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Deep Learning



Deep Learning

Deep Learning is a trendy topic in the machine learning community



What is Deep Learning?

Built over the framework of neural networks

First formulations date back at least to the 1960s: neural networks
with multiple layers

The term “deep learning” became popular from the paper by
Krizhevsky et al. in 2012

Now they have attracted wide-spread attention; mainly for
‘supervised’ classification, where they very often outperform
alternative learning methods

Deep Learning is a set of algorithms able to gradually learning a huge
number of parameters in an architecture composed by multiple non linear
transformations (multi-layer structure)
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Learning vs Deep Learning



Deep Learning

The idea is to mimic the brain...

(in particular the women’s brains!)

The connections between nodes reflect connections between neurons

A very flexible black-box able to learn whatever input-output
mappings (provided that data are large enough)



Deep Learning

The idea is to mimic the brain... (in particular the women’s brains!)

The connections between nodes reflect connections between neurons

A very flexible black-box able to learn whatever input-output
mappings (provided that data are large enough)



Deep Learning

The idea is to mimic the brain... (in particular the women’s brains!)

The connections between nodes reflect connections between neurons

A very flexible black-box able to learn whatever input-output
mappings (provided that data are large enough)



Facebook’s DeepFace

DeepFace (Yaniv Taigman) is a deep learning facial recognition system
that employs a nine-layer neural network with over 120 million connection
weights.

It can identify human faces in digital images with an accuracy of 97.35%.



Examples of Deep Learning

Artificial Neural Network with multiple layers and advanced neural network
architectures (Feed Forward, Recurrent, Auto-encoder, Convolution NN).
Most of them use the stochastic gradient descent algorithm. Mainly
developed in supervised classification (for an historical overview:
Schmidhuber, 2015)

Deep Generative Models (Rezende et al., 2014) are latent variable models
with an hierarchical structure, which are computationally scalable to high
dimensional data

Causal effect inference via deep learning (Louizos et al., 2017)

Combination of graphical models and deep learning (sum-product networks,
Peharz, 2017)

Deep learning for anomaly detection (Feng et al., 2017) and missing data
(Mattei and Frellsen, 2018)

Multilayer Gaussian Mixture Models (Van den Ooord and Schrauwen, 2014)
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Deep Gaussian Mixture Models



Gaussian Mixture Models (GMM)

Growing popularity, widely used.

Many extensions for:
Dimensionally reduced parameterizations: Banfield and Raftery (1993), Celeux
and Govaert (1995), Bouveyron et al. (2007) ...
High-dimensional data via factorial structures: Ghahrami and Hilton (1997),
McLachlan et al. (2003), Yoshida et al. (2004), Baek and McLachlan (2008),
McNicolas and Murphy (2008), Montanari and Viroli (2010), K. Murphy et al.
(2019) ...
Non-Gaussian data: McLachlan et al. (2007), Lin (2009), Andrews and
McNicholas (2011), Lee and McLachlan (2011-2018), Subedi and McNicholas
(2014), Franczak et al. (2014), ...
Merging: Hennig (2010), Baudry et al. (2010), Melnykov (2016) ...
Mixtures of mixtures models: Li (2005), Viroli (2010), Malsiner-Walli et al.
(2017)...
Model selection: Richardson and Green (1997), Biernacki et al. (2000), Raftery
and Dean (2006), Malsiner-Walli et al. (2016)...



Why Deep Mixtures?

A Deep Gaussian Mixture Model (DGMM) is a network of multiple layers
of latent variables, where, at each layer, the variables follow a mixture of
Gaussian distributions



Gaussian Mixtures vs Deep Gaussian Mixtures

Given data y, of dimension n × p, the mixture model

f (y;θ) =

k1∑
j=1

πjφ
(p)(y;µj ,Σj)

can be rewritten as a linear model with a certain prior probability:

y = µj + Λjz + u with probab πj

where

z ∼ N(0, Ip)

u is an independent specific random errors with u ∼ N(0,Ψj)

Σj = ΛjΛ
>
j + Ψj
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Gaussian Mixtures vs Deep Gaussian Mixtures

Now suppose we replace z ∼ N(0, Ip) with

f (z;θ) =

k2∑
j=1

π
(2)
j φ(p)(z;µ

(2)
j ,Σ

(2)
j )

This defines a Deep Gaussian Mixture Model (DGMM) with h = 2 layers.



Deep Gaussian Mixtures

Imagine h = 2, k2 = 4 and k1 = 2:

k = 8 possible paths (total subcomponents)

M = 6 real subcomponents (shared set of parameters)

M < k thanks to the tying

Proposed by Van den Ooord and Schrauwen (2014). Special mixtures of
mixtures model (Li, 2005)
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Do we really need DGMM?

Consider the k = 4 clustering problem
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Do we really need DGMM?

A deep mixture with h = 2, k1 = 4, k2 = 2 (k = 8 paths, M = 6)

In the DGMM we cluster data k1 groups (k1 < k) through f (y|z): the
remaining components in the previous layer(s) act as density
approximation of global non-Gaussian components

Automatic tool for merging mixture components: merging is
unit-dependent

Thanks to its multilayered architecture, the deep mixture provides a
way to estimate increasingly complex relationships as the number of
layers increases
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Dimensionally reduced DGMM

Tang et al. (2012) proposed a deep mixture of factor analyzers with a
stepwise greedy search algorithm: a separate and independent estimation for
each layer (error propagation). Identifiability is not addressed.

A general strategy is presented and estimation is obtained in a unique
procedure by a stochastic EM.

Fast for h < 4; computationally more demanding as h increases.

Package deepgmm on CRAN R.
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Dimensionally reduced DGMM

Suppose h layers. Given y, of dimension n× p, at each layer a linear model
describe the data with a certain prior probability as follows:

(1) yi = η
(1)
s1 + Λ

(1)
s1 z

(1)
i + u

(1)
i with prob. π

(1)
s1 , s1 = 1, . . . , k1

(2) z
(1)
i = η

(2)
s2 + Λ

(2)
s2 z

(2)
i + u

(2)
i with prob. π

(2)
s2 s2 = 1, . . . , k2

... (1)

(h) z
(h−1)
i = η

(h)
sh + Λ

(h)
sh z

(h)
i + u

(h)
i with prob. π

(h)
sh , sh = 1, . . . , kh

where u is independent on z and layers that are sequentially described by
latent variables with a progressively decreasing dimension, r1, r2, . . . , rh,
where p > r1 > r2 > . . . , > rh ≥ 1.



Let Ω be the set of all possible paths through the network. The generic path
s = (s1, . . . , sh) has a probability πs of being sampled, with∑

s∈Ω

πs =
∑

s1,...,sh

π(s1,...,sh) = 1.

The DGMM can be written as f (y; Θ) =
∑

s∈Ω πsN(y;µs ,Σs), where

µs = η(1)
s1

+ Λ(1)
s1

(η(2)
s2

+ Λ(2)
s2

(. . . (η(h−1)
sh−1

+ Λ(h−1)
sh−1

η
(h)
h )))

= η(1)
s1

+
h∑

l=2

(
l−1∏
m=1

Λ(m)
sm

)
η(l)
sl

and

Σs = Ψ(1)
s1

+ Λ(1)
s1

(Λ(2)
s2

(. . . (Λ(h)
sh Λ(h)>

sh + Ψ(h)
sh ) . . .)Λ(2)>

s2
)Λ(1)>

s1

= Ψ(1)
s1

+
h∑

l=2

(
l−1∏
m=1

Λ(m)
sm

)
Ψ(l)

sl

(
l−1∏
m=1

Λ(m)
sm

)>
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By considering the data as the zero layer, y = z(0), in a DGMM all the
marginal distributions of the latent variables z(l) and their conditional
distributions to the upper level of the network are distributed as Gaussian
mixtures.

Marginals:

f (z(l); Θ) =
∑

s̃=(sl+1,...,sh)

πs̃N(z(l); µ̃
(l+1)
s̃ , Σ̃

(l+1)
s̃ ), (2)

Conditionals:

f (z(l)|z(l+1); Θ) =

kl+1∑
i=1

π
(l+1)
i N(η

(l+1)
i + Λ

(l+1)
i z(l+1),Ψ

(l+1)
i ). (3)

To assure identifiability: at each layer from 1 to h − 1, the conditional
distribution of the latent variables f (z(l)|z(l+1) = 0; Θ) has zero mean and
identity covariance matrix and Λ>Ψ−1Λ is diagonal.
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Two-layer DGMM

(1) yi = η(1)
s1

+ Λ(1)
s1

z
(1)
i + u

(1)
i with prob. π(1)

s1
, j = 1, . . . , k1

(2) z
(1)
i = η(2)

s2
+ Λ(2)

s2
z

(2)
i + u

(2)
i with prob. π(2)

s2
, i = 1, . . . , k2

where z
(2)
i ∼ N(0, Ir2 ), Λ

(1)
s1 is a (factor loading) matrix of dimension p × r1, Λ

(2)
s2

has dimension r1 × r2 and Ψ
(1)
s1 ,Ψ

(2)
s2 are squared matrices of dimension p × p and

r1 × r1 respectively. The two latent variables have dimension r1 < p and r2 < r1.
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It includes:

MFA: if h = 1 and Ψ
(1)
s1 are diagonal and z

(1)
i ∼ N(0, Ir1 );

FMA (or common MFA): h = 2 with k1 = 1, Ψ(1) diagonal and Λ
(2)
s2 = {0};

Mixtures of MFA: h = 2 with k1 > 1, Ψ
(1)
s1 diagonal and Λ

(2)
s2 = {0};

Deep MFA (Tang et al. 2012): h = 2, Ψ
(1)
s1 and Ψ

(2)
s2 diagonal.
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Fitting the DGMM

Thanks to the hierarchical form of the architecture of the DGMM, the EM
algorithm seems to be the natural procedure.

Conditional expectation for h = 2:

Ez,s|y;Θ′ [log Lc(Θ)] =
∑
s∈Ω

∫
f (z(1), s|y; Θ′) log f (y|z(1), s; Θ)dz(1)

+
∑
s∈Ω

∫ ∫
f (z(1), z(2), s|y; Θ′) log f (z(1)|z(2), s; Θ)dz(1)dz(2)

+

∫
f (z(2)|y; Θ′) log f (z(2))dz(2) +

∑
s∈Ω

f (s|y; Θ′) log f (s; Θ),
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Fitting the DGMM via a Stochastic EM

Draw unobserved observations or samples of observations from their
conditional density given the observed data

SEM (Celeux and Diebolt, 1985)

MCEM (Wei and Tanner, 1990)

The strategy adopted is to draw pseudorandom observations at each layer
of the network through the conditional density f (z(l)|z(l−1), s; Θ′), starting
from l = 1 to l = h, by considering, as known, the variables at the upper
level of the model for the current fit of parameters, where at the first layer
z(0) = y.
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Stochastic EM

For l = 1, . . . , h:

- S-STEP (z
(l−1)
i is known)

Generate M replicates z
(l)
i ,m from f (z

(l)
i |z

(l−1)
i , s; Θ′)

- E-STEP
Approximate:

E [z
(l)
i |z

(l−1)
i , s; Θ′] ∼=

∑M
m=1 z

(l)
i ,m

M

and

E [z
(l)
i z

(l)>
i |z(l−1)

i , s; Θ′] ∼=
∑M

m=1 z
(l)
i ,mz

(l)>
i ,m

M

- M-STEP
Compute the current estimated for the parameters



Real examples

Wine Data
p = 27 chemical and physical properties of k = 3 types of wine from
the Piedmont region of Italy: Barolo (59), Grignolino (71), and
Barbera (48). Clusters are well separated and most clustering
methods give high clustering performance on this data.

Olive Data
percentage composition of p = 8 fatty acids found by lipid fraction of
572 Italian olive oils coming from k = 3 regions: Southern Italy
(323), Sardinia (98), and Northern Italy (151). Clustering is not a
very difficult task even if the clusters are not balanced.



Real examples

Ecoli Data

proteins classified into their various cellular localization sites based on
their amino acid sequences

p = 7 variables

n = 336 units

k = 8 unbalanced classes:cp cytoplasm (143), inner membrane
without signal sequence (77), perisplasm (52), inner membrane,
uncleavable signal sequence (35), outer membrane (20), outer
membrane lipoprotein (5), inner membrane lipoprotein (2), inner
membrane, cleavable signal sequence (2)



Real examples

Vehicle Data

silhouette of vehicles represented from many different angles

p = 18 angles

n = 846 units

k = 4 types of vehicles: a double decker bus (218), Cheverolet van
(199), Saab 9000 (217) and an Opel Manta 400 (212)

difficult task: very hard to distinguish between the 2 cars.



Real examples

Satellite Data

multi-spectral, scanner image data purchased from NASA by the
Australian Centre for Remote Sensing

4 digital images of the same scene in different spectral bands

3× 3 square neighborhood of pixels

p = 36 variables

n = 6435 images

k = 6 groups of images: red soil (1533), cotton crop (703), grey soil
(1358), damp grey soil (626), soil with vegetation stubble (707) and
very damp grey soil (1508)

difficult task due to both unbalanced groups and dimensionality



Results

DGMM: h = 2 and h = 3 layers, k1 = k∗ and k2 = 1, 2, . . . , 5
(k3 = 1, 2, . . . , 5), all possible models with p > r1 > ... > rh ≥ 1

10 different starting points

Model selection by BIC

Comparison with Gaussian Mixture Models (GMM), skew-normal and
skew-t Mixture Models (SNmm and STmm), k-means and the
Partition Around Medoids (PAM), hierarchical clustering with Ward
distance (Hclust), Factor Mixture Analysis (FMA), and Mixture of
Factor Analyzers (MFA)



Results

Model selection by BIC:

Wine data: h = 2, p = 27, r1 = 3, r2 = 2 and k1 = 3, k2 = 1

Olive data: h = 2, p = 8, r1 = 5, r2 = 1 and k1 = 3 k2 = 1

Ecoli data: h = 2, p = 7, r1 = 2, r2 = 1 and k1 = 8, k2 = 1

Vehicle data: h = 2, p = 18, r1 = 7, r2 = 1 and k1 = 4, k2 = 3.

Satellite data: h = 3, p = 36, r1 = 13, r2 = 2, r1 = 1 and
k1 = 6, k2 = 2, k3 = 1



Results

Dataset Wine Olive Ecoli Vehicle Satellite
ARI m.r. ARI m.r. ARI m.r. ARI m.r. ARI m.r.

kmeans 0.930 0.022 0.448 0.234 0.548 0.298 0.071 0.629 0.529 0.277
PAM 0.863 0.045 0.725 0.107 0.507 0.330 0.073 0.619 0.531 0.292
Hclust 0.865 0.045 0.493 0.215 0.518 0.330 0.092 0.623 0.446 0.337
GMM 0.917 0.028 0.535 0.195 0.395 0.414 0.089 0.621 0.461 0.374
SNmm 0.964 0.011 0.816 0.168 - - 0.125 0.566 0.440 0.390
STmm 0.085 0.511 0.811 0.171 - - 0.171 0.587 0.463 0.390
FMA 0.361 0.303 0.706 0.213 0.222 0.586 0.093 0.595 0.367 0.426
MFA 0.983 0.006 0.914 0.052 0.525 0.330 0.090 0.626 0.589 0.243
DGMM 0.983 0.006 0.997 0.002 0.749 0.187 0.191 0.481 0.604 0.249



Some general comments

‘Deep’ refers to a technical, architectural property (multilayer structure)

Deep NNs work very well in machine learning (supervised classification)
Our aim: unsupervised classification

‘Deep’ is put in contrast to ‘shallow’ classical estimation methods.

Not all methods and models in statistics are shallow. For instance:

1 Ensemble methods in classification are deep learning strategies (with
non-interconnected layers)

2 Bayesian hierarchical models have similar structure and advantages of
deep learners
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(i) Shallow vs (ii) Bayesian hierarchical vs
(iii) Deeper mixtures (an example to textual data)



Empirical context

Textual data collected by an important Italian mobile carrier
company: phone calls received by the customer service (tickets):
when a customer calls the assistance service, the company operator
labels it as e.g. a complaint, a request of clarification, a request of
information for specific services, deals or promotions.

Examples:

Dov’è la modulistica per la Where are the forms for
disattivazione della linea? the line deactivation?
Cos’è il codice di sicurezza? What is the security code?
Mi dite ke promozione ho? Can you tell me which promotion

I have?
... ...



Empirical context

The dataset contains n = 2129 tickets and T = 489 terms obtained after
preprocessing. Tickets belong to k = 5 topics/groups:

Table: Number of tickets for each class.

Class Frequencies
Activation of SIM, ADSL, new contracts 407
General information about current balance, consumption, etc. 471
Request of information about new offers and promotions 376
Top-up 435
Problems with password, top-up, internet connection, etc. 440



Empirical context

Aim: to derive a clustering strategy that allows to automatically
assign the tickets to their topic without the human judgment of an
operator.

Challenges: an elevate degree of sparsity (after a pre-processing step,
the tickets exhibit indeed an average length of 5 words only and, thus,
the document-term matrix contains zero almost everywhere).



Empirical context

Due to the challenges of the data, most conventional clustering strategies
fail:

Table: Adjusted Rand Index (ARI) and Accuracy for different methods.

Method ARI Accuracy
k-means with cosine dissimilarity 0.233 0.516
k-means with Euclidean distance on Semantic 0.135 0.464
PAM with cosine dissimilarity 0.000 0.222
Mixture of Gaussians on Semantic 0.158 0.438
Hierarchical - Ward’s method with cosine dissimilarity -0.001 0.225
Hierarchical - Centroid method with cosine dissimilarity 0.000 0.223
Hierarchical - Single linkage with cosine dissimilarity 0.000 0.222
Hierarchical - Complete linkage with cosine dissimilarity -0.001 0.224
Hierarchical - Average linkage with cosine dissimilarity 0.000 0.223
Latent Dirichlet Allocation 0.049 0.318



(i) The shallow model

Mixtures of Unigrams (Nigam et al., 2000) are one of the simplest
and most efficient tool for clustering textual data

Assumption: documents related to the same topic have similar
distributions of terms

k topics with distribution naturally described by Multinomials
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Mixtures of Unigrams: notation

X is a document-term matrix of dimension n×T containing the word
frequencies of each document

k topics or groups

xd is the single document of length T , with d = 1, . . . , n

In MoU the distribution of each document has a specific distribution
function conditionally on the values of a discrete latent variable zd :

p(xd) =
k∑

i=1

πi
Nd !∏T
t=1 xdt !

T∏
t=1

ωxdt
ti ,

with Nd =
∑T

t=1 xdt .
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Fitting and results

The EM algorithm is usually applied for parameter estimation.
Clustering is improved:

Table: Adjusted Rand Index (ARI) and Accuracy for different methods.

Method ARI Accuracy
k-means with cosine dissimilarity 0.233 0.516
. . . . . . . . .
Mixtures of Unigrams 0.557 0.763

Easy interpretability; computational time (!)



(ii) Bayesian hierarchical approach

We add a layer by assuming the proportions ω are realizations from a
Dirichlet distribution of parameters θi :

p(ω|z = i) =
Γ
(∑T

t=1 θit

)
∏T

t=1 Γ(θit)

T∏
t=1

ωθit−1
ti , (4)

where Γ denotes the Gamma function.



(ii) Bayesian hierarchical approach

The latent variable ω can be integrated out thus leading to the
Dirichlet-Multinomial compound model.

The Dirichlet-Multinomial model is

p(x|z = i) =

∫
p(x|z = i ,ω)p(ω|z = i)dω (5)

=

∑T
t=1 xt∏T
t=1 xt

B
(∑T

t=1 xt ,
∑T

t=1 θit

)
∏T

t=1 B (xt , θit)
,

where B denotes the Beta function.



Dirichlet-Multinomial mixtures

The mixture model

p(xd) =
k∑

i=1

πi

∑T
t=1 xt∏T
t=1 xt

B
(∑T

t=1 xt ,
∑T

t=1 θit

)
∏T

t=1 B (xt , θit)
,

can be easily estimated via a gradient descent algorithm or an EM
algorithm or a Gibss sampling. Again: computational time (!)



Clustering results

Table: Adjusted Rand Index (ARI) and Accuracy for different methods.

Method ARI Accuracy
k-means with cosine dissimilarity 0.233 0.516
. . . . . . . . .
Mixtures of Unigrams 0.557 0.763
Mixtures of Dirichlet-Multinomials 0.722 0.871



(iii) A deeper mixture model
(Anderlucci and Viroli, 2019, submitted)

A further layer in the probabilistic generative model is added.

At the deepest latent layer, the documents can come from k2 groups

with different probabilities, say π
(2)
j j = 1, . . . , k2.

Conditionally to what happened at this level, at the top layer the
documents can belong to k1 groups with conditional probabilities

π
(1)
i |j i = 1, . . . , k1.
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(iii) A deeper mixture model

document d 
(d=1,…,n)

k1=3

hidden bottom layer

k2=2

top layer

𝜋𝜋1
(2)

𝜋𝜋2
(2)

𝜋𝜋1|1
(1)

𝜋𝜋2|1
(1)

𝜋𝜋3|1
(1)

𝜋𝜋1|2
(1)

𝜋𝜋2|2
(1)

𝜋𝜋3|2
(1)

𝛼𝛼1

𝛼𝛼2

𝛽𝛽1

𝛽𝛽2

𝛽𝛽3

Figure: Structure of a Deep mixture with components k1 = 3 and k2 = 2.



Deep Mixtures of Dirichlet-Multinomials

The distribution of x conditionally to the two layers is a
Dirichlet-Multinomial distribution with parameters
θij = βi +αjβi = βi (1 +αj), that are cluster-specific:

p(x|z(1) = i , z(2) = j ,θ) =

∑T
t=1 xt∏T
t=1 xt

B
(∑T

t=1 xt ,
∑T

t=1 θijt

)
∏T

t=1 B (xt , θijt)
,

where z(1) and z(2) are the allocation variables at the top and at the
bottom layers, respectively. They are discrete latent variables that follow
the following distributions:

p(z(2) = j) = π
(2)
j ,

and
p(z(1) = i |z(2) = j) = π

(1)
i |j .
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Interesting facts

The two sets of parameters are subjected to the restrictions:

βit > 0

and
−1 < αjt < 1

so that, from the interpretative point of view, αj acts as a perturbation on
the cluster-specific βi parameters of the top layer.

Under the constraint −1 < αjt < 1, the role of k2 components at the
deepest layer is confined to add flexibility to the model, while the real
cluster-distribution is specified by the β parameters. Therefore k1

corresponds to the number of clusters.

The model encompasses the simple Mixture of Dirichlet-Multinomials, that
can be obtained as special case when k2 = 1 with α = 0.



Interesting facts

The two sets of parameters are subjected to the restrictions:

βit > 0

and
−1 < αjt < 1

so that, from the interpretative point of view, αj acts as a perturbation on
the cluster-specific βi parameters of the top layer.

Under the constraint −1 < αjt < 1, the role of k2 components at the
deepest layer is confined to add flexibility to the model, while the real
cluster-distribution is specified by the β parameters. Therefore k1

corresponds to the number of clusters.

The model encompasses the simple Mixture of Dirichlet-Multinomials, that
can be obtained as special case when k2 = 1 with α = 0.



Interesting facts

The two sets of parameters are subjected to the restrictions:

βit > 0

and
−1 < αjt < 1

so that, from the interpretative point of view, αj acts as a perturbation on
the cluster-specific βi parameters of the top layer.

Under the constraint −1 < αjt < 1, the role of k2 components at the
deepest layer is confined to add flexibility to the model, while the real
cluster-distribution is specified by the β parameters. Therefore k1

corresponds to the number of clusters.

The model encompasses the simple Mixture of Dirichlet-Multinomials, that
can be obtained as special case when k2 = 1 with α = 0.



Results

Table: Adjusted Rand Index (ARI) and Accuracy for different methods.

Method ARI Accuracy
k-means with cosine dissimilarity 0.233 0.516
. . . . . . . . .
Mixtures of Unigrams 0.557 0.763
Mixtures of Dirichlet-Multinomials (k2 = 1) 0.722 0.871
Deep Mixtures of Dirichlet-Multinomials (k2 = 2) 0.940 0.980
Deep Mixtures of Dirichlet-Multinomials (k2 = 3) 0.910 0.970
Deep Mixtures of Dirichlet-Multinomials (k2 = 4) 0.934 0.980
Deep Mixtures of Dirichlet-Multinomials (k2 = 5) 0.925 0.975

Estimation: Gibbs sampling; the EM algorithm is strongly dependent on starting
values.



General Final remarks



General Final remarks

Deep learning strategies seem to work surprisingly well for prediction

About DNNs it has been said:

“In a world with infinite data, and infinite computational resources, there
might be little need for any other technique.” (G. Marcus, 2017)

Different problems:

interpretability

identifiability

computational effort

model selection against the Rashomon principle in machine learning
(the multiplicity of good models)
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Open issues

Model selection is an open issue

DGMM offer good results for h = 2 and h = 3
Computationally intensive for h > 3: alternative and faster estimation
methods?

Deep mixtures require high n!
Old saying: ‘If all a man has is a hammer, then every problem looks like a
nail’

Remember: for simple clustering problems DGMM
is like to use ‘sledgehammer to crack a nut’
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