 중

Translated from Japanese by bing

Wrong translation?

Sleepless nights to dazed head. In the cold I have also came out hot. 38.6 degrees. 🛞 As soon as your own. Health comes from energy. Tomorrow I will be fit! Match the mind and body are so 🙏 God, Buddha, like child like. Watch out everyone's favorite from 🤯

Real world

can be classified as *positive* for the components **emo** and **res** and *negative* for the component **vit** of the index

European Commission For each day *d* and SWB component (emo, tru, res, etc) iSA is run using the four categories (OffTopic, positive, neutral and negative) and each index is calculated as the following ratio (e.g., for emo):

$$\texttt{emo}_d := \frac{\%\texttt{positive}}{\%\texttt{positive} + \%\texttt{negative}} \in [0, 1]$$

SWB is the simple average of the 8 components.

Data and coding strategy

- For Italy 250.4M of tweets, period 01-02-2012/21/0/2018; For Japan, 60.8M of tweets, period 24-08-2015/31-12-2018.
- We later collected data from 01-11-2019 till 11-10-2020 for Italy (13M tweets) and 20-09-2020 for Japan (14M tweets) at a rate of 50K per day.
- We trained iSA with 3069 fully hand coded tweets for the Japanese set and 2952 for the Italian set.
- Coders: mother language. Strategy: Delphi method.
- We validated the analysis looking at MAE, mean error (0.5%-2.5%).

Dimension	Min	Q1	Median	Mean	Q3	Max	sub-training set size
emo	0.14	1.50	2.14	2.23	2.88	6.63	
fun	0.10	0.94	1.37	1.50	1.92	5.17	
rel	0.12	0.81	1.17	1.32	1.73	3.99	
res	0.09	0.76	1.11	1.26	1.60	6.70	200%
sat	0.13	0.87	1.32	1.42	1.77	5.34	3070
tru	0.01	0.91	1.39	1.57	2.07	5.58	
vit	0.01	0.96	1.45	1.58	2.06	5.33	
wor	0.12	0.89	1.25	1.35	1.70	4.05	
emo	0.22	1.10	1.53	1.60	2.01	4.45	
fun	0.08	0.72	1.06	1.12	1.44	3.71	
rel	0.03	0.66	0.93	0.99	1.28	2.95	
res	0.08	0.62	0.91	1.02	1.31	4.90	500%
sat	0.11	0.70	1.07	1.12	1.47	4.07	5070
tru	0.11	0.72	1.09	1.18	1.54	3.85	
vit	0.09	0.70	1.06	1.15	1.54	4.26	
wor	0.14	0.73	1.02	1.09	1.38	3.14	
emo	0.11	0.60	0.85	0.88	1.12	2.26	
fun	0.04	0.42	0.61	0.65	0.86	2.00	
rel	0.04	0.40	0.57	0.61	0.79	1.86	
res	0.05	0.37	0.56	0.61	0.79	2.09	2007
sat	0.04	0.41	0.61	0.66	0.87	2.06	0070
tru	0.05	0.41	0.62	0.66	0.85	1.93	
vit	0.03	0.40	0.60	0.63	0.81	1.83	
wor	0.04	0.39	0.58	0.61	0.78	1.74	

1000 runs cv results

Comparison with other indexes

	SWB-I	WHR	WHR	WHR	BES	BES	BES
		life	healthy life	positive	life	work	job
Year		ladder	exp. at birth	affect	satisfaction	satisfaction	insecurity
2005							
2006							
2007		6.57	72.26	0.72			
2008		6.78	72.44	0.64			
2009		6.33	72.62	0.78		7.30	
2010		6.35	72.80	0.60	43.40		
2011		6.06	72.84	0.66	45.90		
2012	48.90	5.84	72.88	0.67	35.30		
2013	52.20	6.01	72.92	0.78	35.00	7.20	12.60
2014	49.70	6.03	72.96	0.72	35.40	7.20	10.20
2015	48.70	5.85	73.00	0.69	35.10	7.30	8.60
2016	50.50	5.95	73.20	0.69	41.00	7.30	7.40
2017	57.70	6.20	73.40	0.66	39.60	7.40	6.60
2018	55.70	6.52	73.60	0.65	41.40	7.40	6.00
2019	54.10	6.45	73.80	0.63	43.20	7.50	5.70
2020	42.40	6.49	74.00	0.67			

BES: Benessere Equo e Solidale, based on National Institute of Statistics data and survey data, Italy.

JIJI: Periodic survey from Jiji Press in Japan.

WHR: Word Happiness Report

	SWB-I	SWB-J
WHR: life ladder	0.15	-0.73
WHR: healthy life exp. at birth	-0.05	-0.87
WHR: positive affect	-0.18	0.10
BES: life satisfaction	0.64	
BES: work satisfaction	0.65	
BES: job insecurity	-0.52	
JIJI: life satisfaction		-0.37
JIJI: economic performance		0.64
JIJI: better life		0.95

	SWB-J	WHR	WHR	WHR	III	III	JIJI
		life	healthy life	positive	life	economic	better
Year		ladder	exp. at birth	affect	satisfaction	performance	life
2006							
2007		6.24	73.44	0.73			
2008		5.91	73.56	0.78			
2009		5.84	73.68	0.78			
2010		6.06	73.80	0.83			
2011		6.26	73.98	0.78			
2012		5.97	74.16	0.78			
2013		5.96	74.34	0.79			
2014		5.92	74.52	0.74			
2015	54.42	5.88	74.70	0.77	0.14	0.18	0.28
2016	53.64	5.95	74.80	0.76	0.17	0.20	0.22
2017	53.23	5.91	74.90	0.74	0.19	0.22	0.30
2018	52.53	5.79	75.00	0.70	0.21	0.22	0.28
2019	35.30	5.91	75.10	0.74	0.20	0.19	0.14
2020	27.00	6.12	75.20	0.74	0.19	0.17	0.08

Cross-country comparison

Weekly Series - SWB-I - SWB-J

Structural Equation Modelling (SEM, quarterly data)

 $SWB-I/SWB-J \leftrightarrow Well-being$

and similarly for Japan

 $\label{eq:GDP} \text{GDP growth} + \text{Consumption growth} + \text{Investment growth} + \text{Unemployment rate}$

Well-being \leftrightarrow Economy + Life Expectancy at 40

 $\mathrm{SWB}\text{-}\mathrm{I}/\mathrm{SWB}\text{-}\mathrm{J} \leftrightarrow \mathrm{Well\text{-}being}$

Relationship			Coefficient	Std.Err.	
Japan 2015-2018					
Well-being	\mapsto	SWB-J	0.940^{***}	0.101	
Economy	\mapsto	Economic growth	0.406	0.497	
Economy	\mapsto	Unemployment rate	-0.377^{**}	0.148	
Economy	\mapsto	Consumption growth	1.173^{***}	0.159	
Economy	\mapsto	Investment growth	0.730***	0.155	
Well-being	\leftarrow	Economy	0.178	0.123	
Well-being	\leftarrow	Life expectation at 40	-0.362^{**}	0.159	
Economic growth	cov	Life expectation at 40	-0.743^{***}	0.174	
Economic growth	COV	Consumption growth	0.404	0.525	
Economic growth	COV	Investment growth	0.597^{*}	0.358	
Economic growth	cov	Unemployment rate	-0.440^{**}	0.195	
Italy 2015-2018					
Well-being	\mapsto	SWB-I	0.597^{***}	0.113	
Economy	\mapsto	Economic growth	0.514^{***}	0.190	
Economy	\mapsto	Unemployment rate	-0.581^{***}	0.178	
Economy	\mapsto	Consumption growth	0.597^{***}	0.178	
Economy	\mapsto	Investment growth	0.398**	0.179	
Well-being	\leftarrow	Economy	0.921**	0.375	
Well-being	$\leftarrow \!$	Life expectation at 40	0.834^{***}	0.242	
Economic.growth	cov	Life expectation at 40	0.246^{**}	0.123	
Economic.growth	COV	Consumption growth	0.121	0.137	
Economic.growth	COV	Investment growth	0.230	0.134^{*}	
Economic.growth	COV	Unemployment rate	0.004	0.121	

Note:

*p<0.1; **p<0.05; ***p<0.01

Controlling bias

(come back to this later if time left)

Controlling bias: Small Area Estimation (SAE) approach

 $\mu_{dt} = \mathbf{x}' \mathbf{\beta} + u_d + v_{dt} =$ **unobservable** variable (true wellbeing) for region *d* at time *t*

x = vector of covariates/official statistics

- $u_d \sim N(0, \sigma_1^2) =$ region *d* specific variability [AR(1) with parameter ρ_1]
- $v_{dt} \sim N(0, \sigma_2^2) =$ spatio-temporal variability [SAR(1) with parameter ρ_2]

 $\hat{y}_{dt} = \mu_{dt} + e_{dt}$

observable variable (SNS indicator) for region *d* at time *t*, biased/unrealiable

Controlling bias: Small Area Estimation (SAE) approach

$$\mu_{dt} = \mathbf{x}'\mathbf{\beta} + u_d + v_{dt} + \hat{y}_{dt} = \mu_{dt} + e_{dt}$$

$$\hat{y}_{dt} = \mathbf{x}' \mathbf{\beta} + u_d + v_{dt} + e_{dt}$$
 statistical model

$$\boldsymbol{\theta} = (\sigma_1^2, \sigma_2^2 \rho_1, \rho_2, \boldsymbol{\beta})$$

$$\boldsymbol{\theta} \to \widehat{\boldsymbol{\theta}} \qquad \qquad \hat{\boldsymbol{\mu}}_{dt} = \boldsymbol{x}' \widehat{\boldsymbol{\beta}} + \widehat{\boldsymbol{u}_d} + \widehat{\boldsymbol{v}_{dt}}$$

It can be proved that $\hat{\mu}_{dt}$ is an unbiased estimator of μ_{dt}

Weighting by Twitter penetration rate stabilize estimates

$$\hat{y}_{dt}^{w} = \frac{1}{\sum_{i=1}^{n_{dt}} w_{idt}} \sum_{i=1}^{n_{dt}} y_{idt} w_{idt}$$

Subjective Well-Being social media indicators and COVID-19

Hedonometer (Spain/Spanish)

hedonometer.org

(based on supervised word scoring)

GNH (Australia, NZ, South Africa)

Greyling, Rossouw, and Adhikari (2020).

(based on supervised sentiment coding + word emotion lexicon)

World Well-Being Project (USA): Guntuku et al. (2020). Based on sentiment + LIWC + LDA.

World Well-Being Project (USA): Guntuku et al. (2020). Based on sentiment + LIWC + LDA.

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2019 vs 2020
SWB-I	48.9	52.2	49.7	48.7	50.5	57.7	55.7	54.1	42.4	-11.7
SWB-J	—	—	—	54.4	53.6	53.2	52.5	35.3	27.0	-8.3

limiting trend: $dX_t = \alpha(\beta - X_t)dt + \sigma X_t^{\gamma}dW_t$, $X_0 = x_0$

Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2019 vs 2020
SWB-I	48.9	52.2	49.7	48.7	50.5	57.7	55.7	54.1	42.4	-11.7
SWB-J	—	—	—	54.4	53.6	53.2	52.5	35.3	27.0	-8.3

385.	A
A A	
Se of the	
3-5-7	

Index	α	β	σ	γ	Model	AIC
	3.16	38.99	14.7		VAS	787.0
	(2.41)	(6.22)	(0.56)			
	3.57	39.54	0.33		GBM	782.9
	(2.46)	(4.60)	(0.01)			
SWB-I						
	3.34	39.28	2.20		CIR	781.9
	(2.42)	(5.35)	(0.08)			
	3.42	39.37	1.12	0.68	CKLS	783.6
	(2.44)	(5.08)	(·)	(·)		
	12.92	28.44	26.25		VAS	1090.0
	(5.52)	(2.19)	(1.05)			
	11.46	28.43	0.83		GBM	1027.4
	(5.71)	(2.23)	(0.03)			
SWB-J						
	11.98	28.42	4.62		CIR	1055.1
	(5.61)	(2.21)	(0.19)			
	11.64	28.41	0.05	1.84	CKLS	1010.7
	(5.93)	(2.22)	(0.01)	(0.08)		

SDE model calibrated on weekly data

limiting trend: $dX_t = \alpha(\beta - X_t)dt + \sigma X_t^{\gamma}dW_t$, $X_0 = x_0$

Explaining the dropdown of SWB using external potential factors

Alternative data sources

Variable	area	Source	-
SWB-I, SWB-J	subjective well-being	Twitter	-
Solitude	well-being	Google Trends	
Depression	well-being	Google Trends	
Stress	well-being	Google Trends	
Insomnia	well-being	Google Trends	
Health	health/well-being	Google Trends	
PM2.5	health/environment	WAQI	
Temperature	environment	WAQI	
Cases	pandemic	WHO	
Deaths	pandemic	WHO	World Health
Coronavirus, CoronavirusNews	pandemic	Google Trends	Organization
(コロナ) Corona, CoronaNews	pandemic	Google Trends	
Covid, CovidNews	pandemic	Google Trends	
Rt	pandemic	Google Trends	
Wuhan	pandemic	Google Trends	
Unemployment, UnemploymentNews	economy	Google Trends	
Economy, EconomyNews	economy	Google Trends	
GDP, GDPNews	economy	Google Trends	
FTSEMIB	economy	Yahoo! Finance	vahoo/
Nikkei	economy	Yahoo! Finance	finance
AdultContent	leisure	Google Trends	
FB.CLI	health/well-being	Facebook	
FB.ILI	health/well-being	Facebook	
FB.MC	behavioural	Facebook	
FB.DC	behavioural	Facebook	C 7
FB.FH	well-being	Facebook	

Correlation: well-being impacted by different factors through time

European Commission a bit of data science (Dynamic Elastic Net) to select factors

daily data, *t* from 02-12-2020, moving window of 30 days; λ_t determined dynamically via cross validation for each time window

European Commission

...and again SEM (no time for details)

 $\begin{array}{l} WellBeing \leftrightarrow VirusSearch + HealthStatus + Mobility + Finance + SocDist\\ PsySearch \leftrightarrow WellBeing\\ AdultContent \leftrightarrow WellBeing\\ SWB-I/SWB-J \leftrightarrow WellBeing\\ \end{array}$

...and again SEM (no time for details)

European Commission

Latent	Interpretation	Relationship
VirusSearch	pandemic getting better, less fear of pandemic	the higher its value, the better the well- being
HealthStatus	experience or fear about symp- toms	the higher its value, the higher concerns about health and the lower the well-being
Mobility	mobility restrictions	the stricter the implementation, the harder to stand restrictions and the lower the well-being
SocDist	social distancing practice	the wider its use, the harder to stand dis- tancing and the lower the well-being
Finance	fear for own economic condi- tions	the higher its value, the lower the well- being
PsySearch	driven by the search for depres- sion symptoms	the higher these symptoms, the lower the well-being.

Summary of SEM results for both countries

European Commission

Joint work(s) with

Giuseppe Porro (Uninsubria) Silvia Salini (Unimi) Elena Siletti (Unimi) Tiziana Carpi (Unimi) Nakahiro Yoshida (Tokyo U.) Airo Hino (Waseda U.)

Subjective Well-Being and Social Media

Stefano M. Iacus Giuseppe Porro

https://bit.ly/3FI8kMZ

stefano.iacus@ec.europa.eu

