Impulse Control: Recent Progress and Applications

Christoph Belak

Technische Universität Berlin

Joint work with Sören Christensen (Kiel), Lukas Mich (Trier), and Frank Seifried (Trier).

Research Seminar WU Vienna, November 08, 2019 Stochastic control problems with a strictly positive lower bound on the cost per control action.

Stochastic control problems with a strictly positive lower bound on the cost per control action.

Time

Stochastic control problems with a strictly positive lower bound on the cost per control action.

Applications: Harvesting, inventory control, real options, control of exchange rates, optimal investment with transaction costs, ...

Outline

- (1) Impulse Control: General Formulation
- (2) Superharmonic Functions and Stochastic Perron
- (3) Optimal Investment with Transaction Costs
- (4) Numerical Results

Impulse Control: General Formulation

The General Impulse Control Problem

Consider an \mathbb{R}^n -valued system $X = X^{\Lambda}$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

$$dX(t) = \mu(X(t))dt + \sigma(X(t)) dW(t), \qquad t \in [\tau_k, \tau_{k+1}),$$

$$X(\tau_k) = \Gamma(X(\tau_k-), \Delta_k),$$

The General Impulse Control Problem

Consider an \mathbb{R}^n -valued system $X = X^{\Lambda}$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

$$dX(t) = \mu(X(t))dt + \sigma(X(t)) dW(t), \qquad t \in [\tau_k, \tau_{k+1}), X(\tau_k) = \Gamma(X(\tau_k-), \Delta_k),$$

where

 \triangleright the stopping times τ_k are **increasing** and **do not accumulate** in that

$$\mathbb{P}\left[\lim_{k \to \infty} \tau_k > T\right] = 1,$$

▷ the impulses Δ_k are chosen from a **state-dependent** set $Z(X(\tau_k-)) \subset \mathbb{R}^m$.

The General Impulse Control Problem

Consider an \mathbb{R}^n -valued system $X = X^{\Lambda}$ controlled by an impulse control $\Lambda = \{(\tau_k, \Delta_k)\}_{k \in \mathbb{N}}$ as follows:

$$dX(t) = \mu(X(t))dt + \sigma(X(t)) dW(t), \qquad t \in [\tau_k, \tau_{k+1}), X(\tau_k) = \Gamma(X(\tau_k-), \Delta_k),$$

where

 \triangleright the stopping times τ_k are **increasing** and **do not accumulate** in that

$$\mathbb{P}\left[\lim_{k \to \infty} \tau_k > T\right] = 1,$$

▷ the impulses Δ_k are chosen from a state-dependent set $Z(X(\tau_k-)) \subset \mathbb{R}^m$.

The **objective** is to find a maximizer of

$$\mathcal{V}(t,x) = \sup_{\Lambda \in \mathcal{A}(t,x)} \mathbb{E} \Big[\sum_{k \in \mathbb{N}} K \big(X_{t,x}^{\Lambda}(\tau_k -), \Delta_k \big) \mathbb{1}_{\{\tau_k \le T\}} + g \big(X_{t,x}^{\Lambda}(T) \big) \Big].$$

Classical Theory: Compute the value function \mathcal{V} by solving

$$\min\{-\partial_t \mathcal{V}(t,x) - \mathcal{L}\mathcal{V}(t,x), \mathcal{V}(t,x) - \mathcal{M}\mathcal{V}(t,x)\} = 0, \\ \mathcal{V}(T,x) = g(x),$$

Notation: We refer to the PDE as the Quasi-Variational Inequalities (QVIs).

Classical Theory: Compute the value function \mathcal{V} by solving

$$\min\{-\partial_t \mathcal{V}(t,x) - \mathcal{L}\mathcal{V}(t,x), \mathcal{V}(t,x) - \mathcal{M}\mathcal{V}(t,x)\} = 0, \\ \mathcal{V}(T,x) = g(x),$$

where \mathcal{L} denotes the **infinitesimal generator** of the uncontrolled state process given by

$$\mathcal{LV}(t,x) \triangleq \mu(x)^{\top} \mathbf{D}_x \mathcal{V}(t,x) + \frac{1}{2} \operatorname{tr} \big[\sigma(x) \sigma(x)^{\top} \mathbf{D}_x^2 \mathcal{V}(t,x) \big],$$

Notation: We refer to the PDE as the Quasi-Variational Inequalities (QVIs).

Classical Theory: Compute the value function \mathcal{V} by solving

$$\min\{-\partial_t \mathcal{V}(t,x) - \mathcal{L}\mathcal{V}(t,x), \mathcal{V}(t,x) - \mathcal{M}\mathcal{V}(t,x)\} = 0, \\ \mathcal{V}(T,x) = g(x),$$

where \mathcal{L} denotes the **infinitesimal generator** of the uncontrolled state process given by

$$\mathcal{LV}(t,x) \triangleq \mu(x)^{\top} \mathbf{D}_x \mathcal{V}(t,x) + \frac{1}{2} \operatorname{tr} \left[\sigma(x) \sigma(x)^{\top} \mathbf{D}_x^2 \mathcal{V}(t,x) \right]$$

and \mathcal{M} is the **maximum operator** given by

$$\mathcal{MV}(t,x) \triangleq \sup_{\Delta \in Z(x)} \left[\mathcal{V}(t,\Gamma(x,\Delta)) + K(x,\Delta) \right].$$

Notation: We refer to the PDE as the Quasi-Variational Inequalities (QVIs).

Time

Observe that $\mathcal{V} \geq \mathcal{M}\mathcal{V}$ and

 \triangleright if $\mathcal{V}(t,x) > \mathcal{MV}(t,x)$, an impulse in state (t,x) cannot be optimal,

Time

Observe that $\mathcal{V} \geq \mathcal{M}\mathcal{V}$ and

 \triangleright if $\mathcal{V}(t,x) > \mathcal{MV}(t,x)$, an impulse in state (t,x) cannot be optimal,

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Time

- ▷ if $\mathcal{V}(t, x) > \mathcal{MV}(t, x)$, an impulse in state (t, x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Time

- ▷ if $\mathcal{V}(t,x) > \mathcal{MV}(t,x)$, an impulse in state (t,x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Time

Observe that $\mathcal{V} \geq \mathcal{M}\mathcal{V}$ and

- ▷ if $\mathcal{V}(t,x) > \mathcal{MV}(t,x)$, an impulse in state (t,x) cannot be optimal,
- \triangleright if $\mathcal{V}(t, x) = \mathcal{M}\mathcal{V}(t, x)$, an impulse in state (t, x) is expected to be **optimal**,
- ▷ the **optimal impulse** $\Delta^* \in Z(x)$ in state (t, x) should be chosen to be a maximizer for $\mathcal{MV}(t, x)$.

Problem: Verification requires a solution of the QVIs which is sufficiently smooth to apply Itō's formula.

Superharmonic Functions and Stochastic Perron

$$\mathcal{V}(t,x) = \sup_{\tau \in \mathcal{T}_t} \mathbb{E} \big[\mathcal{M} \mathcal{V} \big(\tau, \bar{X}(\tau) \big) \big]$$

where \bar{X} denotes the **uncontrolled** portfolio process. This is an **implicit optimal** stopping problem with reward \mathcal{MV} .

$$\mathcal{V}(t,x) = \sup_{\tau \in \mathcal{T}_t} \mathbb{E} \left[\mathcal{M} \mathcal{V} \left(\tau, \bar{X}(\tau) \right) \right]$$

where \bar{X} denotes the **uncontrolled** portfolio process. This is an **implicit optimal** stopping problem with reward \mathcal{MV} .

The general theory of optimal stopping lets us expect:

 $\triangleright \mathcal{V}$ is the smallest superharmonic function dominating the reward \mathcal{MV} .

$$\mathcal{V}(t,x) = \sup_{\tau \in \mathcal{T}_t} \mathbb{E} \left[\mathcal{M} \mathcal{V} \left(\tau, \bar{X}(\tau) \right) \right]$$

where \bar{X} denotes the **uncontrolled** portfolio process. This is an **implicit optimal** stopping problem with reward \mathcal{MV} .

The general theory of optimal stopping lets us expect:

- $\triangleright \mathcal{V}$ is the smallest **superharmonic function** dominating the reward \mathcal{MV} .
- ▷ If \mathcal{V} is lower semicontinuous and \mathcal{MV} is upper semicontinuous, then the first hitting time of the set $\mathcal{I} = \{\mathcal{V} = \mathcal{MV}\}$ is **optimal**.

$$\mathcal{V}(t,x) = \sup_{\tau \in \mathcal{T}_t} \mathbb{E} \left[\mathcal{M} \mathcal{V} \left(\tau, \bar{X}(\tau) \right) \right]$$

where \bar{X} denotes the **uncontrolled** portfolio process. This is an **implicit optimal** stopping problem with reward \mathcal{MV} .

The general theory of optimal stopping lets us expect:

- $\triangleright \mathcal{V}$ is the smallest **superharmonic function** dominating the reward \mathcal{MV} .
- ▷ If \mathcal{V} is lower semicontinuous and \mathcal{MV} is upper semicontinuous, then the first hitting time of the set $\mathcal{I} = \{\mathcal{V} = \mathcal{MV}\}$ is **optimal**.

Typically: MV is upper semicontinuous if V is upper semicontinuous. So we essentially need V to be continuous.

 \triangleright *h* is **superharmonic** with respect to the uncontrolled state process, i.e. $h(\cdot, \bar{X})$ is a strong supermartingale,

- \triangleright *h* is **superharmonic** with respect to the uncontrolled state process, i.e. $h(\cdot, \bar{X})$ is a strong supermartingale,
- $\triangleright h$ dominates the reward, i.e. $h \geq \mathcal{M}h$,

- \triangleright *h* is **superharmonic** with respect to the uncontrolled state process, i.e. $h(\cdot, \bar{X})$ is a strong supermartingale,
- $\triangleright h$ dominates the reward, i.e. $h \geq \mathcal{M}h$,
- $\triangleright \ h(T, \cdot) = g \text{ and suitable growth/integrability conditions.}$

- \triangleright *h* is **superharmonic** with respect to the uncontrolled state process, i.e. $h(\cdot, \bar{X})$ is a strong supermartingale,
- \triangleright *h* dominates the reward, i.e. $h \ge \mathcal{M}h$,
- $\triangleright \ h(T, \cdot) = g \text{ and suitable growth/integrability conditions.}$

Verification "Theorem"

Suppose that $\mathcal V$ is continuous and the candidate optimal strategy does not accumulate. Then $\mathcal V$ is the pointwise minimum of $\mathbb H$ and the candidate optimal strategy is indeed optimal.

- \triangleright *h* is **superharmonic** with respect to the uncontrolled state process, i.e. $h(\cdot, \bar{X})$ is a strong supermartingale,
- \triangleright *h* dominates the reward, i.e. $h \ge \mathcal{M}h$,
- $\triangleright \ h(T, \cdot) = g \text{ and suitable growth/integrability conditions.}$

Verification "Theorem"

Suppose that $\mathcal V$ is continuous and the candidate optimal strategy does not accumulate. Then $\mathcal V$ is the pointwise minimum of $\mathbb H$ and the candidate optimal strategy is indeed optimal.

Proof: Iteratively solve the implicit optimal stopping problem. The argument adapts classical optimal stopping techniques and uses the fact that \mathcal{V} is the pointwise minimum of \mathbb{H} .

How can we prove the continuity of $\mathcal{V}?$
We adapt the **Stochastic Perron Method**:

We adapt the Stochastic Perron Method:

(1) Show that the pointwise minimum \mathbb{V} of \mathbb{H} is an upper semi-continuous viscosity subsolution of the QVIs satisfying $\mathbb{V} \geq \mathcal{V}$.

We adapt the Stochastic Perron Method:

- Show that the pointwise minimum V of H is an upper semi-continuous viscosity subsolution of the QVIs satisfying V ≥ V.
- (2) Approximate V from below by a monotone sequence {v_k}_{k∈N} (restrict to at most k impulses, numerical schemes, ...) and show that 𝔅 ≜ lim_{k→∞} v_k is a lower semi-continuous viscosity supersolution of the QVIs with 𝔅 ≤ V.

We adapt the Stochastic Perron Method:

- Show that the pointwise minimum V of H is an upper semi-continuous viscosity subsolution of the QVIs satisfying V ≥ V.
- (2) Approximate V from below by a monotone sequence {v_k}_{k∈N} (restrict to at most k impulses, numerical schemes, ...) and show that 𝔅 ≜ lim_{k→∞} v_k is a lower semi-continuous viscosity supersolution of the QVIs with 𝔅 ≤ V.
- (3) Then $\mathfrak{V} \leq \mathcal{V} \leq \mathbb{V}$. Now apply viscosity comparison (if it holds) so that $\mathbb{V} \leq \mathfrak{V}$ and hence

$$\mathcal{V} = \mathbb{V} = \mathfrak{V}$$

is **continuous**, the **unique viscosity solution** of the QVIs, and the **pointwise infimum** of \mathbb{H} .

Discussion of the Approach

Our procedure is based on three ingredients:

- ▷ Superharmonic function techniques in optimal stopping
- The stochastic Perron method
- Stability of viscosity solutions

Discussion of the Approach

Our procedure is based on three ingredients:

- Superharmonic function techniques in optimal stopping
- The stochastic Perron method
- Stability of viscosity solutions

Advantages of the approach:

- ▷ Works under very general conditions and is flexible;
- ▷ Viscosity characterization without having to prove the Bellman principle;
- \triangleright If V can a priori be shown to be continuous, the superharmonic function characterization is easy and there is no need for viscosity arguments.

Discussion of the Approach

Our procedure is based on three ingredients:

- Superharmonic function techniques in optimal stopping
- The stochastic Perron method
- Stability of viscosity solutions

Advantages of the approach:

- ▷ Works under very general conditions and is flexible;
- ▷ Viscosity characterization without having to prove the Bellman principle;
- \triangleright If V can a priori be shown to be continuous, the superharmonic function characterization is easy and there is no need for viscosity arguments.

Challenges when applying the approach:

- \triangleright The bottleneck is viscosity comparison, needed for continuity of V;
- ▷ Admissibility of the candidate optimal control has to be checked on a case-bycase basis. This is a general problem though.

Optimal Investment with Transaction Costs

Optimal Investment with Transaction Costs

We assume that the \mathbb{R}^2 -valued **portfolio process** X evolves as

$$dX_{1}(t) = rX_{1}(t)dt, t \in [\tau_{k}, \tau_{k+1}), \\ dX_{2}(t) = \mu X_{2}(t)dt + \sigma X_{2}(t)dW(t), t \in [\tau_{k}, \tau_{k+1}), \\ X_{1}(\tau_{k}) = X_{1}(\tau_{k}) - \Delta_{k} - C(\Delta_{k}), \\ X_{2}(\tau_{k}) = X_{2}(\tau_{k}) + \Delta_{k}.$$

Optimal Investment with Transaction Costs

We assume that the \mathbb{R}^2 -valued **portfolio process** X evolves as

$$dX_{1}(t) = rX_{1}(t)dt, t \in [\tau_{k}, \tau_{k+1}), dX_{2}(t) = \mu X_{2}(t)dt + \sigma X_{2}(t)dW(t), t \in [\tau_{k}, \tau_{k+1}), X_{1}(\tau_{k}) = X_{1}(\tau_{k}) - \Delta_{k} - C(\Delta_{k}), X_{2}(\tau_{k}) = X_{2}(\tau_{k}) + \Delta_{k}.$$

We consider the following two cases:

$$C(\Delta) = \gamma |\Delta| + K$$

Constant and Proportional

We assume that the \mathbb{R}^2 -valued **portfolio process** X evolves as

$$dX_{1}(t) = rX_{1}(t)dt, t \in [\tau_{k}, \tau_{k+1}), \\ dX_{2}(t) = \mu X_{2}(t)dt + \sigma X_{2}(t)dW(t), t \in [\tau_{k}, \tau_{k+1}), \\ X_{1}(\tau_{k}) = X_{1}(\tau_{k}) - \Delta_{k} - C(\Delta_{k}), \\ X_{2}(\tau_{k}) = X_{2}(\tau_{k}) + \Delta_{k}.$$

We consider the following two cases:

$$C(\Delta) = \gamma |\Delta| + K$$

$$C(\Delta) = \min\{\max\{K_{\min}, \gamma |\Delta|\}, K_{\max}\}$$
Constant and Proportional
Capped Proportional

We assume that the \mathbb{R}^2 -valued **portfolio process** X evolves as

$$dX_{1}(t) = rX_{1}(t)dt, t \in [\tau_{k}, \tau_{k+1}), \\ dX_{2}(t) = \mu X_{2}(t)dt + \sigma X_{2}(t)dW(t), t \in [\tau_{k}, \tau_{k+1}), \\ X_{1}(\tau_{k}) = X_{1}(\tau_{k}) - \Delta_{k} - C(\Delta_{k}), \\ X_{2}(\tau_{k}) = X_{2}(\tau_{k}) + \Delta_{k}.$$

We consider the following two cases:

$$C(\Delta) = \gamma |\Delta| + K$$
 Constant and Proportional
 $C(\Delta) = \min\{\max\{K_{\min}, \gamma |\Delta|\}, K_{\max}\}$ Capped Proportional

A portfolio $x \in \mathbb{R}^2$ is **solvent** if it has a positive liquidation value $L(x) \ge 0$, where

$$\mathcal{L}(x) \triangleq \begin{cases} x_1 + x_2 - C(-x_2) & \text{if } x_2 < 0, \\ x_1 + (x_2 - C(-x_2))^+ & \text{otherwise.} \end{cases}$$

The set $\mathcal{S} \subset \mathbb{R}^2$ of solvent portfolios is called the **solvency region**.

For simplicity, we restrict to (positive) power utility

$$U:\mathbb{R}_+\to\mathbb{R},\qquad \ell\mapsto U(\ell)\triangleq \frac{1}{p}\ell^p\qquad \text{with }p\in(0,1).$$

The objective is to maximize expected utility of terminal wealth, i.e.

$$\mathcal{V}(t,x) = \sup_{\Lambda \in \mathcal{A}(t,x)} \mathbb{E}\Big[U\Big(\mathrm{L}\big(X_{t,x}^{\Lambda}(T)\big)\Big)\Big],$$

where $\mathcal{A}(t, x)$ denotes the set of **admissible strategies** Λ for the initial state (t, x), i.e. the set of strategies Λ for which

$$L(X_{t,x}^{\Lambda}) \ge 0$$
 on $[t,T]$.

Or so we thought.

Or so we thought.

Problem: The value function \mathcal{V} is **not continuous**. In particular, the usual viscosity arguments cannot work.

Or so we thought.

Problem: The value function \mathcal{V} is **not continuous**. In particular, the usual viscosity arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Or so we thought.

Problem: The value function \mathcal{V} is **not continuous**. In particular, the usual viscosity arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by splitting the solvency region as follows:

- $\triangleright x_1 \ge 0 \text{ and } x_2 \ge 0$: Long Portfolios,
- $\triangleright x_1 \ge 0$ and $x_2 < 0$: Short Portfolios,
- $\triangleright x_1 < 0 \text{ and } x_2 \ge 0$: **Borrowing Portfolios**.

Or so we thought.

Problem: The value function \mathcal{V} is **not continuous**. In particular, the usual viscosity arguments cannot work.

But: The discontinuity is likely to appear only across the two axes.

Idea: Localize the viscosity argument by splitting the solvency region as follows:

- $\triangleright x_1 \ge 0$ and $x_2 \ge 0$: Long Portfolios,
- $\triangleright x_1 \ge 0$ and $x_2 < 0$: Short Portfolios,
- $\triangleright x_1 < 0 \text{ and } x_2 \ge 0$: **Borrowing Portfolios**.

Difficulty: The QVIs have a **non-local** term: $\mathcal{V}(t, x) - \mathcal{M}\mathcal{V}(t, x)$.

Splitting the Solvency Region

Splitting the Solvency Region

(1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;

- (1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;
- (2) A comparison principle for the QVIs holds

- (1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;
- (2) A comparison principle for the QVIs holds, implying that
 - ▶ each restricted function is **continuous** and extends to a continuous function on the closure of its domains (i.e. onto the axes),

- (1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;
- (2) A comparison principle for the QVIs holds, implying that
 - each restricted function is continuous and extends to a continuous function on the closure of its domains (i.e. onto the axes),
 - $\triangleright \mathcal{V}$ is the **unique** viscosity solution in the above localized sense,

- (1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;
- (2) A comparison principle for the QVIs holds, implying that
 - each restricted function is continuous and extends to a continuous function on the closure of its domains (i.e. onto the axes),
 - $\triangleright \mathcal{V}$ is the **unique** viscosity solution in the above localized sense,
 - $\triangleright \mathcal{V}$ is globally upper semicontinuous;

- (1) Each restriction of \mathcal{V} is a **discontinuous viscosity solution**;
- (2) A comparison principle for the QVIs holds, implying that
 - each restricted function is continuous and extends to a continuous function on the closure of its domains (i.e. onto the axes),
 - $\triangleright \mathcal{V}$ is the **unique** viscosity solution in the above localized sense,
 - $\triangleright \mathcal{V}$ is globally upper semicontinuous;
- (3) The candidate optimal strategy does not accumulate and is indeed optimal.

Numerical Results: Constant + Proportional Costs

Numerical Example: Constant + Proportional Costs

Numerical Example: Constant + Proportional Costs

Numerical Example: Constant + Proportional Costs

Numerical Results: Capped Proportional Costs

Conclusions:

• We develop a new machinery to solve stochastic **impulse control** problems.

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.
- We successfully apply the approach to **transaction cost** problems in which the value functions turn out to be **truly discontinuous**.

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.
- We successfully apply the approach to **transaction cost** problems in which the value functions turn out to be **truly discontinuous**.
- Nevertheless, we establish **uniqueness** of the value function as a viscosity solution, **piecewise continuity**, and **global upper semicontinuity**.

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.
- We successfully apply the approach to **transaction cost** problems in which the value functions turn out to be **truly discontinuous**.
- Nevertheless, we establish **uniqueness** of the value function as a viscosity solution, **piecewise continuity**, and **global upper semicontinuity**.
- Despite the lack of global continuity, we can **construct optimal strategies**.

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.
- We successfully apply the approach to **transaction cost** problems in which the value functions turn out to be **truly discontinuous**.
- Nevertheless, we establish **uniqueness** of the value function as a viscosity solution, **piecewise continuity**, and **global upper semicontinuity**.
- Despite the lack of global continuity, we can **construct optimal strategies**.
- Numerical examples suggest a rich structure of optimal trading regions depending on the cost structure.

Conclusions:

- We develop a new machinery to solve stochastic **impulse control** problems.
- The approach combines ideas from **superharmonic functions** in optimal stopping, **viscosity solutions**, and the **stochastic Perron** method.
- We successfully apply the approach to **transaction cost** problems in which the value functions turn out to be **truly discontinuous**.
- Nevertheless, we establish **uniqueness** of the value function as a viscosity solution, **piecewise continuity**, and **global upper semicontinuity**.
- Despite the lack of global continuity, we can **construct optimal strategies**.
- Numerical examples suggest a rich structure of optimal trading regions depending on the cost structure.

Thank you for the attention!