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The problem of testing independence |

» p-dimensional random vector y;

» Decomposition in two blocks

yi1
: p1
_ Yip,
1=
y Yipi+1
: p2
Yipi+pe

» Question: Are yi1,...,Yyip, independent of yip 11, .., Yipi+p !
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Testing for independence

The problem of testing independence Il

» Question: Are yi1,...,Y1p, independent of yip i1, .., Vipi4p,?

» Alternative formulation: if y ~ AM(u, X) and

Tn Xp
z =
( Ty Xp )
— —~
P2XpL P2XP2

» Is the covariance matrix block diagonal?

Ho: Zi1p=0 cRP*P2 versus Hy: ;=0
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Likelihood ratio test

» Sample covariance matrix of an i.i.d sample yy,...,y, ~ N(p, X)
Sii S )
S, =
< Sa1 S
» Likelihood ratio test (Wilks, 1939) rejects the null hypothesis, if

—20p1p5 108 Voo > XT_o.ar
where
IS4
S11[S22|

1
df = 5((171 +p2)(pr+p2+1) = pi(pr+1) — pa(p2 + 1)) = pr1p2
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x2-approximation (n = 100, p; + p, = 60)
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Likelivood raso (ctassical),p = 60, n = 100, p_1 = 30
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Remarks:

» There is a systematic bias in the approximation

» The x?- approximation is based on “classical” theory:
p1, P2, p are fixed, and n — oo

» Can we get better approximations using a different point
of view, that is:

lim 2 = ¢ € (0,1)

n—oco n
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Alternative asymptotic distribution theory

Dimension increases with sample size n:

| 4

v

Yi,---5¥n NN(“’zn)

In general, we allow normal mixtures in form y; ~ Rx with x ~ A (u, X,)
and R is a pos. def. random variable ind. of x (so called generating
variable)

Y, € RP*P js the positive definite population covariance
matrix with bounded spectrum

0<)\1§/\2§...§)\P
as p — 0.
pi dimension of block i (i =1,2)
p = p1 + p2 the total number of variables
asymptotic regime:

n—oo N 1t ]| Leibniz
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Asymptotic normality (Yao, Bai and Zheng, 2015)

Theorem
Under the null hypothesis

log V,, — pos —
g Vin — P2SLR,n ,uLR,nEHV(O?l)7
OLR,n

where s g n, [iLR,n and o1k , depend only on p1, p> and n.
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Details on the constants

KR =
SIR =

+
where

1/2log

(W5 % =93,

(w2
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* 2

* 2
2 Whn
oip =2log | ———
3/2 ) LR [ o } )
— 72’,7 )2 wy Y2,n

1, 11—, 1,n + 72,
log (%(1 - 72,n)2> + 2 tog(wy) = PIT 2 fog(wy — A2, /wy)
n

1-m

)

)

1,

1—v

Y2,n Y1,n7Y2,n

= log(wy — wy2,n), 71,0 € (0,1)

Yi,n = 1 5

"/l,tyn IOg(W;yk - ’Y?,n/W:)v Y1,n >1.

Y1,n

P2 P2
— € (0,400) , 2,0 = € (0,1),
p1 n—p1
Y1,n + Y2,n — Y1,nY2,n
Y2,n

it ]| Leibniz
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Normal approximation (n = 100, p; + p» = 60)

Likelihood ratio, p = 60, n = 100, p_1 = 50 Likelinood ratio, p = 60, n = 100, p_1 = 40 Likelihood ratio, p = 60, n = 100, p_1 = 30
ER| - - Sample ER - - Sample ER - - Sample
— Asympoic — Asymptone. — Asympoic
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Finite sample properties of the normal approximation

Likelihood ratio, p = 60, n = 100, p_1 =50

Likelihood ratio, p = 60, 1 = 100, p_1 = 40

Likelihood ratio, p = 60, n = 100, p_1 =30

R - - sample
— Asympioic

~- sampie
— Asympuotc

~- sample
— Asympiic

Likelihood ratio, p = 60,1 =100, p_1= 15

Likelihood ratio, p = 60, n = 100, p_1= 10

~- sampe
— Asymptotc

-0 = o
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New tests for independence

» Recall:
pXE] zu)
Y, =
<Z21 2
» Note: the hypothesis

Ho: X1 =0 versus H;: X1 #0,

is equivalent to
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Ho - 221ZI11212 =0 versus Hj: 2212I11212 <0
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Fisher matrix |

» Decompose the sample covariance matrix

s — (511 512>
So1 S
—~ —~—
p2XpL p2aXp2

» Estimate the matrix X1 X;;'X1o by

W = S,:57;'S1»

i ¢ Leibiz
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Fisher matrix 1l

» Central Wishart distribution under the null hypothesis, i.e.
W = $51S17'S12 ~ W, (p1, 221),

where X951 = X9y — 2212;11212 is the corresponding Schur
complement (Muirhead, 1982).

» Non-central Wishart distribution under the alternative
conditionally on Sy, that is

W|511 ~ sz(Pl, z22-17 Ql)a

where
Q= 22721_12212171151121711212.
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Fisher matrix Il

» Estimate the Schur complement X3,.1 by

T =Sx1 =S» —S21S:1!S12 ~ Wy, (n— p1, Za21)

» Note: under the null hypothesis and alternative

> T~ Wy(n—p1,Xn1)

> The matrices W and T are independent.

i ¢ | Leibniz
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Fisher matrix V

» Note: Under the null hypothesis of independence

T ~ Wp(n—p1,Z2)
W~ W, (p1, Z0)

» In particular: Under the null hypothesis the distribution of
F = WT! does not depend on X (distribution free).

» The matrix F = WT ! is called Fisher matrix (central under
the null hypothesis and non-central under the alternative)

» We will use linear combinations of the eigenvalues to test
the hypothesis of independence!




New tests for independence
Example: eigenvalues of Fisher matrix IV

>
>

A € RPXP is a matrix with i.i.d. standard normal distributed variables

Covariance matrix under H;

Ty = AAT = (

Covariance matrix under Hy

>
Ti = ( n

pXT]
PNl

0
PR )

pXP)
P

)

)
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Empirical eigenvalue distribution of F based on a sample of n = 1000 i.i.d.
N(0,X4.) and N(0,X.) random variables (p1 = 300, p» = 300, p = 600)
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Alternative test statistics (MANQOVA)

(1) Wilks' A statistics:
Ty = — log(|T|/IT + W) = log(|l + WT~1]) = log(|1 + F|)
(2) Lawley-Hotelling's trace criterion:
Ty = tr(WT™1) = tr(F)
(3) Bartlett-Nanda-Pillai's trace criterion:
Tawp = tr(WT 21+ WT 1)) = tr(F(1+ F) 1)

Note: all statistics depend on the eigenvalues vi > v, > ... > v,
of the matrix F
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Representation as linear spectral statistics

Note: all statistics depend on the eigenvalues v; > v» > ... > v, of the
matrix F

(1) Wilks" A statistics:
P2

Tw = log(|l + F|) = Zlog(l +v)

(2) Lawley-Hotelling's trace criterion:

Tin = tr(WT™Y) = tr(F)

Il
et

(3) Bartlett-Nanda-Pillai's trace criterion:

Vi
Vi

14

1

Tonp = tr(F(I+F)71) = >
i=1
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Linear spectral statistics

» Eigenvalues of the matrix F = wT L

VI Vo2 2>V,

» Empirical spectral distribution function:

. i
= 11(—oo,v,'](X)
P2

» Linear spectral statistic: let f : R — R denote a “suitable” function

LSSnng/ooo f(x)dFn(x) = Zf(v,

it | Leibni
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Linear spectral statistics

» Question: Can we find the asymptotic distribution of the linear
spectral statistic

P2

LSS, = po / )R = 3 F(w)

i=1
for many functions of f7
» This is a very difficult problem in random matrix theory

» For this purpose we need to have knowledge about the asymptotic
properties of the eigenvalues vi,...v,, as n, p;, pp — oo.

» In this talk:
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Asymptotic properties of the spectrum

Example: Empirical spectral distribution of the Fisher matrix and the limiting density

p =600, n=1000, p_1 =300 p =600, n =1000, p_1 =450
10 [Eyper— 10 [Epr—
T Hioram o igomalues nder H_0 T aram ot cigemaiues nder H_0
0s |
06 |
04 |
0z |
00
o 2 i s 8w om 0 1 2 s . s
eigenvalues eigenvalues
2 2
B 1— _(1-h?  (1+h)
a(x) ——2 __/(b—x)(x—a), a= S, b= .
2mx(m1 + y2x) (1—72) (1—)
. . P2 . .
71 = lim yp,= lim — v = lim v,= |lm
n— oo n—o0 pp n—oo n—oo n— pp

>
I

= lim hy= /71,0 +72,0 — 11,720 v
n—o0 i1 | Leibniz
Universitat
1094 | Hannover




Linear spectral statistics of Fisher matrices under Hp ————— 24| 47

Asymptotic properties of the spectrum

Take home message I:

» The empirical spectrum of a Fisher matrix converges almost surely
to a well defined density.

» This distribution appears in the standardisation of the linear spectral
statistic.

i iz
102 rsitat
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Asymptotic distribution of linear spectral statistics |

» Take home message II:

> Under the null hypothesis standardised versions of linear
spectral statistics are asymptotically normal distributed.

> The constants in this standardisation are very complicated
(and depend on the limiting distribution of the the spectrum).

> For a more precise statement we need the definition of the

Stieltjes transform
[ G(dt)
me(2) = / t—2z

of a distribution function G.
> The Stieltjes transform has similar properties as the
characteristic function, for example:
— G is determined by mg¢
— Convergence in distribution can be characterised in terms of

convergence of the Stieltjes transforms
109:4 | Hannover
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Asymptotic distribution of linear spectral statistics |

» A more precise statement of asymptotic normality of linear
spectral as n,p;, pp — 00

P2 o
PBLORE /0 F(x)an(x)dx

= p2</000 f(X)an(X) - /Ooo f(X)qn(X)dX) ﬂ)./\/’([_l,7 0_2)

where

q,-,(X) i (b,, _ X)(X — an), a, = (1 — hn)2 bn . (1 + hn)2

B 27x(Y1,n + ¥2,nX) B (1- '72,n)27 B (1- '72,n)2

» Asymptotic mean p and variance o depend on the Stieltjes transform

mo(e) = [ 2%

t—z

of the limiting density g of the spectrum in a complicated manner

15| Leibniz
10 2] Universitat
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Asymptotic distribution of linear spectral statistics |l

0(z) +2mo(z) +2 — c/c1>
2(z) +2mo(z) +1

noo= ?{fz)dlo(
1- = Clmo(z)
?{f z)dlog< (1+m0( )2 )

f(z1)f(z
"= on? %% (mo( zf 12 r(n()z()z2))2 dmo(21)dmo(z2)

+

» The integrals are taken over arbitrary positively oriented contour
which contains the interval [a, b].

» For a given f (e.g. f(z) =logz) p and o2 can be calculated

i || Leibniz
i 0,2 Universitat
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Asymptotic distribution under H,

Theorem
Let o € {W, LH, BNIP}, then under the null hypothesis Hy

Ta — P2Sa,n — Ha,n £>N(O, 1)

Oa,n
where sqn, [ta,n and (7(21‘,, depend on p1, p2 and n.

Example: Lawley-Hotelling's trace criterion:

UiH = Y2,n 0_2 _ 2('71A,n + Y2,n — 'Yl,n'YQ,n) sy = 1
(1 _’72A,n)27 LH (1 _'YZ,n)4 / 1_'72,n
where
P2
Yi,n = — € (07+OO) y Y2,n = S (07 1)

P1 n—p1




Linear spectral statistics of Fisher matrices under Hp ——— 29 | 47

Simulation under Hy: Wilks’ A

Wik, p =60, = 100, p_1= 50 Wik p =60,n =100, p_1 =30 Wik, p =60, =100, p_1= 10
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Simulation under H;: Lawley-Hotelling’s trace criterion

LH,p=60,1=100,p_1=50 LH,p=60,1=100,p_1=30 LH,p=60,1=100,p_1=10

Reliable approximation in all cases!
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Simulation under H,: Bartlett-Nanda-Pillai’s trace
criterion

LH,p=60,=100,p_1=50 LH,p=60,n=100,p_1=30 LH,p=60,n=100,p_1=10

Reliable approximation in all cases!
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Analysis under the alternative

» Recall: Note that under the alternative the matrix WT_1|511 has a
non-central Fisher matrix with non-centrality parameter
-1 -1 -1
Q1 - 222_1221211 S11211 Z12
» Proceed in two steps:

(1) Determine the asymptotic distribution of the empirical spectral
distribution (this is needed for centering - at least)

(2) Determine the asymptotic distribution of the linear spectral
statistics (extremely difficult)

For the illustration of the type of result we recall the definition of the

Stieltjes transform
[ G(dt)
mG(Z) B / t—2z

of a distribution function G

i | Leibniz
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Analysis under alternative hypothesis (take home)

Take home message Ill(a): The empirical spectral distribution of the matrix
F = WT ! converges almost surely to a deterministic distribution function F*,
which depends on the eigenvalues of the matrix

R=3,/ 50X EnE, > = 5205,

22-1

HO H1

i iz
102 rsitat
1094 ] Hannover




Linear spectral statistics of Fisher matrices under Hy ———— 34| 47
Analysis under the alternative

Theorem
If the empirical spectral distribution of the matrix
R= I, EaXy Enly " = £ 0T,

converges weakly to some function G then the empirical spectral distribution of
F = WT ! converges almost surely to a deterministic distribution function F*.
The Stieltjes transform

s(z) = me=(2) = / M

t—2z
of F* is the unique solution of the system of equations

s(z)

= mp(z(1+7225(2))),

1+52s(z)
DS = mp(mmy D my(2)z— (=)D,
ma(E)a-(e—e) (- = me (e )

15| Leibniz
1 0; 2] Universitat
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Linear spectral statistics under the alternative

» The distribution F* is required for the centering of the linear spectral statistic
and its Stieltjes transform

F*(dt)

t—2z

s(z) = mex(2) = /

is the unique solution of the system of equations

Tl = muns@),
TS = mg(mu @) ma ()2 (1)),
ma(Ea—(e—e)~(c-eamg(er = mo( = Eea )

This has to be solved recursively (I:I —H—= F* — F}¥)

» Empirical analogue F;: Replace

,crand ¢ by 22, P2 PL 5pd P2
1, Y2: €1 2 by o 22 2
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CLT for linear spectral of under the alternative

Theorem
If n, p1, pp — o0, then

oo /0 ) Fa(d) — /0 h FFA () = Nz, 0?)

» Asymptotic mean and variance are very complicated

> a system of three equations for the Stieltjes transform has to
be solved recursively (H — H — F* — F})

> this system reduces to a quadratic equation under the null
hypothesis

1t ]| Leibniz
16 2] Universitit
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1 1
BIXel = — ¢ f(2)dlog(a(2) + %}l{f(Z)B(Zb(Z))d(Zb(Z))
20 3 2 -3
1 cf [ mp(2b(2))t*(cy + tmp(2b(2))) ~>dG(t)
—_— f(z)0, z) | 0z f(zb(z d:
o P0G ( (2t ))(1 — a1 [ 2 (2b(2))2(cr +tmg(zb(z)))—2dG(t))2)
Var[Xf] = 7{%}' z1)f(z Wdzldzg
32 log(z1 b(z1)n(z1b(21)) — z2b(22)n(22b(22)))
- 272 .7{]{ (e1)f(z2 021071 dzy iz
82 log mg(zib(li)):zm,:,(qu(n))
- L f e { 5 1(216(20))05 (22b(22)) ( [ e ] dzydzy
2102z
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1o 2] Uni versnat
1094 ] Hannover




Linear spectral statistics of Fisher matrices under Hy ——— 38| 47

Take home message Ill(b):

» Linear spectral statistics (appropriately normalised) of the Fisher
matrix F are asymptotically normal distributed

» The standardisation and limiting distribution depend on the
eigenvalues the matrix

R=X,1nE ' E5,,

(more precisely on its asymptotic properties) in a complicated way.

» But the asymptotic properties do not depend on the eigenvectors of
the matrix R

» Under the null hypothesis: R =0

i ¢ Leibiz
10 2] Universitat
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Why all these efforts?

» Interesting mathematics!
» A better understanding of the properties of the tests!

» Example: Finite rank alternatives:

> Finite rank alternatives R have no influence on the asymptotic
power of the tests.

> The asymptotic means and variances coincide under the null
hypothesis and alternative.

> Heuristically: tests based on a linear spectral statistics of the
Fisher matrix cannot detect the alternative if the matrix R has
no large eigenvalues.

i iz
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Finite sample properties |

10 0 0 p »p p P
0 1 0 0 p »p p P
0 0 1.0 p »p p P
Yy = 0 0 0 1 p »p p P
p P p p 1 0 0 o0
p P p p 0 1 0 0
p P p p 0 0 0 1
P2 Xp1 P2 X p2

Note:

» The correlation coefficient p will change in the interval [0, 0.0325]

» We set some elements of X5 (randomly) equal to zero (sparse X12).
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Comparison of new tests (power) |

P=60,1=100,p_1=10 P=60,n=100,p_1=30 p=60,n=100,p_1=50

3 s

cteling wley-Hoteling

BNP BNP
Confidence level alpha=0.05 Coniidence level alpha=0.05

0000 005 001 001 0020 0025 000 000 0005 0010 0015 0020 0025 0030 000 0005 0010 005 002 0025 00

Note:

» All tests have problems to detect the alternative for small values of p (as
predicted by our theory)

» The best power is obtained for p; = pp = 30

» The Lawley-Hotelling's trace criterion shows the best performance
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Comparison of new tests (power) Il - increasing sparsity

P=60,n=100,p_1=30 p=60,n=100,p_1=30 p=60,n=100,p_1=30

E Wiks 24 2w
Lawey-Hoteling ey — Lavley-Hoteling
BNP NP —- e
— Confidence levelalpha=0.05. — Confidence level alpha=0.05 — Confidence level alpha=0.05

0000 005 001 001 0020 0025 000 000 0005 0010 0015 0020 0025 0030 000 0005 0010 005 002 0025 00

Sparsity 0% Sparsity 20% Sparsity 50%
Note: n =100, p = 60, p; = 30
» The power decreases with increasing sparsity

» The Lawley-Hotelling's trace criterion shows the best performance

i
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Other benchmarks

(1) Trace criterion introduced by Jiang-Bai-Zheng(2013):

1
Tz = tr [WT—1 (WT—1 + Mlp,m> }

.n
(2) Minimum distance test of Yamada-Hyodo-Nishiyama (2017):
Tyun = (n = 2)(n — 1)tr(S?) + (tr(S))?

(3) Likelihood ratio test

S|
Tir=1I —_
R og(lsllllszzl)

Note: Standardised versions of the test statistics are asymptotically normal

distributed (linear spectral statistics)

43 | 47
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Comparison with alternative tests (power) |

P=60,1=100,p_1=10

P=60,0=100,p_1=30

34— Loy Hoteling
Likeibood
Sang-sa-zheng
mada-Hyodo-+ N\smymufzmﬂ
w | — Condence el aphac

] e
P

_—

— Lawley-Hoteling

— Confidence level aipha=0.05

000 005 001 001s 0020 0025 0030

Note: n =100, p = 60, p; = 30

0000

0005

0010 oms oo 002

» The best power is obtained for p; = pp = 30

0030

p=60,n=100,p_1=50
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— Laviey-Hoteling
Ukelinood Ratio

Jiang-Bai-Zheng (2013)
adaHodo-hiyama 2017)
— Confidence Ievel alpha=0.

-

7

000 0005 0010

» The Lawley-Hotelling's trace criterion shows the best performance

o001

o020

0025

00w
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Comparison with alternative tests (power) Il
increasing sparsity

p=60,0=100,p_1230 p=60,n=100,p_1230 p=60,n=100,p_1=30
SH— Lavey-Hacling 24— Sq—
oot

Sng-5e sheng 201 o o Sang-Bar-2neng 20

‘Yamada-Hyodo-Nishiyama (2017) Vamaﬂa Hyodo- Nsmyamn (2017) Yam ada-Hyodo- Nshwama(zmﬂ
o | = Covmesrov et o | G . o | — Contdonc oo,

w0 os oow oms oo oo oo o0 oos oow oms oo oo oo oo oos oow ooms oo oos oo
Sparsity 0% Sparsity 20% Sparsity 50%

Note: n = 100, p = 60, p;1 = 30
» The power decreases with increasing sparsity

» The Lawley-Hotelling’s trace criterion shows the best performance (except for

50% sparsity)
1 iversitat
109:4 || Hannover




Conclusions 46 | 47

Conclusions

» We have studied the problem of testing independence in a large
dimensional vector.

» The “classical” likelihood ratio test for independence does not keep its
nominal level if p; is small compared to p».

» We have introduced alternative tests which yield a more reliable
approximation.

» We determined asymptotic properties under the null hypothesis and
alternative.

» For this purpose we investigated asymptotic properties of linear spectral
statistics of central and non-central Fisher matrices. WT ™!, where W
and T are independent Wishart matrices (W is conditionally Wishart).

» The theoretical results can be used for a better understanding of the
finite sample properties of tests based on linear spectral statistics of the
Fisher matrix.

i
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