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Trends in VAR modelling: Larger and time varying

@ Bayesian VARs have been getting larger

o Improved forecasts (see, e.g., Pirschel and Wolters (2018))
o Avoid (mitigate) problems with interpreting impulse responses
o Avoid (mitigate) omitted variable bias

e Banbura, Giannone and Reichlin (2010), Carriero, Clark and Marcellino
(2011), Carriero, Kapetanios and Marcellino (2009), Giannone, Lenza,
Momferatou and Onorante (2010), Koop (2011)

@ VARs have become more flexible (TVP-VAR)
e Capture evolution of the economy

o Cogley and Sargent (2005), Cogley, Morozov and Sargent, (2005),
Primiceri (2005), Koop, Leon-Gonzalez and Strachan (2009), Canova
and Forero (2012).
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Large TVP-VARs

o Large TVP-VARs seem a natural next step

o A significant impediment to employing larger TVP-VARs is dimension

o With more variables (N), VAR model dimensions grow at O (N?)

@ Depending upon the correlation structure of the states, with more
variables (N), TVP — VAR model dimensions grow at between O (N?)
and O (N*%)

o Overparameterization leads to poor estimation and inference (e.g., wide
error bands on impulse response functions)

o Higher dimensions complicate (e.g., slow) computation
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Large VARs

and TVP-VARs
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Large TVP-VARs

@ Strategies to reduce the dimensions but maintain the full structure
are an active area of research ... but progress has been slow:

o Koop and Korobilis (2013) use forgetting factors (N = 3,7, 25)

@ Imposes a tight structure on the autocorrelations of filtered estimates

@ They use the Kalman filter - subject to Sims’ critique of Cogley and
Sargent (2001)

o Excellent forecasting performance

@ Does not provide a formal inferential framework

o Koop and Korobilis (forthcoming) use compressed VARs
(N =7,19,129)
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In this paper

@ Develop a TVP-VAR that uses a reduced number of states but
preserves (potentially) the full TVP-VAR

@ We impose rank reduction on the covariance matrix for the state
equations, as suggested by the data
e In doing so, we generalize the centering and parameter expansion
approach of Friihwirth-Schnatter and Wagner (2010)
e An interpretation of our model specification is that we use a factor
structure for the states

@ Demonstrate increased precision in estimating time varying parameters
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VAR to SVAR

@ For an N vector

ye = (yue. y2n --.,yN,t)' (N x1)
the standard TVP-VAR has the form

ye = W, +I1eye1+1oye o+ v
E(vevy) = (Aoe) " Ze(Aoe)

@ The structural form (the TVP-SVAR) measurement equation can be
written as

Aoyt = Py HALtYe-1+ Ao eyr2 €
& = AO,tVt E (Si’gt) - Zt’
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Why change from the VAR to SVAR?

@ For the TVP-VAR, estimation using a Gibbs sampler follows
I | Ao, Xt
Ao,t|Hi,tvz‘t
Zf‘Hi,fv AO,tv

o However, the relationship between I1; ; and A, ; implies they are highly
correlated - the Markov chain will be less efficient than it could be

@ For the TVP-SVAR, estimation using a Gibbs sampler follows
Aj¢|Ze
e|Aj e

o The A; ; are all drawn in one single block leading to a more efficient
Markov chain
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TVP-(S)VAR models

In structural form the TVP-SVAR measurement equation can be written as

yve = (6, ¥2.80 - - - ,yN,t)’ (N x1)

Aoyt = Myt ALeye-1+Aoyr—2 &
Ay = [ — Aat

Yr =Y, + Aé,t}’t + A1 tyr—1+ Ao tye—o + &

er ~ N (0,%) Y = diag (eh“, e eh’“)
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TVP-SVAR models

The TVP-SVAR can then be written in the more familiar regression form as

Ye =W+ Aé,t}’t + AL tYe—1 + Ao eyi—o + &
or
Vi =X +& &~ N (OYZt)
ap=ar1+1, 17,~N(0 Q)

@ The (k x 1) vector a¢ has error covariance matrix Q
@ The matrix Q is often specified as full or diagonal

@ Bubbling away in the background in the literature have been
discussions around the form of @
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Consider how state space models produce estimates

Yt = Xt + & &~ N (0, Zt)
ar =1 +1, 17,~N(0 Q)

@ With one observation per state, the correlation structure implied by
the state equation allows us to estimate a;

@ To see this, stack observations and rewrite the state space model as
y=Xa+eand Ra =y +17y
such that
a~N(R VL) Va=R1(reQ) (R
o If Q =1, then V, ; = min {i,j}.
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Consider how state space models produce estimates ...

a~N(RM7 V) Vo=R(Ir@Q) (R

o If all states were independent, i.e., R=1Ir and Q = I, so V, =1,
then the states are independent and estimation would be very poor

@ Through R and Q, states are allowed to be correlated as V, is a full
psd matrix (as in Cogley and Sargent).

e Information in the data is shared among all states: the higher the
correlation the better the transmission of information

o If V, has reduced rank because @ has reduced rank, there is perfect
correlation, such that information in the data is perfectly transmitted
among states
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An observation by Cogley and Sargent

Yt = Xelt + & & ~ N (O, Zt)
vy =0 1+17, &~N(0 Q)

e With N = 3 variables and 2 lags, a; is (k x 1) where k =21
@ Cogley and Sargent use a full PSD matrix for the 21 x 21 matrix @

@ The states a; are very highly correlated such that @ looks to have
reduced rank
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An observation by Cogley and Sargent (cont.)
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Reduced rank Q

Take the singular value decomposition of Q :
Q = UAU U'U=Iand A = diag (A1,..., Ax)
Ue O(k)E{U: U’U:Ik}
M>2A > .2 A >0

o Ifrank (Q) =r < kthenArp1 =Ap=---=A,=0
e Partition U and A conformably as U = [U; U] and

AL 0] [A 0O
SR

Q=UAU = Uy Ay U}

kXrrXrexk

then
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The specification

Begin with

Yt = thX)tl.< ‘I‘ &t & v N (0, Zt)
ap =g T e~ N (0, Q)

@ We will assume perfectly correlated states and so @ has reduced rank
ry < k

e For the application in the paper, k =570 and r, = 4

@ We will use recentering and parameter expansions to obtain a readily
computable form
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Friihwirth-Schnatter and Wagner (2010) use a scalar state a}

Yt = XtOC:( + & &~ N (0, Zt)
ap = o /P P N(O'U>

@ Recenter by
0(? =+ \/E&t

such that

Vi = Xe®+ Xe\/OR: + €
Wy Wi14+2ze ze~N (O, 1)

ag = 0

WU 2018 17 / 42
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Generalized Recentering

Begin with
Yt = XtOC:( + & &~ N (0, Zt)
’X: = ‘X’tﬂ—l /P P N (0' Q)

@ Recenter by (generalising Friihwirth-Schnatter and Wagner (2010))

lxr =ua+ Ql/2bzt

such that
Yi = X+ X¢ Ql/zbzt + &
Bé/t == th_]_ +Et‘ Et ~ N (O, lk)
g = 0

WU 2018
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o If @ = Uy A1U] then we can write Q1/2 = UlAi/QU{

o Using QY2 = UlAi/2 Ui rewrite the model as

Vi = Xe® + Xt U1/\%/2 U{&t + &
= Xt + Xt U]_Ai/zlxt + &t

U{bzt - U]/_bZt—l + U{Et U{Et ~ N (0, I"a)
Ny = U{b?t and Zy = U{Et

@ Then we have

ye = xea + xe Ut AY 2 a; + gy
Ky =K1+ 2 Z¢ ~ N (0, Ira)
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Removing the sign in recentering

Friihwirth-Schnatter and Wagner (2010) use a scalar state a}
Yt = th)(): + & &~ N (0, Zt)
ap =wai 1+, 1~ N(00)

@ Recenter by
af =+ \oa;

o Letre {—1,1}, ay = ¢ and a = 1\/0

@ The measurement and state equations become

Y = Xeo + Xeany + €
Ky = Kp—1+2Z¢ Zpr~ N (O, 1)
ng = 0
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Parameter expansion

Where Frithwirth-Schnatter and Wagner introduce ¢, we introduce C

e Let C € O(ry) such that C'C = I, as

Y = X+ X UlA%/zth + &t
= xtzx—i—xtUlAi/zC’szH—et
= Xt + x: Ay + €
Cay = Car1+Cz Czz~N(0, 1)
oy = wr1+2z z~N(O, 1)

where
A= UAY?C and a; = Ca;
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A specification for reduced sources of errors model

The final model has a dynamic factor structure

Yt = Xt + XtA(Xt + & &~ N (0, Zt)
Kt = Wi 1tz zZp~ N (O, lra) Ky = 0

of = o+ Aay

@ This model is fully identified up to orthogonal rotations of A and a;

@ The usual identifying restrictions are not imposed (or required)
ensuring order invariance

@ Computation is fast and efficient
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A fuller specification with stochastic volatility

We allow for stochastic volatility in a standard way
yr = Xt“: +ée e ~N (0, Zt)
Yy = diag (ehff, ehzyf, e ehTVvt)

h? = (T,t'hé,t""rh:,t)/

@ The state equations:

ay = g+, 17~ N0 Q)
h>tk = h:—l +ve vi~N (0, Qh)

@ We consider three specifications that reduce dimensions

WU 2018
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Specification 1:

@ We allow for a small range of correlation structures

Yt
“

*
hy

@ Reduce errors only in

Yo =
DCt =
hy =

o Ais (kX ry)

= Xt(X:.( + & €~ N (0, Zt)
= a; g+ e He~ N (0. Q)
= h;k_l + v Vp e~ N (0, Qh)

the mean equation

XX +XtAlXt +é& &~ N (0, Zt)
K1 +ZI’ Zy ~ N (0, Ira) ng = 0
h?—l +ve vi~N (0, Qh)

WU 2018
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Specification 2:

@ Reduce errors only in the mean and log variance equation

ye = X+ xAge +&0 &~ N(0,%4)
o = wr1+2z zz~N(O, /) a =0
Wy = h+Q/?he = h+ Ayh

he = he1+2z! z{ ~N(0,1,)

o Ayis (kxry)and Apis (N X rp)
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o Let 67 = (af, h)’ have a full covariance matrix
ye = xeap+e e~ N(0X)
9: = 9?—1 o Mot ™ N (0, Q9)

@ Recentering and reducing the rank of Qg
Yr = X + XtAalXt + & & N (0v Zt)
0; = 60+ Q;"%0: =0+ Agf:
0¢ Or—1+ Zte Zf ~ N (0, Iy,)

o =]

0A9i$(k+N)><r9

WU 2018 26 / 42
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Priors

e In specification one, the mean equation coefficients [« A] require
priors

Yi = XX+ XtAOCt + & &~ N (0, Zt)
Ky = Q41+ 2t Zpr~ N (0, Ira) Ny = 0

e a=vec(A)~N (O clinri) ) which equates to using a Wishart prior

for @ for the full rank ( k) case (generalizing Friithwirth-Schnatter
and Wagner (2010))

@ For elements of &« = {a;} we combine SSVS with Minnesota priors as
suggested in Korobilis (2013)
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Posterior estimation

o Draws of a, a, = vec (Ay), h, ap = vec (Ap), a¢ and h; (with states
for the mixture approximation) are drawn in the established approach
for Specifications 1 and 2. All are (conditionally) Gaussian

e For Specification 3, an accept-reject Metrolpolis-Hastings (ARMH)
algorithm (Chan and Strachan (2012)) is used for 6,
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The effect of reducing dimension

Some simple accounting shows the extent of dimension reduction
The figures below are all states and all mean parameters in Specification 1

IN] O 1 2 4  TVP—VAR]

3 27 460 587 841 2730
5 70 755 925 1265 8725
10 | 265 1685 2050 2780 58450
15| 585 2890 3575 4945 220425
20 | 1030 4370 5500 7760 612775

Based upon a VAR (2) with an intercept and T = 100
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% reduction in dimension

IN] © 1 2 4  TVP—VAR |
3 199.0% 83.2% 785% 69.2% 0%
51992% 91.3% 89.4% 85.5% 0%
10 | 99.5% 97.1% 96.5% 95.2% 0%
15| 99.7% 98.7% 98.4% 97.8% 0%
201 998% 99.3% 99.1% 98.7% 0%

Based upon a VAR (2) with an intercept and T = 100

Chan, Eisenstat, Strachan () Reducing Dimensions in a Large TVP-VAR WU 2018 30 / 42



Application: the effect of reducing dimension

o Estimate a TVP — VAR with two lags for N = 2 variables

e k =11 states in &y and N = 2 states in h;
er,=0,.,11,r,=12andnp=1,..,13

@ We estimate the standard TVP — VAR and compare to the model
with r, = 11 (should be the same) and r, =3

e This implies a (mild) reduction in dimension from 2,937 to 1, 144
(61% reduction)
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TVP-VAR RSOE with » = 11 RSOE with r = 3

02,1

03,4

09t

Figure 1: Test example: bivariate (inflation and interest rates) with stationary and de-
meaned series TVP-VAR (p = 2, so k = 11).



Application: News and non-news shocks

@ Estimate the time-varying effects of surprise productivity and news
shocks

@ TVP — SVAR with two lags for N = 15 variables

o k =570 parameters in a+ and N = 15 parameters in h;
e states: r, =0,...,570, r,=0,...,15and rp =0, ..., 585

@ We use Deviance Information Criteria (DIC) to select among the
specifications

e DIC have been shown to perform well for latent variable models, e.g.,
state space models

@ The identification strategy is the same as in Barsky and Sims (2011),
with minor modifications for the time-varying parameter context
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DICs for models specified with n = 15 and various combinations of r, and
rp. All values are relative to the DIC of the constant coefficient model (i.e.

re =, = 0).
3 states 5 states 7 states 10 states

th rn DIC|r, r, DIC|r, r, DIC| r, r, DIC
3 0 764 5 0 -766| 7 0 -742 |10 0 -366
2 1 7711 4 1 -8l6| 6 1 -688| 8 2 -486
1 2 -711}3 2 -87|4 3 -892| 6 4 -697
0 3 562 2 3 -8B1|3 4 -88| 5 5 -854
1 4 -75%6| 1 6 -698| 4 6 -876

0 5 -B83|] 0 7 -565| 2 8 -800

0 10 -545

shared -770 | shared -835 | shared -719 | shared -418
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Model selection

@ The preferred model with N = 15 is Specification 2 has DIC = —892
with

e ry = 4 states driving the mean equation coefficients and
e r, = 3 states driving the volatilities
e this implies a dimension reduction from 309, 690 to 4,660 (98.5%)

@ The best Specification 3 (shared states) has DIC = —835 with ry =5

e a dimension reduction of 98.5%.

@ Specification 1 is not competitive
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Figure: Impulse-response functions to news shocks
1990Q1 and 1998Q4 (mean, and 16-84 percentiles
for the n = 15 variables model.
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Figure: Time-varying fractions of forecast error variance explained by non-news
and news shocks on impact (mean, and 16-84 percentiles of the posterior
distribution) for the n = 15 variables model.
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Figure: Time-varying fractions of forecast error variance explained by non-news
and news shocks at 40 quarters after impact (mean, and 16-84 percentiles of the
posterior distribution) for the n = 15 variables model.
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@ We find evidence of time variation to both news and non-news shocks

@ The long-run impact of news shocks upon real variables (Y, C, I) is
declining over time

@ The change in the response of the variables to news shocks is less
evident than the variation in the level of uncertainty around the
response to news shocks
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@ We have provided a means for estimating large TVP — VAR models
@ We achieve this by imposing a restriction suggested by the data
@ Implementation uses recentering and parameter expansion

@ The result is an efficiently computable form
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