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Evaluating and Comparing Forecasts

@ Forecasts for uncertain future events are ubiquitous and at the heart
of strategic decision-making in different contexts:
» business
» government
> risk-management
» meteorology
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Evaluating and Comparing Forecasts

@ Forecasts for uncertain future events are ubiquitous and at the heart
of strategic decision-making in different contexts:
» business
» government
> risk-management
» meteorology

@ Having m different sources of forecasts, one has the
prediction-observation-sequences

(Xg-‘i) ’ Yt) t=1

N i=1,...,m.

> Xg" € A (Action domain). For point forecasts, A = R or A = R¥. For
probabilisitic forecasts, A = F a space of probability distributions.
> Y; € O (Observation domain). Usually O = R¢,
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Evaluating and Comparing Forecasts

@ Two main tasks:
» forecast validation
» forecast comparison /selection.
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Evaluating and Comparing Forecasts

@ Two main tasks:
» forecast validation
» forecast comparison/selection.

@ Commonly, one compares competing forecasts in terms of scoring
functions (loss functions)

S:Ax0—R, (x,y) = S(x,y).

Examples: S(x,y) = |x—y|, S(x,y) = (x— y)2.
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S:Ax0—R, (x,y) = S(x,y).
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Evaluating and Comparing Forecasts

@ Two main tasks:
» forecast validation
» forecast comparison/selection.

@ Commonly, one compares competing forecasts in terms of scoring
functions (loss functions)

S:Ax0—-R, (x,y) — S(x,y).
Examples: S(x,) = [x— i, S(x.y) = (x— )2
@ Ranking of the forecasters in terms of realised scores:

1o ? 1O
Sy = 52 S vy = 8 = £ YT S(X?. vy
t=1 t=1

@ Ranking depends on the choice of the scoring function!

@ One should disclose the specific choice of the scoring function to the
forecasters ex ante.
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Evaluating and Comparing Forecasts

@ Two main tasks:
» forecast validation
» forecast comparison/selection.

Commonly, one compares competing forecasts in terms of scoring
functions (loss functions)

S:Ax0—-R, (x,y) — S(x,y).

Examples: S(x.y) = [x— yi, S(x.y) = (x— y)°.
Ranking of the forecasters in terms of realised scores:

1o ? 1O
Sy = 52 S vy = 8 = £ YT S(X?. vy
t=1 t=1

@ Ranking depends on the choice of the scoring function!

@ One should disclose the specific choice of the scoring function to the
forecasters ex ante.

@ ~» We need guidance in the choice of the scoring function.
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Consistency and Elicitability

@ Specification in terms of

(i) an intrinsically meaningful scoring function (reflecting the actual
economic costs); or

(ii) a property (mean, median, variance, a risk measure) of the underlying
distributions of the observation Y;.
That is a functional T: F — A. Here, F is a class of potential
distributions of the observations.
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Consistency and Elicitability

@ Specification in terms of

(i) an intrinsically meaningful scoring function (reflecting the actual
economic costs); or

(ii) a property (mean, median, variance, a risk measure) of the underlying
distributions of the observation Y;.
That is a functional T: F — A. Here, F is a class of potential
distributions of the observations.

e Using a Law of Large Numbers (under ergodicity / mixing
assumptions), a forecaster wants to minimise their expected score

Er[S(x, Y)], where Y~ F.
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Consistency and Elicitability

@ Specification in terms of

(i) an intrinsically meaningful scoring function (reflecting the actual
economic costs); or

(ii) a property (mean, median, variance, a risk measure) of the underlying
distributions of the observation Y;.
That is a functional T: F — A. Here, F is a class of potential
distributions of the observations.

e Using a Law of Large Numbers (under ergodicity / mixing
assumptions), a forecaster wants to minimise their expected score

Er[S(x, Y)], where Y~ F.

@ The scoring function should be “unbiased”, incentivising truthful
forecasts.
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Elicitability

Definition 1 (Consistency)
A scoring function S: A x O — R is strictly F-consistent for some

functional T: F — A if
Ef[S(T(F), V)] < Ef[S(x, Y)]

for any Fe F and any x€ A, x # T(F).
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Elicitability

Definition 1 (Consistency)

A scoring function S: A x O — R is strictly F-consistent for some
functional T: F — A if

Ef[S(T(F), V)] < Ef[S(x, Y)]
for any Fe F and any x€ A, x # T(F).

Definition 2 (Elicitability)
A functional T: F — A is elicitable if there is a strictly F-consistent
scoring function S: A x O — R for T. Then

T(F) = argmin E£[S(x, Y)].

xeA

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 5/ 34



Relevance and Applications

e Mathematical / Statistical Applications:

» Forecast evaluation, comparison and ranking; model selection
» Regression
» M-estimation
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o Mathematical Finance; banking; regulation:

» Quantitative risk management;
» Backtesting
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Relevance and Applications

e Mathematical / Statistical Applications:

» Forecast evaluation, comparison and ranking; model selection
» Regression
» M-estimation

o Mathematical Finance; banking; regulation:

» Quantitative risk management;
» Backtesting

Economics; econometrics; business
Meteorology
Machine Learning

Politics

Sociology (~ ‘Wisdom of the Crowds')
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Regression

Classic situation: There is some parametric model m: ® x R — R and we
assume that there is some true parameter 6* € © such that

Y = mpx(X) + ¢, where El[e|X] = 0. (1)
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Regression

Classic situation: There is some parametric model m: ® x R — R and we
assume that there is some true parameter 6* € © such that

Y = mpx(X) + ¢, where  Ele|X] = 0. (1)

Equivalent form of (1):

E[YIX] = mg« (X).
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Regression

Classic situation: There is some parametric model m: ® x R — R and we
assume that there is some true parameter 6* € © such that

Y = mpx(X) + ¢, where  Ele|X] = 0. (1)

Equivalent form of (1):
B[YIX] = mgs (X)

Find an estimator 6, for 6* by

R 1 &
0, = argmin — mo(X;) — Y;)2.
min, 33(m(X) - Y)
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Regression

Classic situation: There is some parametric model m: ® x R — R and we
assume that there is some true parameter 6* € © such that

Y = mpx(X) + ¢, where El[e|X] = 0. (1)

Equivalent form of (1):
B[YIX] = mgs (X)

Find an estimator 6, for 6* by

R 1 &
0, = argmin — mo(X;) — Y;)2.
min, 33(m(X) - Y)

Relying in the fact that

6* € argmin E(my(X) — Y)? {6* € argmin E[(my(X) — Y)?X] }
0c© 0e©
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Regression

Classic situation: There is some parametric model m: ® x R — R and we
assume that there is some true parameter 8* € © such that

Y = mpx(X) + ¢, where  Ele|X] = 0. (1)

Equivalent form of (1):
E[VIX] = mys(X).

Find an estimator 6, for 6* by
. 1 5
0, = argmin — Z(mg(X,-) - Y~

Relying in the fact that
6* € argmin E(my(X) — Y)? {6* € argmin E[(my(X) — Y)?X] }
0c© 0e©

However, instead of squared loss, we could use any strictly consistent
scoring function for the mean functional.
9 November 2018 7 / 34



Regression |l

General situation: There is some parametric model m: © x R — R¥ and
we assume that there is some true parameter 6* € © such that

TL(Y X)) = mg=(X).
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Regression |l

General situation: There is some parametric model m: © x R — R¥ and
we assume that there is some true parameter 6* € © such that

TL(Y X)) = mg=(X).

Assume that S: R x RY — R is a strictly consistent scoring function for T.

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 8 /34



Regression |l

General situation: There is some parametric model m: © x R — R¥ and
we assume that there is some true parameter 6* € © such that

TL(Y[ X)) = mg«(X).
Assume that S: R x RY — R is a strictly consistent scoring function for T.

Find an estimator 6, for 6* by

R 18
0, =argmin — Y S(mg(X;),Y;).
gmin 3 S(m(X). Y)
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Regression |l

General situation: There is some parametric model m: © x R¢ — Rk and
we assume that there is some true parameter 6* € © such that

T(L(Y] X)) = mgs(X).
Assume that S: R x RY — R is a strictly consistent scoring function for T.

Find an estimator 6, for 6* by

0, = argmin S(mpg( Y.
g nZ 6(Xi), Yi)

i=1

Relying in the fact that

0* € argerginE[S(mg(X), V)] {6" € argelginE[S(mg(X), Y)[X]}
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The Elicitation Problem

Fix some functional T: F — A.
(i) Is T elicitable?
(if)
(iii) What is a particularly good choice of a scoring function?
)

(iv) What to do if T is not elicitable?

What is the class of (strictly) consistent scoring functions for T7?

1

A
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The Elicitation Problem

Fix some functional T: F — A.
(i) Is T elicitable?
(ii

)

) What is the class of (strictly) consistent scoring functions for T7?
(iii) What is a particularly good choice of a scoring function?

)

(iv) What to do if T is not elicitable?
T | S(x,y)
mean (x—y)*
median |x—y]|
T-expectile [1{y < x} — 7|(x— y)?
a-quantile [l{y < x} —a||x—y]

1A baowao o H ~ od
Dr. T. Fissler (Imperial College London)
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The Elicitation Problem

Fix some functional T: F — A.
(i) Is T elicitable?
(ii

)

) What is the class of (strictly) consistent scoring functions for T7?
(iii) What is a particularly good choice of a scoring function?

)

(iv) What to do if T is not elicitable?

T | S(x,y)

mean (x—y)*

median |x—y]|
T-expectile [1{y < x} — 7|(x— y)?
a-quantile [l{y < x} —a||x—y]

variance
Expected Shortfall
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The Elicitation Problem

Fix some functional T: F — A.
(i) Is T elicitable?
(ii

)

) What is the class of (strictly) consistent scoring functions for T7?
(iii) What is a particularly good choice of a scoring function?

)

(iv) What to do if T is not elicitable?
T | S(x,y)
mean (x—y)*
median |x—y]|
T-expectile [1{y < x} — 7|(x = y)?
a-quantile [l{y < x} —a||x—y]
variance
Expected Shortfall X
(mean, variance) v
(Value at Risk, Expected Shortfall) vl
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The Elicitation Problem

Fix some functional T: F — A.
(i) Is T elicitable?
(ii

)

) What is the class of (strictly) consistent scoring functions for T7?
(iii) What is a particularly good choice of a scoring function?

)

(iv) What to do if T is not elicitable?
T S(xy)
mean (x—y)*
median |x—y]|
T-expectile [1{y < x} — 7|(x = y)?
a-quantile [l{y < x} —a||x—y]
variance X
Expected Shortfall X
(mean, variance) v
(Value at Risk, Expected Shortfall) vl
identity (probabilistic forecast) S(F,y) = —log(f(y))

1A baowao o H ~ od
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Main Achievements

Main contributions to the Elicitation Problem for vector-valued and set-valued
functionals.
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Main Achievements

Main contributions to the Elicitation Problem for vector-valued and set-valued
functionals.
(i) Necessary characterization of strictly consistent scoring functions (Osband's
Principle).
~» Multiple quantiles / expectiles. (Fissler and Ziegel, 2016; AoS)
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Main Achievements
Main contributions to the Elicitation Problem for vector-valued and set-valued
functionals.
(i) Necessary characterization of strictly consistent scoring functions (Osband's
Principle).
~» Multiple quantiles / expectiles. (Fissler and Ziegel, 2016; AoS)
(ii) Value at Risk and Expected Shortfall are jointly elicitable.
(Characterization of strictly consistent scoring functions also for spectral risk
measures with finite support.) (Fissler and Ziegel, 2016; AoS)
(iii) Clarification of the role of elicitability for backtesting.
(Fissler, Ziegel and Gneiting, 2016; Risk)

(iv) Order-sensitivity, convexity and equivariance of scoring functions.
(Fissler and Ziegel, 2017)
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Main Achievements

Main contributions to the Elicitation Problem for vector-valued and set-valued
functionals.
(i) Necessary characterization of strictly consistent scoring functions (Osband's
Principle).
~» Multiple quantiles / expectiles. (Fissler and Ziegel, 2016; AoS)
(ii) Value at Risk and Expected Shortfall are jointly elicitable.
(Characterization of strictly consistent scoring functions also for spectral risk
measures with finite support.) (Fissler and Ziegel, 2016; AoS)
(iii) Clarification of the role of elicitability for backtesting.
(Fissler, Ziegel and Gneiting, 2016; Risk)
(iv) Order-sensitivity, convexity and equivariance of scoring functions.
(Fissler and Ziegel, 2017)
(v) Semiparametric efficiency bounds for M- and Z-estimators of multidimensional
functionals.
(Dimitriadis, Fissler and Ziegel, 2018+)
(vi) Dichotomy concerning the elicitability of set-valued functionals.
(Fissler, Hlavinova and Rudloff, 2018+)
(vii) Elicitability and identifiability results for systemic risk measures.
(Fissler, Hlavinova and Rudloff, 2018+)
Brief flavour of (i), (ii), (iii), and (vi).
T
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One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)

Let T: F — A be an elicitable functional and F be convex. Then, for any
ae A, the level sets

Tl({a}) c F

are convex.
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One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)

Let T: F — A be an elicitable functional and F be convex. Then, for any
ae A, the level sets

Tl({a}) c F

are convex.

Remarks:

@ This shows that the variance or ES are generally not elicitable.

Var(dx) = Var(d,) =0, Var(Aox+ (1 —A)dy) = A(L — A)(x—y)*.
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Let T: F — A be an elicitable functional and F be convex. Then, for any
ae A, the level sets

Tl({a}) c F

are convex.

Remarks:

@ This shows that the variance or ES are generally not elicitable.
Var(dx) = Var(d,) =0, Var(Aox+ (1 —A)dy) = A(L — A)(x—y)*.

@ Steinwart et al. (2014) showed that for k =1 and under some
regularity assumptions on T, cls are also sufficient for elicitability.
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One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)

Let T: F — A be an elicitable functional and F be convex. Then, for any
ae A, the level sets
Tl({a}) c F

are convex.

Remarks:

@ This shows that the variance or ES are generally not elicitable.
Var(dx) = Var(d,) =0, Var(Aox+ (1 —A)dy) = A(L — A)(x—y)*.

@ Steinwart et al. (2014) showed that for k =1 and under some
regularity assumptions on T, cls are also sufficient for elicitability.

@ This argument is independent of the dimension of T.
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One-dimensional functionals

Theorem 3 (Convex level sets, Osband, 1985)

Let T: F — A be an elicitable functional and F be convex. Then, for any
ae A, the level sets
Tl({a}) c F

are convex.

Remarks:

@ This shows that the variance or ES are generally not elicitable.
Var(dx) = Var(d,) =0, Var(Aox+ (1 —A)dy) = A(L — A)(x—y)*.

@ Steinwart et al. (2014) showed that for k =1 and under some
regularity assumptions on T, cls are also sufficient for elicitability.

@ This argument is independent of the dimension of T.

@ For k> 1, it is an open question if cls are sufficient.
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Vector-valued functionals

Lemma 4
If T1,..., Tk are elicitable, then the vector (T, ..., T) is elicitable.
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Vector-valued functionals

Lemma 4
If T1,..., Tk are elicitable, then the vector (T, ..., T) is elicitable.

Theorem 5 (Revelation Principle, Osband, 1985)
If T: F — A is elicitable then any bijection go T: F — A’ is elicitable.

If S(x, y) is strictly consistent for T, then S(g~1(X),y) is strictly consistent
forgo T.

v
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Vector-valued functionals

Lemma 4
If T1,..., Tk are elicitable, then the vector (T, ..., T) is elicitable.

Theorem 5 (Revelation Principle, Osband, 1985)
If T: F — A is elicitable then any bijection go T: F — A’ is elicitable.

If S(x, y) is strictly consistent for T, then S(g~1(X),y) is strictly consistent
forgo T.

v

~» The pair (mean, variance) is elicitable even though variance alone is
not elicitable.
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Vector-valued functionals

Lemma 4
If T1,..., Tk are elicitable, then the vector (T, ..., T) is elicitable.

Theorem 5 (Revelation Principle, Osband, 1985)
If T: F — A is elicitable then any bijection go T: F — A’ is elicitable.

If S(x, y) is strictly consistent for T, then S(g~1(X),y) is strictly consistent
forgo T.

v

~» The pair (mean, variance) is elicitable even though variance alone is
not elicitable.

Question
Are there elicitable functionals that are not a bijection of functionals with
elicitable components only?
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Value at Risk vs. Expected Shortfall

Value at Risk (VaR) and Expected Shortfall (ES) are the most commonly
used risk measures in practice.

Definition 6
Let Y be an asset, Y~ F, a« € (0,1). Then

VaR,(F) ;= inf{xe R : F(x) > a},

S (F) = é f: VaRg(F) dB = EF[Y] Y < VaRa(V)].

@ Profits amount to positive values of Y.
o We consider « close to zero (e.g. a = 0.01, or o = 0.025).

@ Risky positions yield large negative values of VaR, and ES,.
~» We work with utility functions instead of risk measures.
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Value at Risk vs. Expected Shortfall (I1)

Ongoing debate about the choice of a risk measure for regulatory purposes.
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Value at Risk vs. Expected Shortfall (I1)

Ongoing debate about the choice of a risk measure for regulatory purposes.

Properties of VaR,, as a risk measure:
(4) It is elicitable, if the distributions in F have unique a-quantiles.
(—) It is generally not superadditive (hence, not coherent).

(—) It fails to take the size of losses beyond the level « into account.
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Value at Risk vs. Expected Shortfall (I1)

Ongoing debate about the choice of a risk measure for regulatory purposes.

Properties of VaR,, as a risk measure:
(4) It is elicitable, if the distributions in F have unique a-quantiles.
(—) It is generally not superadditive (hence, not coherent).

(—) It fails to take the size of losses beyond the level « into account.

Properties of ES,, as a risk measure:
(+) By definition, it considers the losses beyond the level a.

(+) It is superadditive (it is a coherent and comonotonically additive risk
measure).

(—) It fails to have convex level sets and is consequently not elicitable; see
Gneiting (2011).
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Theorem 7 ((VaR, ES) — Fissler and Ziegel, AoS, 2016)

Let € (0,1). Let F be a class of distribution functions on R with finite
first moments. Let Ag = {(x1,x0) € R?: x; = xo}, then any scoring

function S: Ag x R — R of the form
S, x2,y) = (Hy < xa} — a)glxa) — Ly < xi}e(y) + a(y) (2)
+ ¢/ 00) (e + (A <} - a) 2~ Ly <x)2 ) - #(x),
is strictly F-consistent for T = (VaR,, ES,) if
® g is increasing;

@ ¢ is strictly increasing and strictly convex.
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Theorem 7 ((VaR, ES) — Fissler and Ziegel, AoS, 2016)

Let € (0,1). Let F be a class of distribution functions on R with finite
first moments. Let Ag = {(x1,x0) € R?: x; = xo}, then any scoring
function S: Ag x R — R of the form

S(x1,x2,y) = (H{y < x1} — a)g(x1) — L{y < x1 }&(y) + a(y) (2)
+6/00) (e + (1y <a) =) 7 — Ly <)) —o(e),

is strictly F-consistent for T = (VaR,, ES,) if
® g is increasing;
@ ¢ is strictly increasing and strictly convex.

Under mild regularity conditions, all strictly F-consistent scoring functions
for (VaRq, ES,) are of the form (2).

v
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Theorem 7 ((VaR, ES) — Fissler and Ziegel, AoS, 2016)

Let € (0,1). Let F be a class of distribution functions on R with finite
first moments. Let Ag = {(x1,x0) € R?: x; = xo}, then any scoring
function S: Ag x R — R of the form

S(x1,x2,y) = (H{y < x1} — a)g(x1) — L{y < x1 }&(y) + a(y) (2)
+6/00) (e + (1y <a) =) 7 — Ly <)) —o(e),

is strictly F-consistent for T = (VaR,, ES,) if
® g is increasing;
@ ¢ is strictly increasing and strictly convex.

Under mild regularity conditions, all strictly F-consistent scoring functions
for (VaRq, ES,) are of the form (2).

v

~~ Comparative Backtests of Diebold-Mariano type are possible; see
Fissler, Ziegel and Gneiting (2016; Risk).
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Identification function (moment function) V: A x O — Rk

EfV(x V)] =0 <= x=T(F)
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Identification function (moment function) V: A x O — Rk

EfV(x V)] =0 <= x=T(F)

T | V(x, y)
mean X—y
a-quantile H{y<x}—a
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Identification function (moment function) V: A x O — R*

EfV(x V)] =0 <= x=T(F)

T | V(x, y)
mean X—y
a-quantile H{y<x}—a

Hy<x}-a )

(s i) <X2 + (1y < x} - a)x/fa— Ly < xi}y/a
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Identification function (moment function) V: A x O — R*

EfV(x V)] =0 <= x=T(F)

T | V(x, y)
mean X—y
a-quantile H{y<x}—a
H{y<xi}—a
(17E a
(VaR Sa) (X2+(]l{yéxl}—a)xl/a—]l{yéxl}y/o)

Theorem 8 (Osband'’s Principle; Fissler and Ziegel, AoS; 2016))

Let T: F — A € R* be a surjective, elicitable and identifiable functional with a strict
F-identification function V: A x O — R
Under some regularity assumptions, for any strictly F-consistent scoring function
S: A x O — R there exists a matrix-valued function h: int(A) — R** such that
VA E[S(x, ¥)] = h(x) Ee[V(x, V)]

for all x € int(A) and Fe F.
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Second-order Osband'’s Principle

Theorem 9 (Osband's Principle; Fissler and Ziegel, AoS; 2016))

Let T: F > AC R be a surjective, elicitable and identifiable functional with a strict
F-identification function V: A x O — RX.

Under some regularity assumptions, for any strictly F-consistent scoring function

S: A x O — R there exists a matrix-valued function h: int(A) — R*** such that

VL EF[S(x V)] = h(x) Be[V(x, V)]
for all x € int(A) and Fe F.

Second-order

Under some smoothness conditions, we can even exploit second order conditions: the
Hessian
ViEr[S(x, V)] € R**

must be symmetric for all x€ A and for all Fe F. Moreover, it must be positive
semi-definite at x = T(F).

~ This gives a lot of information about the matrix h(x).
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Osband's Principle: Examples for k=1

Proposition 10 (Gneiting, 2011)

(a) Under some regularity conditions, S: R x R — R is a strictly
consistent scoring function for the mean if and only if

S(xy) = ¢(y) = d(x) + ¢’ (x)(x — y) + a(y)
aXEF[S(X’ Y)] = ¢//(X)(X— EF [”)7

where ¢: R — R s strictly convex.
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Osband's Principle: Examples for k=1

Proposition 10 (Gneiting, 2011)
(a) Under some regularity conditions, S: R x R — R is a strictly
consistent scoring function for the mean if and only if
S(xy) = d(y) — o(x) + ¢' () (x— y) + a(y)
OxEr [S(x, V)] = ¢" (x)(x— Ef[Y]),
where ¢: R — R s strictly convex.

(b) Under some regularity conditions, S: R x R — R is a strictly
consistent scoring function for the a-quantile, o € (0,1) if and only if

S(xy) = (I{y < x} — a)(g(x) — &) + a(y)
OxEE[S(x, V)] = & (x)(F(x) — ),

where g: R — R s strictly increasing.

v
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Relevance of Elicitability to Backtesting

Prediction-observation triples

(Vtv €, yt)t:l,...,N

vi: VaR,, prediction for time point t
e:: ES, prediction for time point ¢t
Y;: Realization at time point t

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 19 / 34



Traditional backtesting...

..aims at testing of the null hypothesis

HS: “The risk measure estimates at hand are correct.” J

@ Calculate some test statistic 71 based on observations
(Vt, €r, Yi)e=1,.. n such that we know the distribution of T;
(approximately) under HS.

o Backtesting decision: If we do not reject HS, the risk measure
estimates at hand are adequate.

Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 20 / 34



Traditional backtesting...

..aims at testing of the null hypothesis

HS: “The risk measure estimates at hand are correct.” J
@ Calculate some test statistic 71 based on observations
(Vt, €r, Yi)e=1,.. n such that we know the distribution of T;
(approximately) under HS.
o Backtesting decision: If we do not reject HS, the risk measure
estimates at hand are adequate.
o Elicitability is not relevant.
@ Does not respect increasing information sets.
@ Does not give guidance for decision between methods.
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Comparative backtesting

“The risk measure estimates at hand are at least as good as
Hy - Y
the ones from the standard procedure.
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Comparative backtesting

“The risk measure estimates at hand are at least as good as

Hy -
v the ones from the standard procedure.”

o Internal model: (v¢, e, Yi)e=1,..n ~ Sy= NZt— S(vt, e, Ye)
o Standard model: (v}, e}, Ye)e=1,.n ~ Sk=4 t_ 1S(VE, €, Yh)
(Asymptotically normal) test statistic:

Sn — Si
Ty = N Na
on

where oy is a suitable estimate of the standard deviation.
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Comparative backtesting

“The risk measure estimates at hand are at least as good as

Hy -
v the ones from the standard procedure.”

o Internal model: (v¢, e, Yi)e=1,..n ~ Sy= %Z?’ 1 S(vt, e, Ye)
o Standard model: (v}, e}, Ye)e=1,.n ~ Sk=4 t_ 1S(VE, €, Yh)
(Asymptotically normal) test statistic:

To = Sn =Sy STV,
oN
where oy is a suitable estimate of the standard deviation.
@ Under H;: Expectation of Ty is < 0.
@ Backtesting decision: If we do not reject Hy, the risk measure
estimates at hand are acceptable (compared to the standard).

(Diebold and Mariano, 1995, Giacomini and White, 2006)
9 November 2018
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Some comments

o Elicitability is crucial.
@ Allows for sensible comparison between methods.

@ Respects increasing information sets (Holzmann and Eulert, 2014).
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Some comments

o Elicitability is crucial.
@ Allows for sensible comparison between methods.

@ Respects increasing information sets (Holzmann and Eulert, 2014).

o HS§ and H, are anti-conservative: Passing the backtest does not
imply the validity of the respective null hypothesis.

“[...] the null hypothesis is never proved or established, but it is
possibly disproved, in the course of experimentation.” (Fisher, 1949)
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Some comments

o Elicitability is crucial.
@ Allows for sensible comparison between methods.

@ Respects increasing information sets (Holzmann and Eulert, 2014).

o HS§ and H, are anti-conservative: Passing the backtest does not
imply the validity of the respective null hypothesis.

“[...] the null hypothesis is never proved or established, but it is
possibly disproved, in the course of experimentation.” (Fisher, 1949)

o We suggest a reversed onus of proof:
Banks are obliged to demonstrate the superiority of the internal
model.
(Similar to regulatory practice in the health sector)
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Conservative comparative backtesting

“The risk measure estimates at hand are at most as good as
Ha' 3 Y
the ones from the standard procedure.

o Internal model: Sy = %Ziv:l S(vt, e, Yt)
e Standard model: S} = %124\1:1 S(vi,ef, Yy

(Asymptotically normal) test statistic:

Sy — Si
T2 = N Na
oN
where oy is a suitable estimate of the standard deviation.
e Under Hg: Expectation of To is = 0.
o Backtesting decision: If we reject H(J)r, the risk measure estimates at
hand are acceptable (compared to the standard).
(Diebold and Mariano, 1995, Giacomini and White, 2006)
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Three zone approaches
BIS three zone approach for VaR,
@ Traditional backtest: One-sided binomial test.

@ Backtesting decision:
‘ Red Yellow Green

p-value ‘ very small  moderately small sufficiently big

@ Generalisation of three zone approach for ES,, by Costanzino and
Curran (2015).
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Three zone approaches
BIS three zone approach for VaR,
@ Traditional backtest: One-sided binomial test.
@ Backtesting decision:
Red Yellow Green
p-value | very small  moderately small sufficiently big
@ Generalisation of three zone approach for ES,, by Costanzino and
Curran (2015).

Three zone approach for comparative backtesting

I 1640y Sy, L64on !
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A numerical illustration

(ftt)¢=1,..,n iid standard normal,

Y: ~ N(pe, 1), conditional on p;.

Scenario A
(Vt; et) = (VaRa(N(Mn 1))7Esa(N(Mt> 1)))
(‘/tk7e?) - (Va'Ra(N(Ov 2))aESa<N(O7 2)))

The internal model is more informative,
hence superior to the standard model.
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A numerical illustration

(ftt)¢=1,..,n iid standard normal,

Y: ~ N(pe, 1), conditional on p;.

Scenario A
(vie) = (VaRa(N (ut, 1)), ESa(N (pe, 1))
(‘fg"ef) - (VaRa(N(Ov2))aESa(N(072)))

The internal model is more informative,
hence superior to the standard model.

Scenario B
(vi,er) = (VaRa(N(0,2)), ESa(N(0,2)))
(‘/;a e?:) = (VaRa(N(:U't: 1))a ESa(N(:U't: 1)))

The standard model is more informative,
hence superior to the internal model.
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A numerical illustration — cont'd

N = 250; 10'000 simulations

Scenario A Green Yellow Red
Traditional VaRg 01 89.35 10.65 0.00
Traditional ESo.025 93.62 6.36 0.02
Comparative | VaRg 1 88.23 11.77 0.00
Comparative (VaR0‘025, ES0.025) 87.22 12.78 0.00
9 November 2018
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A numerical illustration — cont'd

N = 250; 10’000 simulations

Scenario A Green Yellow Red

Traditional VaRg.01 89.35 10.65 0.00
Traditional ESo.025 03.62 6.36 0.02
Comparative | VaRg. 01 88.23 11.77 0.00
Comparative (VaR(),ogg,, ES()‘025) 87.22 12.78 0.00
Scenario B Green Yellow Red

Traditional VaRg 01 89.33 10.67 0.00
Traditional ESo.025 93.80 6.18 0.02
Comparative | VaRg o1 0.00 11.77 88.23
Comparative (VaRo,o%, ESQ.025) 0.00 12.78 87.22
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Summary

o Elicitability is not relevant for traditional backtesting.
o Elicitability is useful for model selection, estimation, forecast
comparison and ranking.

o Comparative backtesting relies on elicitability, using Har it is
conservative in nature and gives (more) incentive to improve

predictions.
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Set-valued functionals

@ Quantiles

ga(F) = {xe R| 1%&1 Ft) <a < F(x)} <R
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Set-valued functionals

@ Quantiles

ga(F) = {xe R| l%g} F(t) < a < F(x)} < R.

@ Class of confidence intervals

T.(F) = {(a, b) e R?| F(b) — F(a) = a}.
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Set-valued functionals

@ Quantiles

ga(F) = {xe R| l%Tril F(t) < a < F(x)} < R.

@ Class of confidence intervals
Zo(F) = {(a,b) e R*| F(b) — F(a) = a}.

e Systemic risk measures (Feinstein, Rudloff, Weber, 2017)

&\ R(Y) = {ke R"| p(A(Y + k) < 0}.
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Set-valued functionals

@ Quantiles
ga(F) = {xe R| li%n F(t) < a < F(x)} c R.
tTx
@ Class of confidence intervals
T.(F) = {(a,b) € R*| F(b) — F(a) = a}.

e Systemic risk measures (Feinstein, Rudloff, Weber, 2017)

&\ R(Y) = {ke R"| p(A(Y + K)) < 0}.

@ Further spatial examples: Area of flood, disease, landfall of a
hurricane etc.
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Two modes of elicitability
@ Example of the a-quantile

ga(F) = {xe R| I%Tril Ft) <a < F(x)} <R
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Two modes of elicitability

@ Example of the a-quantile

ga(F) = {xe R| I%Trf(l Ft) <a < F(x)} <R

@ Choice of the action domain A:
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Two modes of elicitability
@ Example of the a-quantile
ga(F) = {xe R| liTm Ft) < a < F(x)} < R.
tTx
@ Choice of the action domain A:
A = R: The forecasts are points in R. There are multiple best

actions, namely every x € g, (F).
~» The functional T is set-valued, that is

T: F —2°
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Two modes of elicitability

@ Example of the a-quantile

ga(F) = {xeR| lim F(t) < a < F(x)} < R.

@ Choice of the action domain A:
A = R: The forecasts are points in R. There are multiple best
actions, namely every x € g, (F).
~» The functional T is set-valued, that is

T: F —2°

A < 2%: The forecasts are subsets of R. These are points in the
power set A < 28 There is a unique best action namely
x = ga(F).
~> The functional T is point-valued in some space
A < 2%, that is,
T: F— A
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Two modes of elicitability
Definition 11

(a) A functional T: F — 24 is selectively elicitable if there is a scoring
function S: A x O — R such that

EF[S(t, V)] < ErlS(x )]
for all Fe F and for all te T(F) and for all xe A\ T(F).
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Two modes of elicitability
Definition 11

(a) A functional T: F — 24 is selectively elicitable if there is a scoring
function S: A x O — R such that

EF[S(t, V)] < ErlS(x )]
for all Fe F and for all te T(F) and for all xe A\ T(F).

(b) A functional T: F — A is exhaustively elicitable if there is a scoring
function S: A x O — R such that

Ef[S(T(F), V)] < Ef[S(x, Y)]
for all Fe F and for all xe A, x # T(F).
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Two modes of elicitability
Definition 11

(a) A functional T: F — 24 is selectively elicitable if there is a scoring
function S: A x O — R such that

EF[S(t, V)] < ErlS(x )]
for all Fe F and for all te T(F) and for all xe A\ T(F).

(b) A functional T: F — A is exhaustively elicitable if there is a scoring
function S: A x O — R such that

Ef[S(T(F), V)] < Ef[S(x, Y)]
for all Fe F and for all xe A, x # T(F).
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Two modes of elicitability
Definition 11

(a) A functional T: F — 24 is selectively elicitable if there is a scoring
function S: A x O — R such that

EF[S(t, V)] < ErlS(x )]
for all Fe F and for all te T(F) and for all xe A\ T(F).

(b) A functional T: F — A is exhaustively elicitable if there is a scoring
function S: A x O — R such that

Ef[S(T(F), V)] < Ef[S(x, Y)]
for all Fe F and for all xe A, x # T(F).

@ For single-valued functionals such as the mean, the notions of selective and
exhaustive elicitability are equivalent.
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Two modes of elicitability
Definition 11

(a) A functional T: F — 24 is selectively elicitable if there is a scoring
function S: A x O — R such that

EF[S(t, V)] < EF[S(x, Y)]

for all Fe F and for all te T(F) and for all xe A\ T(F).

(b) A functional T: F — A is exhaustively elicitable if there is a scoring
function S: A x O — R such that

E([S(T(F), Y)] < EF[S(x, Y)]

for all Fe F and for all xe A, x # T(F).

@ For single-valued functionals such as the mean, the notions of selective and
exhaustive elicitability are equivalent.

@ Forecasting / regression in the exhaustive sense is more ambitious than in the
selective sensel!
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinova, Rudloff (2018+))

Under weak regularity conditions, a set-valued functional is
o either selectively elicitable
@ or exhaustively elicitable

@ or not elicitable at all.
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinova, Rudloff (2018+))

Under weak regularity conditions, a set-valued functional is
o either selectively elicitable
@ or exhaustively elicitable

@ or not elicitable at all.

Novel structural insight of its own!
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinova, Rudloff (2018+))

Under weak regularity conditions, a set-valued functional is
o either selectively elicitable
@ or exhaustively elicitable

@ or not elicitable at all.

Novel structural insight of its own!

Results and implications:
@ Quantiles are selectively elicitable, but not exhaustively elicitable!

Sa(xy) = (L{y < x} —a)(g(x) — &(y)) -
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinova, Rudloff (2018+))

Under weak regularity conditions, a set-valued functional is
o either selectively elicitable
@ or exhaustively elicitable

@ or not elicitable at all.

Novel structural insight of its own!

Results and implications:
@ Quantiles are selectively elicitable, but not exhaustively elicitable!

Sa(xy) = (L{y < x} — a)(g(x) — &(y)) -
@ Many systemic risk measures are exhaustively elicitable, but not
selectively elicitable.

Se(Koy) = = | V(0.Ay+ ) (k).
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Mutual exclusivity
Theorem 12 (Fissler, Hlavinova, Rudloff (2018+))

Under weak regularity conditions, a set-valued functional is
o either selectively elicitable
@ or exhaustively elicitable

@ or not elicitable at all.

Novel structural insight of its own!

Results and implications:
@ Quantiles are selectively elicitable, but not exhaustively elicitable!

Sa(xy) = (L{y < x} — a)(g(x) — &(y)) -
@ Many systemic risk measures are exhaustively elicitable, but not
selectively elicitable.

Se(Koy) = = | V(0.Ay+ ) (k).

@ Confidence intervals.
Dr. T. Fissler (Imperial College London) The Elicitation Problem 9 November 2018 31/ 34



Confidence Intervals

Reminder:
Ta(F) = {(a,b) e R*| F(b) — F(a) = a}.

@ 7, is selectively identifiable with V(a, b,y) = 1{y € (a, b|} — .
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@ It is presumably exhaustively elicitable.
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Confidence Intervals

Reminder:
T.(F) = {(a, b) e R*| F(b) — F(a) = a}.

@ 7, is selectively identifiable with V(a, b,y) = 1{y € (a, b|} — .
@ It is presumably exhaustively elicitable.

@ It is not selectively elicitable!
@ One needs to have additional properties for selective elicitability:

» Specify the endpoints as quantiles.

» Take a ‘symmetric’ interval.

» Shortest confidence interval does not work.

» Centring around the median or mean also fails.
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Further Reading

@ Good introduction to elicitability:
T. Gneiting. Making and evaluating point forecasts.
Journal of the American Statistical Association, 106:746—762, 2011
@ Elicitability of vector-valued functionals and elicitability of (VaR, ES):
T. Fissler and J. F. Ziegel. Higher order elicitability and Osband’s principle.
Annals of Statistics, 44:1680-1707, 2016

@ Backtesting and elicitability: T. Fissler, J. F. Ziegel, and T. Gneiting. Expected
shortfall is jointly elicitable with value-at-risk: implications for backtesting.

Risk Magazine, pages 58-61, January 2016

N. Nolde and J. F. Ziegel. Elicitability and backtesting: Perspectives for banking
regulation.

Annals of Applied Statistics, 11(4):1833-1874, 12 2017
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Further Reading Il

@ Secondary quality criteria:
T. Fissler and J. F. Ziegel. Order-sensitivity and equivariance of scoring functions.
Preprint, 2017
T. Fissler and J. F. Ziegel. Convex and quasi-convex scoring functions.
In preparation, 2018
@ Measures of Systemic Risk:
Z. Feinstein, B. Rudloff, and S. Weber. Measures of Systemic Risk.
SIAMJ. Financial Math., 8:672-708, 2017

T. Fissler, J. Hlavinova, and B. Rudloff. Elicitability and identifiability of systemic
risk measures.

In preparation, 2018
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Thank you for your attention!

Looking forward to our discussion!
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