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METRICALLY REGULAR DIFFERENTIAL GENERALIZED EQUATIONS*

R. CIBULKAT, A. L. DONTCHEV#, M. I. KRASTANOVS, AND V. M. VELIOVY

Abstract. In this paper we consider a control system coupled with a generalized equation, which we call Differential
Generalized Equation (DGE). This model covers a large territory in control and optimization, such as differential variational
inequalities, control systems with constraints, as well as necessary optimality conditions in optimal control. We study metric
regularity and strong metric regularity of mappings associated with DGE by focusing in particular on the interplay between the
pointwise versions of these properties and their infinite-dimensional counterparts. Metric regularity of a control system subject
to inequality state-control constraints is characterized. A sufficient condition for local controllability of a nonlinear system is
obtained via metric regularity. Sufficient conditions for strong metric regularity in function spaces are presented in terms of
uniform pointwise strong metric regularity. A characterization of the Lipschitz continuity of the control part of the solution
mapping as a function of time is established. Finally, a path-following procedure for a discretized DGE is proposed for which
an error estimate is derived.

Key Words. variational inequality, control system, optimal control, metric regularity, strong metric regularity,
discrete approximation, path-following.
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1. Introduction. In the paper we consider the following problem: given a positive real T, find a
Lipschitz continuous function z acting from [0, 7] to R™ and a measurable and essentially bounded function
u acting from [0, 7] to R™ such that

(1) (1) = g(a(t), u(t)),
(2) f(#), 2(0), 2(T), u(t)) + F(u(t)) 0

for almost every (a.e.) t € [0,T], where & is the derivative of x with respect to ¢, g : R™ x R” — R™ and
f:R™xR™xR™xR"” — R? are functions, and F' : R* % R? is a set-valued mapping. We assume throughout
that the functions g and f are twice continuously differentiable everywhere (this assumption could be relaxed
in most of the statements in the paper but we keep it as a standing assumption for simplicity). In analogy
with the terminology used in control theory, we call the variable z(t) state and the variable u(t) control value.
The independent variable ¢ is thought of as time which varies in a finite time interval [0, T] for a fixed T' > 0.
A function ¢ — u(t) is said to be control and a solution ¢t — z(t) of (1) for some control u is said to be state
trajectory. At this point we will not make any assumptions for the mapping F'. A complete description of
the problem should also include the function spaces where the functions x and u reside; we will choose such
spaces a bit later.

The model (1)—(2) can be extended to a greater generality by, e.g., adding a set-valued mapping to the
right side of (1), making F' depend on z(t) etc., but even in the present form it already covers a broad

> and F < o ), where x¢ € R™ is a fixed initial point

spectrum of problems. When f = ( “w
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2 R. CIBULKA, A.L.DONTCHEV, M.I KRASTANOV , AND V.M. VELIOV

and W is a closed set in R¥~™ (1)—(2) describes a control system with pointwise state-control constraints:

@(t) = g(x(t),u(t)), z(0)= o,
3) { h(a:(t),i(t)) cW forae te0.T].

Showing the existence of solutions of this problem is known as solving the problem of feasibility. There
are various extensions of problem (3) involving, e.g., inequality constraints, pure state constrains, mixed
constraints, etc. In Section 2 we will have a closer look at this problem for the case when W = ]R_d[m =
{vGRdfm} v; >0,i=1,...,d —m}.

—x(0) xg
When f(z,z(0),z(T),u) = | —x(T) | and F=| ar |, where U is a closed set in R™ and z7 € R™
—u U

with 2m +n = d, (1)—(2) describes a constrained control system with fixed initial and final states:

2(t) = g(z(t),u(t)), wu()eU forae. te[0,T],
(4) { 2(0) = 20, 2(T) = zr.

The system (4) is said to be controllable at the point xz for time T when there exists a neighborhood W of
x7 such that for each point y € W there exists a feasible control such that the corresponding state trajectory
starting from z( at time ¢ = 0 reaches the target y at time ¢ = 7. In Section 2 we obtain a necessary and
sufficient condition for controllability of system (4).

Recall that, given a closed convex set {2 in a linear normed space X, the normal cone mapping acting
from X to its topological dual X* is

No(z) = {ye X*|(y,v—x) <0 forall veQ} if z€Q,
A=0 otherwise,

where (-, -) is the duality pairing. In the particular case when X is the n-dimensional euclidean space R™, in
problem (1)—(2) we have F = Ng (in which case d = n) and f is independent of x(t),z(0) and z(T), then
the inclusion (2) separates from (1) and the dependence on ¢ becomes superfluous; then (2) reduces to a
finite-dimensional variational inequality:

(5) f(u) + No(u) > 0.

1= (ot ) o= (it )

system (1)—(2) takes the form of a Differential Variational Inequality (DVI), a name apparently coined in
[2] and used there for a differential inclusion with a special structure. The importance of DVIs as a general
model in optimization is broadly discussed in [23].

When F' is the zero mapping, system (1)—(2) becomes a Differential Algebraic Equation (DAE). An
important class of DAEs are those of index one in which the algebraic equation determines the variable u
as a function of z and then, after substitution in the differential equation, the DAE reduces to an initial
value problem. In this paper we will not discuss DAEs. We only mention that the property of strong metric
regularity which we study in Section 3 of the paper, is closely related to the index one property.

Another particular case of (1)—(2) comes from the first-order optimality conditions in optimal control,
e.g., for the following optimal control problem involving an integral functional, a nonlinear state equation,
and control constraints:

More generally, for

minimize [cp(y(T)) + [T L(y(t), u(t))dt
(6) subject to
y(t) = g(y(t),u(t)), y(0) =yo, u(t) €U forae. tecl0,T]

Here, as in the model (1)—(2), the control u is essentially bounded and measurable with values in the
closed and convex set U, the state trajectory y is Lipschitz continuous, and the functions ¢, L and g are
twice continuously differentiable everywhere. Under mild assumptions a first-order necessary condition for a
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METRICALLY REGULAR DIFFERENTIAL GENERALIZED EQUATIONS 3

weak minimum for problem (6) (Pontryagin’s maximum principle) is described in terms of the Hamiltonian
H(y,p,u) = L(y,u) + pTg(y,u) as a Hamiltonian system coupled with a variational inequality:

y(t) = DypH(y(t),p(t), u(t)), y(0) = vo,
(7) p(t) = —DyH(y(t),p(t), u(t)), p(T) = —Dp(y(T)),
0 €D H(yt),p(t),ut)) + Ny (u(t)),

where the function p with values p(t) € R™, ¢ € [0,T], is the so-called adjoint variable. To translate (7) into
the form (1)—(2), set z = (y, p),

—y(0) Yo
f(@,2(0),2(T),u) = | p(T)+ Dp(y(T)) and F(u) = 0
D, H(y,p,u) Ny (u)

We consider in more detail this problem in Section 4.

In the model (1)—(2) we assume that the controls are in L>([0,T],R™), the space of essentially bounded
and measurable functions on [0, 7] with values in R™. The state trajectories belong to W1:>°([0, T, R™), the
space of Lipschitz continuous functions on [0, 7] with values in R™. When the initial state is zero, x(0) = 0,
then it is convenient to use the space Wy ([0, T],R™) = {x € W*°([0,T],R™) | #(0) = 0}. In this paper
we also employ the space C([0,T],R™) of continuous functions on [0, 7] equipped with the usual supremum
(Chebyshev) norm. We use the notation || - || for the standard euclidean norm, || - ||« for the L norm and
| - lc for the supremum norm. Also, C1([0,T],R") is the space of continuously differentiable functions on
[0, T] equipped with the norm ||z|c: = ||Z||c + ||z||c. In the sequel we often use the shorthand notation L
instead of L>°([0,T],R"™), etc.

In a seminal paper [25] S. M. Robinson called the variational inequality (5) a generalized equation, but
in subsequent publications this name has been attached to the more general inclusion

(8) f(u) + F(u) 30,

where F' is not necessarily a normal cone mapping. The generalized equation (8) turned out to be particularly
useful for various models in optimization and control. More importantly, quite a few results originally stated
for variational inequalities, including the celebrated Robinson’s implicit function theorem [25], a particular
case of which we present below as Theorem 3, remain valid in the case when the normal cone mapping Nq
in (5) is replaced by a general set-valued mapping.

By analogy with the name “differential variational inequality” used in [23] for a system of a differential
equation coupled with a variational inequality, we call the model (1)—(2) a Differential Generalized Equation
(DGE). Note that the DGE (1)—(2) can be written as a generalized equation in function spaces. Indeed,
denoting z = (z,u) € W x L> and

= Jatomm ) 9= (rw )

we can rewrite (1)—(2) as a generalized equation of the form
(9) e(z) + E(z) 2 0.

Suppose that (1)—(2) is a differential variational inequality, i.e., F' = Ny for a closed and convex set
U C R"™. Then, in order to obtain a variational inequality in function spaces, say for (x,u) € W1 x L
the function t — f(x(t),z(0),z(T),u(t)) should be an element of the dual to L>°. The problem can be easily
resolved if we introduce the mapping

L* 3 u— F(u) ={w e L>® | w(t) € Ny(u(t)) for a.e. t € [0,T]};

then (9) becomes a generalized equation stated in function spaces which may not be a variational inequality.

The name “differential variational inequalities” has been used, along with other names such as evolu-
tionary variational inequalities, projected dynamical systems, sweeping processes, to describe various kinds
of differential inclusions, see [4] for a comparison of these models. There is a bulk of literature dealing
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4 R. CIBULKA, A.L.DONTCHEV, M.I. KRASTANOV , AND V.M. VELIOV

with DVIs along the lines of the basic theory of differential equations studying existence and uniqueness
of a solution, asymptotic behavior, stability properties, etc., see the recent papers [14], [18], [19], [22], the
monograph [28], and the references therein. In this paper we introduce the new model (1)—(2) which is more
general than DVIs and covers in particular optimal control problems. Our specific goal is to study regularity
properties of mappings appearing in its description.

We use standard notations and terminology, mostly from the book [6]. In the paper X and Y are
Banach spaces with norms || - || unless stated otherwise. The distance from a point x to a set A is d(z, A) =
infyeca || — y||. The closed ball centered at = with radius r is denoted by IB,(x), the closed unit ball is IB.
The interior, the closure, and the convex hull of a set A is denoted by int A, cl A, and co A, respectively. A
(generally set-valued) mapping F : X =Y is associated with its graph gph F = { (z,y) € XXY ‘ Yy € f(x)},
its domain domF = {z € X’ F(x) # 0} and its range rge F = {y € Y’ Jz € X with y € F(z)}. The
inverse of F is defined as y — F~!(y) = {z € X | y € F(x)}. The space of all linear bounded (single-
valued) mappings acting from X to Y equipped with the standard operator norm is denoted by L£(X,Y).
The Fréchet derivative of a function h : X — Y at € X is denoted by Dh(Z); the partial Fréchet derivatives
with respect to x and wof h : X xU — Y at a point (&,u) € X x U are denoted by D,h(Z,u) and D, h(Z,u),
respectively.

We consider two regularity properties of mappings appearing in the model (1)—(2): metric regularity
and strong metric regularity. In classical analysis, the term regularity of a differentiable function at a certain
point means that the derivative at that point is onto (surjective). For set-valued and nonsmooth mappings,
the meaning of regularity becomes much more intricate. A mapping F : X =Y is said to be metrically
regular at T for §y when g € F(&), gph F is locally closed at (Z, ), meaning that there exists a neighborhood
W of (Z,7) such that the set gph F N W is closed in W, and there is a constant 7 > 0 together with
neighborhoods U of Z and V of § such that

d(m,}'*l(y)) < Td(y,]-'(x)) for every (z,y) € U x V.

Note that from this definition it follows that F~1(y) # () for y close to 3. More precisely, for every neighbor-
hood U of Z there exists a neighborhood V of § such that F~1(y) N U # 0 for all y € V, see [6, Proposition
3E.1 and Theorem 3E.7].

Metric regularity has emerged in 1980s as a central concept in variational analysis, optimization and
control, but is present already in the Banach open mapping principle. It has been first used by Lyusternik
[20] as a constraint qualification for abstract minimization problems, and later by Graves [13] to extend the
Banach open mapping to nonlinear functions. In nonlinear programming, metric regularity appears as the
Mangasarian-Fromovitz constraint qualification, and in control it is linked to controllabilty (see Section 2),
but not only. More importantly, metric regularity plays a major role in studying the effects of perturbations
and approximations in variational problems with constraints, where the solution is typically not differentiable
with respect to parameters. The literature related to metric regularity has grown enormously in the last two
decades, including several monographs, e.g. [26], [17], [11], [6], and the recent book [15].

We recall two basic results about metric regularity that will be used further on. The first is the (extended)
Lyusternik-Graves theorem, which we present here in a simplified form (for a more general version, see [6,
Theorem 5E.6]):

THEOREM 1. Let h : X — Y with & € intdomh be continuously Fréchet differentiable around T and
let F: X 3Y be a set-valued mapping with a closed graph and with § € F(Z). Then the mapping h + F
is metrically regular at T for h(Z) + § if and only if the linearization x — h(Z) + Dh(Z)(x — Z) + F(z) is
metrically reqular at T for h(Z) + 7.

The second result is the Robinson—Ursescu theorem stated, e.g., in [6, Theorem 5B.4].

THEOREM 2. A set-valued mapping F : X =% Y with a closed convex graph and with §j € F(Z) is
metrically reqular at T for y if and only if § € intrge F.

The second property we consider here is the strong metric regularity, a property which basically appears
already in the standard inverse function theorem. A mapping F : X =Y is said to be strongly metrically
regular at z for 3 if (Z,7) € gph F and the inverse F~! has a Lipschitz continuous single-valued graphical
localization around g for T, meaning that there are neighborhoods U of Z and V of g such that the mapping
V 3y~ FYy)NU is single-valued and Lipschitz continuous on U. It turns out that a mapping F is
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METRICALLY REGULAR DIFFERENTIAL GENERALIZED EQUATIONS )

strongly metrically regular at z for j if and only if it is metrically regular at Z for 4 and the inverse F !
has a graphical localization around g for  which is nowhere multivalued, see [6, Proposition 3G.1].

Strong metric regularity has been extensively studied for mappings in nonlinear programming. In his
groundbreaking paper [25], Robinson proved that the combination of the strong second-order sufficient
optimality condition and the linear independence of the active constraints is a sufficient condition for strong
metric regularity of the Karush-Kuhn-Tucker mapping at a critical point paired with an associate Lagrange
multiplier. This result was later sharpened to show that if the critical point is a minimizer, then this
combination becomes also necessary. In the more general context of variational inequalities over polyhedral
convex sets, a necessary and sufficient condition for strong metric regularity has been also found, the so-called
critical face condition. The strong metric regularity, together with a broad range of applications is covered
in [6, Section 4.8]. It should be noted that strong regularity has an important role in numerical optimization;
in particular, it implies superlinear or even quadratic convergence, depending on the smoothness of the data,
of the most popular Sequential Quadratic Programming (SQP) method, see [6, Section 6c].

A basic result about the strong metric regularity is Robinson’s inverse function theorem which we give
here in the form symmetric to the Lyusternik-Graves theorem, with an important exception: the mapping
F is not required to be with closed graph (for a more general statement, see [6, Theorems 5F.5]):

THEOREM 3. Let h : X — Y with T € intdom h be continuously Fréchet differentiable around T and let
F: X3Y be a set-valued mapping with y € F(Z). Then the mapping h+ F is strongly metrically reqular at
Z for h(Z) + g if and only if the linearization x — h(Z) + Dh(Z)(x — &) + F(x) is strongly metrically reqular
at T for h(Z) + 7.

Going back to the DGE model (1)—(2), observe that it consists of two relations of different nature.
The first is a control system (1) described by an ordinary differential equation which is a relation in infinite-
dimensional spaces of functions, in our case in L™ for the control and W1 for the state. Since we can easily
differentiate in these spaces, we can apply both the Lyusternik-Graves and Robinson theorems reducing the
analysis to that of a linear system. The generalized equation (2) is defined for each ¢ € [0,T] — so if we fix
t, we could apply the available conditions ensuring (strong) metric regularity in finite dimensions. Metric
regularity appears in (2) pointwisely, but does it imply metric regularity in the infinite-dimensional spaces
where the solutions of DGEs live? It is the primary goal of this paper to study in depth the interplay between
metric regularity properties of the mapping associated with the DGE defined pointwisely (in time) in finite
dimensions and also in function spaces. To the best of our knowledge, this is a first study of such kind. It
also covers DVIs and in particular parameterized variational inequalities as special cases.

A summary of the main results of the paper follows. In Section 2 we present necessary and sufficient
conditions for metric regularity of the mapping appearing in (1)—(2). We also consider a mapping associated
with a control system subject to inequality state-control constraints for which we present a necessary and
sufficient condition for metric regularity. The analysis is then extended to an associated controllability
problem for which a sufficient condition for controllability is established.

Strong metric regularity for the mapping defining the DGE (1)—(2) is considered in Section 3 for the
case when the initial state z(0) is fixed and the final state (7T') is free. In a central result in this section we
establish a sufficient condition for strong metric regularity in function spaces in terms of pointwise in time
strong metric regularity of the mapping associated with the generalized equation (2). As a side result, for
an optimal control problem with control constraints we obtain a characterization of the property that the
optimal control is Lipschitz continuous as a function of time. In the final Section 5 we present an application
of the theoretical analysis to numerically solving DGEs. Namely, we propose a path-following procedure for
a discretized DGE for which we derive an error estimate. A simple numerical example illustrates the result.
In each section we present a discussion of results obtained and relate them to the existing literature.

2. Metric Regularity. In this section we consider the DGE

(10) &(t) = g(z(t),u(t)), =(0) = xo,
(11) fx@),u(t)) + F(u(®)) 20 for ae. t €[0,T],

where, as for (1)-(2), z € W1>°([0,7],R™) and u € L*>=([0,T],R"), f and g are twice smooth and F is a
set-valued mapping. We study the property of metric regularity of the following mapping associated with
(10)—(11) defined as acting from W12 x L° to the subsets of L>® x R™ x L (we use here the shorthand
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notation for the spaces remembering that the values of the functions in L*> belong to Euclidean spaces with
different dimensions):

& — gz, u) 0
(12) (x,u) = M(xz,u):=| —z(0) + | xo
f@,u) F(u)

Given a reference solution (7, %) of (10)-(11), define g(t) = g(z(t),a(t)), f(t) = f(@(t),u(t)), A(t) =
Dog(Z(t), u(t)), B(t) = Dug(2(t), u(t)), H(t) = Do f(Z(t),u(t)), E(t) = Dy f(Z(t),u(t)). The assumptions
on the functions g and f allow us to differentiate in W1> x L* obtaining the mapping

t—g—A(r —Z) — B(u—a) 0
Whe x L™ 3 (z,u) = [ —(0) + | o
f+H(@x—2z)+ E(u—a) F(u)

Substituting z = x — Z we obtained the following simplified description of the latter mapping;:

(13) WE® x L™ 3 (z,u) = M(z,u) = ( ;—:2221%(&:?) ) + ( %(u) ) .

From the Lyusternik-Graves Theorem 1 we immediately obtain the following result:

COROLLARY 4. The mapping M defined in (12) is metrically reqular at (Z,a) for 0 if and only if the
mapping M defined in (13) is metrically reqular at (0,a) for 0.

Clearly, it is easier to handle the partially linearized mapping (13) than (12); this becomes more apparent
in the specific cases considered further: the case of inequality constraints and the case of controllability. Note
that, taking into account the comment right after the definition of metric regularity in Introduction, we obtain
that metric regularity of the mapping M implies solvability of a perturbation of (10)—(11). Specifically, we
have that for every (y,v) with a sufficiently small L> norm there exists a solution of the DGE

&(t) = g(a(t), u(t)) +y(t), (0) = o,
flx@®),u(t)) + F(u(t)) +v(t) 30 for a.e. ¢t €[0,T].

The following theorem specializes Corollary 4 taking into account the linear differential operator appear-
ing in the definition of the mapping M. Let ® be the fundamental matrix solution of the linear equation
@ = A(t)z, that is, 2&(t,7) = A(t)®(t,7), ®(,7) = I.

THEOREM 5. Consider the mapping K acting from L to L™ and defined for a.e. t € [0,T] as

(14) (Ku)(t) = f(t) + H(t) /O ®(t,7)(B(7)(u(r) — a(r))dr + E(t)(u(t) — u(t) + F(u(t)).

Then the mapping M is metrically regular at (T,a) for 0 if and only if K is metrically reqular at @ for 0.

Proof. By Corollary 4, metric regularity of M at (z,u) for 0 is equivalent to metric regularity of the
partial linearization M given in (13) at (0,@) for 0. Using the fundamental matrix solution for the linear
system, given r € L* and a € R™, one has that 2(t) — A(t)z(t) = r(t),2(0) = a if and only if 2(t) =
&(t,0)a+ fg O (t,7)r(7)dr. This implies that having (p, a,q) € M(z,u) is the same as having v(t) € (Ku)(t)
for

v(t) = q(t) + H(t) (CI)(t, 0)a — /Ot @(t,T)p(T)dT) ,

that is, we can replace the differential expression in M with the integral one and then drop the variable z.
Noting that local closedness of gph M is equivalent to that of K and that ||v|| is bounded by a quantity
proportional to |[(p, a, q)||, we complete the proof. d

A further specialization of the result in Corollary 4 is obtained when the mapping F' has a closed and
convex graph, by applying Robinson-Ursescu Theorem 2. To simplify the presentation, we restrict our
attention to the case of inequality state-control constraints and the initial state fixed to zero, z(0) = 0.
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Then the mapping F is a constant mapping equal to the set of all functions in L* with values in Ri, which

we denote by L. That is, we assume that (z,u) € WO1 > x L and study the following mapping associated
with the feasibility problem (3) in the notation of (10)-(11):

(15) W™ x L™ 3 (x,u) — < ﬁ(;’ng)x’“) ) - ( %‘f ) .

THEOREM 6. The mapping in (15) is metrically regular at (Z, @) for 0 if and only if there exist a constant
a >0, and a function v € L such that, for a.e. t € [0,T] and for all i =1,2,...,d,

(16) [f(t) + H(t) /o O(t, 7)B(1)v(r)dr + E(t)v(t)]; < —a.

Proof. By the Lyusternik-Graves Theorem 1, metric regularity of the mapping in (15) at (z,a) for 0 is
equivalent to metric regularity at (0,a) for 0 of the linearized mapping

(17) W x L 3 (z,u) — ( j;;?{zzjr%(&__% ) + ( OLiO ) c L.

The mapping (17) has closed and convex graph, hence we can apply Robinson-Ursescu Theorem 2, which in
this particular case says that its metric regularity at (0,a) for 0 is equivalent to the existence of § > 0 such
that for any (r,q) € L with ||(r,¢)[lsc < 0 the following problem has a solution: find (z,u) € Wy> x L>®
such that

(18) (t) = A(t)z(t) + B(t)(u(t) —a(t)) +r(t),
F@&)+H@®)z®) + E@)(u(t) —a(t) +q(t) <0, forae ¢e€][0,T].

Taking r = 0, ¢ = («,...,a) with @ > 0 such that ||¢||cc < J, and then v = u — @, this property of (18)
implies condition (16) in the statement of the theorem.

Conversely, let v satisfy (16) for some « > 0, let y = (r,q) be given and let z be the solution of the
differential equation in (18) corresponding to the control u = v 4+ @ and z( ) =0. Note that z2=Q(Bv+r)

where @ is a bounded linear mapping from L> to W1 defined as (Qp)(t fo T)dr for t € [0,T].
Hence, slightly abusing notation, for & = (a,...,a) € R?,

fH+HQBv+7r)+Ev+q< f+HQ(Bv)+Ev+ HQ(r)+q< —a+HQ(r)+q¢<0

for (r,q) with a sufficiently small norm. This completes the proof.

An analogous argument can be applied to study the controllability problem (4) where we set z(0) = 0
for simplicity. Consider the control system

(19) @(t) = g(x(t), u(?)), =(0)=0,
supplied with feasible controls u from the set
U={ue L>(0,T],R") | u(t) € U for a.e. t € [0,T]},

where U is a convex and compact set in R™. Given a target point zp € R we add to the constraints the
condition to reach the target at time T: x(T) = zp. To that problem we associate the mapping

z— g(z,u) 0
(20) W™ x L% 3 (x,u) = D(z,u) := | —a(T) + | zp | C L™ xR™ x L*™.
= U

THEOREM 7. The mapping D defined in (20) is metrically regular at (Z,@) for 0 if and only if
T
(21) 0eint{z e R™ |z = / O(T,t)B(t)(u(t)—u(t))dt for some u € L with u(t) € U for a.e. t € [0,T]},
0

where @ is the fundamental matriz solution of & = A(t)x.
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Proof. The first step is the same as in the proof of Theorem 6: by the Lyusternik-Graves Theorem 1 we
obtain that the mapping D is metrically regular at (Z, @) for 0 as a mapping acting from VVO1 ° x L to the
subsets of L™= x R™ x L if and only if its shifted linearization

22— Az — B(u—1u) 0
(22) (z,u) = D(z,u) = —2(T) +1 0 | CL®xR™x L™
—u u

is metrically regular at (0,u) for 0 in the same spaces. As in Theorem 6, we apply Robinson-Ursescu
Theorem 2 according to which metric regularity of D at (0,u) for 0 is equivalent to the existence of § > 0
such that for any (r,q) € L*> and y € R™ with ||7| e + ||¢]|cc + ||y]| < J the following problem has a solution:
find (z,u) € Wy'™ x L™ such that

() = A(t)z(t) + B(t)(u(t) — a(t)) +r(t),
(23) 2(T) =y,
u(t) +q(t) e U forae. tel0,T].

If (23) has a solution for all such (r,y,q), then, in particular, taking » = 0 and ¢ = 0 and using the
fundamental matrix solution ® this leads to the property that for every y € R™ with a sufficiently small
norm there exists u € U such that if z(t) = fg O(t,7)B(7)(u(T) — @(7))dr then z(T) = y. This implies (21).

Conversely, let (21) hold. For any (r,y,q) € L= x R™ x L* with ||(r,y, ¢)|| sufficiently small, (21)
implies the existence of w € U such that

/ O(T,7)B(1)(w(r) — a(r))dr =y + / O(T,7)[B(1)q(T) — r(7)]dT.
0 0

Then system (23) is satisfied with u = w—gq and 2(¢t) = fot O(t,7)[B(7)(u(r)—a(r))+r(7)]dr. This completes
the proof. 0

Recall that the reachable set Ry at time T of system (19) is defined as
Ry = {x(T) | there exists u € U such that x is a solution of (19) for u}.

Also recall that the control system (19) is said to be locally controllable at a point zp € R" whenever
a7 € int Ryp. Thus, condition (21) is the same as requiring local controllability at 0 of the shifted linearized
system

(24) (t) = A(t)z(t) + B(t)(u(t) — a(t), 2(0) =0,

with controls from the set &. We obtain:

COROLLARY 8. Suppose that the linear system (24) is locally controllable at 0 with controls from the set
U. Then the nonlinear system (19) has the same property.

Proof. Local controllability implies, via the theorems of Lyusternik-Graves and Robinson-Ursescu, metric
regularity of the mapping (20). The latter property yields that for each y in a neighborhood of z7 there
exists a feasible control u such that the corresponding solution = of (19) satisfies z(T') = y, that is, the
nonlinear system is locally controllable. ]

That controllability of a linearization of a nonlinear system implies local controllability of the original
system is not new: it has been established for various systems, e.g., in [16] and [29]. What is new is the
way we prove this implication, namely, by employing much deeper results regarding metric regularity. The
converse implication is false in general: local controllability is not stable under linearization the way metric
regularity is.

3. Strong metric regularity. In this section we continue to study problem (10)—(11) with the aim to
give conditions under which the associated mapping M defined in (12) is strongly metrically reqular. Our
central result is Theorem 17 where we establish a sufficient condition for strong metric regularity of the
mapping M in function spaces in terms of pointwise in time strong metric regularity of the parametrized
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finite-dimensional generalized equation (11). Inasmuch as a number of sufficient conditions, and even nec-
essary and sufficient conditions, for the strong regularity in finite dimensions are available in the literature,
with many of them displayed in the books [17], [11], [6], we can now handle accordingly strong metric
regularity in function spaces.

In further lines we use the general observation that if a mapping F is strongly metrically regular at &
for § with a constant 7 > 0 and neighborhoods B, (%) and B;(%) for some positive a and b then for every
positive constants a’ < a and b < b such that 70’ < @’ the mapping F is strongly metrically regular with
the constant 7 and neighborhoods B,/ (Z) and By (y). Indeed, in this case any y € By (y) will be in the
domain of F~1(-) N By (7).

In the considerations so far, the reference solution (Z, @) of (10)—(11) was regarded as an element of
the space W1 x L thus it is sufficient to require equations (10)—(11) be satisfied almost everywhere.
In the remaining part of the paper we consider 4 as a function from [0,7] to R™, which will be assumed
measurable and bounded. In addition, we assume that the reference pair (z, @) satisfies (10)—(11) for each
t € [0, 7). This choice of a particular representative of @ € L is needed because the conditions for strong
metric regularity of the mapping M and the additional results obtained in this and the next sections are
based on assumptions that are to be satisfied for each ¢ € [0,T]. Clearly, considering a reference pair (Z, @)
with bounded @ and for which (10)—(11) hold everywhere is not a restriction by itself. Indeed, every @ € L*™
has a bounded representative. If F' has a closed graph, then @ can always be redefined on a set of measure
zero so that (11) holds for each t. Then Z can be redefined on a set of measure zero (this leaves Z unchanged)
to satisfy (10) everywhere. What brings a restriction, is that the main assumption below (condition (25)) is
in a pointwise form and has to be satisfied for each ¢.

To start, we state the following corollary of Robinson Theorem 3 which echoes Corollary 4:

COROLLARY 9. The mapping M defined in (12) is strongly metrically reqular at (Z,a) for 0 if and only
if the mapping M defined in (13) is strongly metrically regular at (0,a) for 0.

We utilize in further lines the following result, which is a part of [6, Theorem 5G.3]':

THEOREM 10. Let a, b, and K be positive scalars such that F is strongly metrically reqular at T for g
with neighborhoods B, (Z) and By(§) and constant k. Let p > 0 be such that ku < 1 and let &' > k/(1—kp).
Then for every positive o and 3 such that

a<a/2, 2ua+28<b and 2'B<a
and for every function g : X — 'Y satisfying
lg@)<B and |g(z)—g(@')| < pllz—a'||  for every x,2" € Baa(T),

the mapping y — (g+ F) " (y) N Bu(Z) is a Lipschitz continuous function on Bg(y) with Lipschitz constant
!
K.

We will use Theorem 10 to show that the strong metric regularity of the linearization of (11) at each
point of clgph @ implies uniform strong metric regularity. For this we utilize the following condition, which
will play an important role in most of the further results:

Let (z,u) be a solution of (10)—(11) and let for every z := (t,u) € clgph@ the mapping
(25) R" 3 v = W.(v) := f(Z(t),u) + Dy f(Z(t), u)(v — u) + F(v)
be strongly metrically regular at u for 0, thus in particular 0 € f(Z(t),u) + F(u).

THEOREM 11. Suppose that condition (25) is satisfied. Then there are positive constants a, b, and k
such that for each z = (t,u) € clgpha the mapping

By(0) 3 y — W (y) N Ba(u)

is a Lipschitz continuous function with Lipschitz constant k.

1See Errata and Addenda at https://sites.google.com/site/adontchev/
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Proof. Let ¥ := clgph@. Since ¥ is a compact subset of R x R™ (equipped with the box topology), its
canonical projection ¥, onto R™ is compact as well. This and the continuity of z imply the compactness
of the set A := coZ([0,T]) X coX,. By the continuous differentiability of f there exists M > 0 such that
1D f(z,u)|| < M for each (x,u) € A. By the twice continuous differentiability of the function f, the
mapping (x,u) — D, f(z,u) is locally Lipschitz continuous, and therefore Lipschitz on compact subsets of
R™ x R™; denote by K > 0 its Lipschitz constant on A. Finally, let L > 0 be the Lipschitz constant of Z on
[0,T].

Fix an arbitrary z = (¢,4) € ¥ and let az, b and k3 be positive constants such that the mapping
(26) By, (0) 3y = Wi (y) N Ba, (1)

is a Lipschitz continuous function with Lipschitz constant ;. Let az := az/2 and pick pz € (0, az/2) such
that

(27) 4ps(Kaz + ML) < bz, 8MLkzps < az(1 —2Kkzp;), and Kps <2ML.

Finally, let 8; := 2M Lp; and ps := 2Kp;. The second inequality in (27) implies that kzpus < 1.
Pick any z = (t,u) € (intB,_(f) x inthg (ﬂ)) N . Define g, ; : R™ — R? as

92,2(v) = f(Z(1), z(t),u f(&(), )U+D f(fo u)u
(Duf( () u) — ))v, veER™
Then W, = Ws + g¢. . Moreover, for any vi, v2 € R™ we have
l192,2(v1) = gz,2(v2) || = [(Duf (Z(t),u) — Duf(2(2), @) (v1 — v2)[| < K(pz + pz)[lv1 — va
= pzllvr — val|.

Basic calculus gives us

0

Hence, taking into account the last inequality in (27) we obtain
1
lg=.z(@)Il < 5K p% + MLps < (ML + ML)ps = .

Let kL :=2k5/(1 — kzpz) > kz/(1 — kzpz). Applying Theorem 10 we conclude that the mapping
(28) Bp.(0) > y = W' (y) N B, (a)

is a Lipschitz continuous function with Lipschitz constant x%. The second inequality in (27) and the choice
of pz imply that B,z (u) C B, (u) C B, (u). Since for z € ¥, we have 0 € W, (u), and for every
y € Bg,(0) it holds that

W2 (y) N Ba. (3) — ull < s%lyll < K28:,
we conclude that for y € Bg_(0) the set W, (y) N B, 5. (u) is nonempty. Then for each z = (t,u) €
(intB,_(t) x intB,, (@) NE the mapping

(29) Bp.(0) 2y = W, (y) N Ba. 2(u)
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METRICALLY REGULAR DIFFERENTIAL GENERALIZED EQUATIONS 11

is a Lipschitz continuous function with Lipschitz constant x%, that is, the size of neighborhoods and the
Lipschitz constant are independent of z in a neighborhood of Zz.

From the open covering U;_ i 4)ex ([int B, (£) X intBB,_ (@)] N X) of ¥ choose a finite subcovering O; :=
[intB,. (t;)xintB,, (u;)]N%,i=1,2,...,k Leta=min{as, /2 [i=1,...,k}, k = max{s}, [i=1,...,k},
and b = min{a/r, mm{ﬁgi |i=1,...,k}}. Forany z = ({,u) € X there is ¢ € {1,...,k} such that z € O;.
Hence the mapping B,(0) 3 y — Wx *(y) N IB,(@) is a Lipschitz continuous functlon w1th Lipschitz constant
k. The proof is complete. 0

The following two results concern uniform strong metric regularity of two mappings related to inclusion
(11) along a solution trajectory of (10)—(11). For the linearization of (11) along (Z(t), @(t)) we immediately
obtain:

COROLLARY 12. Let condition (25) hold. Then the mapping
(30) R™ 3 v Gi(v) := f(t) + E(t)(v — a(t)) + F(v)

is strongly metrically reqular at a(t) for 0 uniformly in t € [0,T], that is, there exist positive constants a, b
and Kk such that for each t € [0,T] the mapping By(0) > y — G, ' (y) N B, ((t)) is a Lipschitz continuous
function with Lipschitz constant k.

Proof. Tt is sufficient to observe that condition (25) involves the closure of the graph of 4 while the
strong metric regularity of G; is defined for the graph of . ]

THEOREM 13. Let condition (25) hold. Then the mapping
(31) R™ 5 v Gi(v) = f(z(t),v) + F(v)

is strongly metrically regular at @(t) for O uniformly int € [0,T).

Proof. Corollary 12 yields that there exist positive constants a, b and « such that for each t € [0, 7] the
mapping By (0) 3 y — G; ' (y) NIB,(a(t)) is a Lipschitz continuous function with Lipschitz constant . Since
clgph@ is a compact set, the function v — D, f(Z(t),u) is Lipschitz continuous on IB,(%(t)) uniformly in
t € [0,T]; let L > 0 be the corresponding Lipschitz constant.

Choose « > 0 such that a

o<, 2Lak <1, and 4La? <b.

Fix any x' > /(1 — 2Law) and find 8 > 0 such that
4La? +2B8 <b and 2K < a.
Fix any t € [0,7] and define the function
(1),0) - F(t) — E()(w - a(t)).
Then g:(a(t)) = 0 and for any v, v’ € Baw(@(t)) we have
lgu() — (@)l = 1£@(0), ) — @), ) — E@) o — )]
— / (Duf (5(8),0" + 5(0 — 1)) — Dy f(@ (1), a(1))) (v — ')
s(v =) = a@)llllo — o'l < 2Lafjv — ]|

R" 30 gi(v):=f

(7
)

<L sup ||v'+
s€[0,1]

We apply then Theorem 10 (with p := 2La) obtaining that the mapping

Bs(0) 3y — (9:+ G1) " (y) N Ba(u(t)) = G; ' (y) N Ba (u(t))
is a Lipschitz continuous function on Bg(0) with Lipschitz constant «’. It remains to note that «, 8 and &’
do not depend on ¢. ]

The uniform in ¢ € [0,7T] strong metric regularity at @(t) for 0 of the mapping (31) implies that the
inclusion 0 € G(u) determines a Lipschitz continuous function which is isolated from other solutions. The
isolatedness doesn’t have to be true, however, for the reference control 4. To make the presentation more
precise, we state the following definition.
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DEFINITION 14. Given a mapping T : [0,T] x R* — R%, a function u : [0,T] — R™ is said to be an
isolated solution of the inclusion
0€T(tv) foralltel0,T],

whenever there is an open set O C R" ™ such that
(32) {(t,v) |t €[0,T] and 0 € T(t,v)} N O = gphu.
Our next result shows that under pointwise strong metric regularity of the mapping (31) at @(¢) for 0

the isolatedness of @ is equivalent to Lipschitz continuity of u as a function of ¢.

THEOREM 15. Suppose that for each t € [0,T] the mapping Gy in (31) is strongly metrically reqular at
u(t) for 0. Then the following assertions are equivalent:
(i) @ is an isolated solution of G¢(v) 0 for all t € [0,T];
(ii) @ is continuous on [0,T];
(iii) @ is Lipschitz continuous on [0,T).

Proof. Let us first show that (i) implies (ii). Choose an open set O C R"*! such that
(33) {(t,v) |t €]0,T] and 0 € G¢(v)} N O = gph .

Let t € [0,T] and let a;, by and \; be positive constants such that the mapping By, (0) > y — Gy '(y) N
B,, (a(t)) is a Lipschitz continuous function with Lipschitz constant A;. Since Z is Lipschitz continuous, we
have that the functions 7 +— f(Z(7),v) and 7 — D, f(Z(7),v) are Lipschitz continuous on [0, 7] uniformly in
v in the compact set By, (4(t)); let Ly > 0 be a Lipschitz constant for both of them. Note that, due to the
boundedness of @ and the fact that a; can always be assumed uniformly bounded (say < 1), the Lipschitz
constant L; = L can be chosen independent of t. Since this doesn’t change the proof, we keep L; with
subscript t.

Pick o € (0,a:/2) and then p; € (0, 1) such that (7,v) € O for every T € [t—p¢, t+p:] and v € B, (4(t)),
and also

(34) MLipy <1, Liprag +2Lipr < by, and 4N Lipr < (1 — M Lipy).
Let 7 € [t — pi,t + p¢] N [0,7] and define the mapping g, : R* — R% as
gra(v) := f(Z(7),v) = f(Z(t),v), veR™
The function s — f(Z(s), @(t)) is Lipschitz continuous on [0, T], hence we have
(35) lgr.e(@(t))| < Lelm — t] < Lepe.

Since the function s — D, f(Z(s),w) is Lipschitz continuous on [0,7] uniformly in w from B, (a(t)), for
any v,v’ € B, (u(t)) we have

g7t (v) = g7t (W)l = 1f (@ (7),0) = f(&(T),0") = f(Z(t),v) + f(T(t),v")]|
/ [ Do f(2(7),v" + 5(v —0")) = Do f(2(t),v" + s(v — ")) ||ds [[v" — v]|
< Lipi v —vl|.

Let
Ag = 2)\t/(1 — )\tLtPt) and /Bt = Lt,Dt-

Taking into account (34), we use Theorem 10 with (a,b, a, 8, k, k', ) replaced by (ag, by, ae, Bt, A, A,y Bt)
obtaining that the mapping

B, (0) 2y v (9re + Go) ™ (y) N Ba, (a(t)) = G7H(y) N B, (alt))

is a Lipschitz continuous function on Bg, (0) with Lipschitz constant Aj, where o, 8; and A, defined in the
preceding lines do not depend on 7. In particular, there exists exactly one point w € B, (@(t)) such that
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0 € gr1(w) + Gi(w)= G(w). But then (7,w) € O which is possible only if w = @(7), by (33). From (35) it
follows that g, :(a(t)) € Bg,(0). Thus

a(t) = (gre + Go) ™ (gre(alt)) N Ba, (a(t)).
Since @(1) = (gr+ + G¢)~1(0) N By, (u(t)), using (35), we conclude that
la(t) = a(r)ll < Aillgre @@ < MLt — 7.

Summarizing, we proved that, given ¢ € [0,T], the function @ is continuous (even calm) at ¢. As ¢t € [0, T
was arbitrary, (ii) is proved. Note that @ is actually uniformly continuous on [0, 7.

To prove that (ii) implies (i), note that if @ is continuous then its graph is a compact set. Given ¢ € [0, 7],
according to Robinson’s implicit function theorem [6, Theorems 5F.4] the mapping G is strongly metrically
regular at @(t) for 0 if and only if so is G;. Hence condition (25) holds with W(; 5(+)) = Gt, which in turn, by
Theorem 13, implies (i).

Clearly, (iii) implies (ii). To show the converse, we use an argument somewhat parallel to the preceding
step but with some important differences. Assume that ¢, a;, b;, A, and L; are as at the beginning of the
proof. Pick a; € (0,a:/2) and then p; € (0,1) such that

(36) 2)\tLtPt < 1, 2Ltptat + 4Ltﬂt S bt7 and 8)\tLt,0t S at(l — 2)\tLtpt)7

and also that
(1) € By, (u(0)) foreach 7,0 €[t — pi,t+ p] N[0, T],

which is possible thanks to the uniform continuity of @ on [0, T].
Let 7 and 6 belong to [t — ps,t + p;] N[0, T] and define the mapping g, : R* — R? as

gro(v) == f(Z(7),v) — f(2(0),v), veR™

Since 4(0) € By, (u(t)) C By, (a(t)), the function s — f(Z(s), @(d)) is Lipschitz continuous on [0, 7] with
constant L;, which implies that

(37) lgr0(@(0))|| < Le|r — 0] < 2Lype.

Since the function s — D, f(Z(s),w) is Lipschitz continuous on [0, 7] uniformly in w from B,,(u(t)), for
any v, v’ € By, (u(t)) we have

lgr.6(v) = gro(W)| = [1f(@(1),v) = f(Z(7),v") = f(Z(0),v) + f(Z(0),)]
< /O | D f(2(1),v" + s(v —=v")) = Dy f(2(0),v" 4 s(v —v"))||ds ||v" — v
< 2Lipy |0 — vl

Let A, := 2X/(1 — 2M\¢Lipy) and By := 2Lyp,. Taking into account (36), we apply Theorem 10 with
(a,b,c, B, K, k', p) replaced by (at, by, e, Br, A, A}, Bi) obtaining that the mapping

B, (0) >y (976 + Go) ™' (y) N Ba, (u(9)) = G7 ' (y) N Ba, (a(0))

is a Lipschitz continuous function on Bg, (0) with Lipschitz constant Aj, where «y, 8; and A, defined in the
preceding lines do not depend on 7 and 6. Since u(7) € B, (u(f)), we have a(t) = G-1(0) N By, (4(0)).
From (37) it follows that g g(u(6)) € Bpg,(0). Thus w(f) = G;'(gre(u(f))) N By, (u(H)). Using (37), we
conclude that

(38) [a(0) — a(r)l] < Nillgr.o(@(0))]] < \;Le|0 — 7.
Summarizing, we proved that, given ¢ € [0, 7], the function @ is locally Lipschitz continuous around ¢. Since
[0,T7] is compact, we obtain condition (iii). O

REMARK 3.1. Observe that in the last three theorems Z does not need to be a solution of (10). It may
be any Lipschitz continuous function from [0, 7] to R™ for which condition (25) holds.
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For a given positive constant ¢ define the set
Se:={(z,t,q) € R™H [t € [0, 7], |l2]| <, lall < c}.

LEMMA 16. Suppose that condition (25) holds and let the constants a, b, and k be as in Corollary 12.
Then for every ¢ > 0 such that c(||H||c + 1) < b the mapping

S. 3 (2,t,q) = u(z,t,q) == {u € Bu(ut)) | g€ f(t)+ H(t)z + E(t)(u—u(t)) + F(u)}

is a function which is bounded and measurable in t for each (z,q) and Lipschitz continuous with respect to
(2,q) uniformly in t with Lipschitz constant X := k(|H||c + 1).

Proof. Choose ¢ as required. Clearly, for each (z,t,q) € S. we have ¢ — H(t)z € By(0), and hence, by
definition,
u(zt.q) = G; Mg — H(t)z) N Ba(a(t)).

By Robinson’s implicit function theorem [6, Theorem 2B.5] the function (y,t) ~— G, '(y) is Lipschitz con-
tinuous on [0,T] x IB(0). Therefore the function [0,7] 3 ¢ — u(z,t,q) is measurable and bounded for each
{(2,9) | (2,t,q) € S.} as a composition of a Lipschitz function with a measurable and bounded function;
furthermore, for every (z1,t,q1), (22,t,q2) € S. we get

[u(z1,t, 1) = u(za, 8 g2) | < w(llgr = gall + [[H(#) (21 = 22)[]) < Allz1 = 22/l + llgr — gal])-

Thus, u has the desired property. 0

THEOREM 17. Suppose that condition (25) is satisfied. Then the mapping M defined in (12) is strongly
metrically reqular ot (Z,u) for 0. If, in addition, one of the equivalent statements (i)—(iii) in Theorem 15
holds, then the mapping M, now considered as acting from C' x C to the subsets of C x R™ x C, is strongly
metrically regular at (Z,u) for 0.

Proof. Let the constants a, b and x be as in Corollary 12, let A be as in Lemma 16, and let
(39) vo := max{[|Allc, | Bllc, [Hlle,[|Ellc} and ¢ <b/(vo+1).
From Lemma 16, for any (z,t,q) € S. the inclusion
(40) q€ f(t)+H(t)z+ E(t)(u—u(t)) + F(u)

has a unique solution u(z,t,q) € B,(u(t)); moreover, the function S, > (z,t,¢q) — u(z,t,q) is measurable in
t for each (z,q) and Lipschitz continuous in (z,¢) with Lipschitz constant A. Observe that w(0,t,0) = @(t)
for all t € [0, T].

From Corollary 9 we know that the mapping M defined in (12) is strongly metrically regular at (z, @)
for 0 if and only if the mapping M defined in (13) is strongly metrically regular at (0, ) for 0. Choose § > 0
such that

(41) eIFINT (LA + 1)T 4+ 1)8 < ¢

and also ¢ € L>=([0,T],R%), y € R™ and r € L*°([0,T],R™) with ||q||c <, [|y|l <8, ||7||oc < J. Consider the
initial value problem

(42) 2(t) = A(t)z(t) + B(t)(u(z(t),t,q(t)) — u(t)) + r(t) forae. te€[0,T], =2(0)=y.

Since the right side of this differential equation is a Caratheodory function which is Lipschitz continuous in
z, and also the initial condition z(0) = y € int B.(0), by a standard argument there is a maximal interval
[0,7] C [0,T] in which there exists a solution z of (42) on [0, 7] with values in B.(0) and if 7 < T then
lz(T)]] = ¢. Let 7 < T. But then for ¢t € [0, 7] we have

@1 < Iyl +/0 (ollz()]| + voA(d + [|2(s)]) + 0)ds.
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Hence, by applying the Gronwall lemma and using (41), we get
2@)]| < eV T(bph + DT +1)5 < e,

which contradicts the assumption that 7 < 7. Hence 7 = T and there exists a solution z of problem (42)
on the entire interval [0,7] such that z(¢) € int B.(0) for each ¢ € [0,T]. Then for u(t) := u(z(t),t,q(t)),
t € [0,T] we obtain that (u, z) := (u(t), z(t)) satisfies (40) for almost every t € [0,T]. In conclusion, for each
(r,q) : [0,T] = R™*4 and y € R™ with ||7|so| < 9, |gllc < & and [Jy|| < § there exists a unique solution
(u,z) € L™ x WH of the perturbed system

A(t) = A(t)z(t) + B()(u(t) —a(t)) +r(t), 2(0) =y,
0€ f(t)+ H(t)z(t) + E()(u(t) — u(t) + q(t) + F(u(t)),

for a.e. ¢t € [0,T], such that ||u — 4|l < @ and ||z||c < c.

In the last part of the proof we show Lipschitz continuity of the solution (u,z) € L™ x W of the
perturbed system (43) with respect to (r,y,q) € L= X R™ x L=, ||[7]lcc <0, ||yl <9, |l¢lloc < 6. From now
on through the end of the proof 7 > 0 is a generic constant which may change in different relations. Choose
(ri,q;) € L*([0,T]),R™*4) and y; € R™ such that ||7;]|cc < 6, |gillee < 8, |lyill < 6, and let (z;,u;), be the

solutions of (43) associated with (r;,y;,¢;), i = 1,2. Due to (39), for ¢ = 1,2 we have
—qi(t) — H(t)z;(t) € By(0) for a.e. t € [0,T]

(43)

and hence

ui(t) = gt_l(—qi(t) — H(t)zi(t)) N Bg(u(t)) for a.e. t €[0,T].
Therefore
(4 s (8) = wa(®)] < ol z1(6) = 22(0)] + ellar (=g (0)] for ae. ¢ € [0,7],

Plugging (44) into the integral form of the differential equation in (43), we get
t
I21(t) = 22(@)]| < llyr — w2l +/ (ollz1(7) = 22(7)I| + vollua (7) — ua(7)l| + (71 (7) — r2(7)|)dr
0

t
< lyr — w2l +/ v (1 + wwo)llz1(1) = 22(7) || + Krollgr (T) g2 (T)]]
0
+||r1 (1) — ro(7)||)dT for every t € [0,T].

The Gronwall lemma yields that
(45) 121() = 22D < (v — w2l + ler — g2l + lIrs = 72loc)  for every ¢ € [0,T].
Then (45) substituted in (44) results in
(46) [ur = uslloo < A(llyr = w2ll + a1 = g2lloc + 1 = 72[lo0)-
Substituting (45) and (46) in the state equation gives us

121 = Zalloo < A(lly2 — g2l + llar — @2lloc + (171 = 72[lo0)-

This proves the first part of the theorem.
As for the second part, since in this case @ is Lipschitz continuous on [0, T, it is sufficient to repeat the
above argument changing the L> norm to the C' norm, obtaining

(47) 21 = 22lle <Al = v2ll + [l = g2llo + [l = r2flo)-
Then, from (44) which is valid for all ¢ € [0, T], we have
(48) [ur —uzlle < y(llyr = vall + llar — g2llo + lIre = rallo).-
Finally, utilizing (47) and (48) in the differential equation we obtain
1210 = 2alle <A(llvr — w2l + llor — @2llo + [lr1 = 7r2llo)-
This ends the proof. ]
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REMARK 3.2. Note that, by Robinson’s theorem, strong metric regularity in L* of the mapping M
implies Lipschitz dependence in L* of the control u with respect to perturbations, which yields restrictions
on the behavior of u as a function of time. Suppose that the problem in hand is perturbed; then as a
consequence of the strong metric regularity, the control for the perturbed problem must be close to @ in L
which means that it has to have jumps at the same instants of time as u. If we assume a bit more, namely
the local isolatedness of @, then the function @ becomes Lipschitz continuous. In the paper [9] we considered
a variational inequality of the form (2) without the state variable z and used a condition which is stronger
than (25), namely that each point of the graph of the associated solution mapping is a point of strong metric
regularity. In this case it turned out that there are finitely many Lipschitz continuous functions whose graphs
do not intersect each other such that for each value of the parameter the set of values of the solution mapping
is the union of the values of these functions. Here we assume less, focusing on a particular solution @ but
still the strong metric regularity imposes restrictions on the way the solution depends on perturbations.

4. Regularity in optimal control. Consider the optimal control problem (6) and the associated
optimality system (7) with a reference solution (g, p,@). We assume for simplicity that yo = 0 and ¢ = 0.
In further lines we use the notation A(t) = D, H(t), B(t) = Dy, H(t), Q(t) = Dy, H(t), S(t) = Dy, H(t),
R(t) = Dy, H(t) for the corresponding derivatives of the Hamiltonian H, where the bar means that the
function is evaluated at (g(t), p(t), a(t)).

We start with a result regarding the Lipschitz continuity of the optimal control @ with respect to time
t, which is a consequence of Theorem 15 and also [6, Theorem 2C.2].

THEOREM 18. Let @ be an optimal control for problem (6) which is measurable and bounded on [0,T)
and also an isolated solution of the variational inequality

(49) 0 € Hi(v) == DuH(y(t), p(t), v) + Nu(v),

where § and p are the associated optimal state and adjoint variables. Assume that for each t € [0,T] the
mapping H; is strongly metrically reqular at w(t) for 0. Then the optimal control @ is Lipschitz continuous
int on [0,T].

In addition, let n =1 and suppose that

(50) S(t)g(t) — BT (t)D,H(t) 0  for every t € [0,T).

Then the converse statement holds as well: if 4 is Lipschitz continuous in [0, T] then for each t € [0,T] the
mapping H; is strongly metrically reqular at u(t) for 0.

Proof. The first part of the statement readily follows from Theorem 15 (see also Remark 3.1). As for
the second part, let @ be Lipschitz continuous on [0,7]. Then for each ¢ € [0,T], by using the assumption
that @ is an isolated solution, the mapping ¢t — {v | 0 € H,(v)} has a single-valued localization around ¢
for w(t). This in turn implies strong metric regularity of the mapping H; at u(t) for 0 is provided that the
so-called ample parameterization condition is satisfied, see [6, Theorem 2C.2]. In the specific case of (7) this
condition has the form:

(51) rank [S(t)y(t) + BT (t)p(t)] =n  for every t € [0,T].
Since n =1 and on the left side we have a single vector, condition (51) is equivalent to condition (50). 0O
Consider next the mapping appearing in the optimality system (7):
1 1 y - g(ya U) 0
(52) W™ x W™ x L 5 (y,p,u) = P(y,p,u) == | p+DyH(y,p,u) |+ 0
DuH(il/»I% u) NU<U)

where W%’oo = {p € Wh> | p(T) = 0}. The associated linearized mapping has the form
Wy™ x Wp™ x L 3 (2,¢,u) = P(2,q,u) =

2— Az —B(u—1) 0
G+Qz+ATqg+ST(u—u) |+ 0
Sz+ BTq+ R(u — u) Ny (u)
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As a final result of this section we adopt [7, Theorem 5] to present a sufficient condition for strong metric
regularity of the mapping P or, equivalently, the mapping P. This results also serves as an example which
illustrates that strong metric regularity can be deduced from the well-known strong second-order sufficient
optimality condition, sometimes also called coercivity. This condition basically requires positive definiteness
of a quadratic form on a subspace, and in principle can be checked numerically.

In the statement below L? is the usual Lebesque space of measurable and square integrable functions
while W12 is the space of functions x with both 2 and the derivative & in L2.

THEOREM 19. Suppose that § € W™, 5 € W™, 4 € L™ and consider the mapping P defined in (52)
acting from VVOLOO X W%’oo x L™ to the subsets of L>°. Suppose that the following condition is satisfied: there
exists a > 0 such that

(53) /O (T QWY() +u®)" R(t)ult) + 2y(t)" S(t)u(t))dt > a/o lut)||*dt

whenever y € W2 y(0) = 0,u € L? ) = Ay + Bu,u = v —w for some v, w € L? with values v(t), w(t) € U
for a.e. t € [0, T]. Then the mapping P in (52) is strongly metrically reqular at (g, p, @) for 0.

Proof. According to [7, Theorem 5|, condition (53) implies that the linearized mapping P is strongly
metrically regular at (0,0, u) for 0. Then, by applying Robinson’s theorem as in Corollary 9 we obtain the
conclusion. 0

Note that the Remark 3.2 applies also here; having strong metric regularity in L> imposes restrictions
on the way the optimal control behaves as a function of time. Also note that the coercivity condition (53)
implies pointwise coercivity, namely u? R(t)u > aflu|? for all w € U — U and a.e. t € [0,T]. But then, if we
assume that the components of R, B, S are continuous functions, we will end up with the reference control
@ being Lipschitz continuous on [0, 7.

There is a wealth of literature on Lipschitz stability in optimal control, where strong metric regularity
plays a major role. Alt [1] was the first to employ strong metric regularity in nonlinear optimal control; his
results were broadly extended in [7]. In a series of papers, see e.g. [21], Malanowski studied various optimal
control problems including problems with inequality state and control constraints. A characterization of
strong metric regularity for an optimal control problem with inequality control constraints is obtained in
[10]. For recent results in this direction, see [3], [12], [24] and the references therein.

5. Discrete approximations and path-following. As an application of the analysis given in the
preceding two sections, in this section we study a time-stepping procedure for solving the DGE considered
in Section 3, namely

(54) i(t) = g(z(t),u(t)),  x(0)=0,
(55) Flz(t),u®) + F(u(t)) 30  forallt e [0,T).

Let N be a natural number and let the interval [0,7] be divided into N subintervals [ty, tr11], with tg =
0,ty = T, and with equal step-size h = T'/N, that is, tx41 = tx + h, £ = 0,1,...,N — 1. Consider the
following iteration: starting from some (xq,ug), given (xy, ux) at time tx obtain the next iterate (zx41, Uk+1)
associated with time ;41 as a solution of the system

(56) Tpt1 = T + hg(ag, ug),
(57) J(@rrr,ur) + Do f (w1, up) (Upyr — ug) + F(urg1) 20,

for k =0,1,...,N — 1. Note that (56) determines z11 by an Euler step from (x,u) for the differential
equation (54). Having xjp41, the control iterate ugy; is obtained as a solution of the linear generalized
equation (57) which is a Newton-type step for the discretized generalized equation (55). The iteration (56)—
(57) resembles an Euler-Newton path-following (time-stepping) procedure aiming at obtaining a sequence
{(z, ur)}2_, which represents a discrete approximation of a solution to the original DGE (54)—(55). The
following theorem gives conditions under which the iteration (56)—(57) produces an approximate solution
which is at distance O(h) from the reference solution (Z, ).



(SN B

591

18 R. CIBULKA, A.L.DONTCHEV, M.I. KRASTANOV , AND V.M. VELIOV

THEOREM 20. Consider the DGE (54)—(55) with a reference solution (T, ) at which condition (25) holds
together with one of the equivalent statements (i)-(iii) in Theorem 15. Then there exist a natural number
Ny and positive reals d, o and ¢ such that for each N > Ny, if the starting point is chosen to satisfy

(58) ro=0 and |uo—u(0)|| < dh,
then the iteration (56)—(57) generates a sequence {(xy,ux)}i_, such that
(k, ur) € Ba((2(tk), ultr))), k=1,...,N;

in addition, there is no other sequence in B, ((Z(ty), @(tx))) generated by the method. Moreover, the following
error estimates hold:

— <d(e -z <e
(59) omax lur — @(t)| < d(@+1)h  and onax, lzx — Z(tx)| < ch.

Proof. According to Theorem 13 the mapping v — G¢(v) = f(Z(t),v) + F(v) is strongly metrically
regular at @(t) for 0 uniformly in ¢ € [0,7]; that is, there exist positive reals a, b and & such that for each
t € [0, T] the mapping By (0) — G;*(y) "B, (a(t)) is a Lipschitz continuous function with Lipschitz constant
k. Furthermore, from the assumed twice continuous differentiability of g and f there exists v; > 0 such that
for every t € [0,T], every x € IB,(Z(t)), and every u € IB,(u(t)) we have

(60) 1f (2, u) = f(@(@), a@)]| < wille = 2@ + [lu—a@®)]),

(61) lg(z,u) — g(2(t), u@®))|| < valle —2(0)] + [lu — a(t)]);
and also that, for every t € [0,T1], every x,x’ € By(Z(t)) and every u,u’ € B,(u(t)),
(62) |Duf (2, w) = Duf (', u)|| < va(fle = 2"l + [Ju — ).

By Theorem 15 , the function ¢ — (Z(t),@(t)) is Lipschitz continuous on [0,T], hence there exists v > 0
such that
[Z(s) — 2(O)l + lla(s) — a(t)|| < velt —s|  for all ¢, s € [0, 7.

Let

(63) K =4k, p:=1/(2k), and v:=max{l,v,ve,r'},

and then set

(64) a:=min{l,a/2,1/(16kv),4bk/5} and J:=2a°v.
In the next step of the proof we prove the following claim:

Given t € [0,T],z € Ba2(z(t)), and u € B, (u(t))
there is a unique @ € B, (a(t)) such that
flz,u) + Dy f(z,u)(@—u)+ F(@) 50

and [|a —a(t)|| < v2(Ju—a()|? + [l — z(@)]).

(65)

Fix t, x and u as required and consider the function
R" 30 U(v) = Uy, (v) := f(z,u) + Dy f (2, u)(v —u) — f(z(t),v) € RL

We utilize Theorem 10 with (Z, g, F, g) replaced by (@(t), 0, Gt, ). By (63), s < 1l and &’ > 2k = k/(1—pk).
From (63) and (64) we get
a<a/2, 2+'B=(16kva)a < a,

and

2ua+2ﬁ:g+(4au)a§g+g:—§b.
K Kk 4k 4K
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To apply Theorem 10 we need to show that
(66) |(a(t)|| < B and ||[¥(v) — V()| < pllv—12"] whenever v,v" € Bay(u(t)).

Noting that z € B,2(Z(t)) C B, (Z(t)) and u + s(a(t) — u) € Ba(u(t)) C By(u(t)) for any s € [0,1], using

(60) and (62) we obtain
[ (a(t))ll | f(x,u) + Dy f(z,u)(a(t) —
| f(x,u) — f(z,u(t) + Duf(z
(67) +If (z, alt) — f(z(t),u(t))
Jo NDuf (@, 1) — Dy f(,u+ s(@(t) — w)](alt) — u)llds + vz — z(t)||
vl|a(t) —u|)? [y sds + vllz — z(t)].

IA I

INIA

Consequently, || ¥(a(t))| < tva? + va? < 2va? = B, which is the first inequality in (66). Pick any v,
v' € Bag(u(t)) C By(u(t)). Then v' + s(v —v') € Baa(u(t)) for every s € [0,1] and sup,eoqp [|u — [v" +
s(v —v")]|] < 3a. Therefore, from (62),

19 (v) = U@ = [ Duf(@,u)(v =) = [f(Z(t),v) = f(@(t), )]
= /0 I[Duf (2, u) = Duf(Z(t), 0" + s(v —))](v —v')||ds
<v(lle —2@)] + s lu =" = s(v = o)) [lo =o'

<v(a? +3a) v —7| < dav|v —'].

Since 4av < 1/(4k) < p by (64), the second inequality in (66) follows. Then Theorem 10 implies that the
mapping

(68) Bs(0) >y = (f(2(t),-) + ¥+ F) "' (y) N Ba(u(t))

is a Lipschitz continuous function with Lipschitz constant s’ on Bg(0). In particular, there is a unique
solution @ in B, (u(t)) of
f(Z(t),v) +¥(v)+ F(v) 2 0.

Taking into account that @(¢) is the unique solution in B, (u(t)) of
f(@(8),0) + W(v) + F(v) > W(u(t)),
and the first inequality in (66), we conclude that
o —a)] < &'l ®@))].

Using (67) and the fact that £’ < v, we complete the proof of (65).
Set

(69) d:=1v? XNi=max{v(l1+d),v(v+d)}, and c:=Tr.
Next, choose an integer Ny > T so that

(70) Te<a’Ny and T(d(2+¢))° < al.

Let N > Ny and let h :=T/N. Then we have h < 1 and from (70),

(71) ch<a® and (d2+¢)°h<a.

Let ¢; := Aihe?" i =0,1,...,N. We will show that the iteration (56)-(57) is sure to generate points
{(z, ur) }2_, that satisfy the following inequalities:

(72) lz: — ()| < cih and |l — a(t:)]| < d(1 +c)h for i =0,1,...,N.
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Let (xo,up) satisfy (58); since ¢y = 0, (72) hold for i = 0. Now assume that for some k¥ < N the
point (zx,ux) satisfies (72) for i = k. We will find a point (241, ur+1) generated by (56)—(57) such that
inequalities (72) hold for ¢ = k + 1. Define x4 by (56). Clearly, ¢ = maxo<;,<n ¢;. By (71) and (64), we
have x, € B, (Z(tr)) and uy € B,(u(ty)). Since v > 1, the second inequality in (71) implies that

vh < vih = d?h < (J(2+E))2h <a<a/2

Therefore Z(s) € B, (Z(tx)) and u(s) € B,(u(ty)) for all s € [tg, tg41]. Then, using (61),

xp + hg(xg, uk) — (ty) — / - g(z(s),u(s))ds

tr

/ " (0@(s),5(5)) — gl u))ds

ty

lzks1 — Z(trsr)ll =

< |lzx — Z(tx)|| + ‘

< e+ / " (lo@(s), () — 9@ (te), alta)l| + l9(E(tr), alte)) — glax ) ) ds

th

< ch+ / - v({[Z(s) = 2(tr) | + [luls) — altr)ll + () — x|l + a(tr) — uxl)ds

tr

tret1 _
< cph + z// (2v(s — ty) + cih + dh(c, + 1))ds

tk
= cph 4+ vh2(cp + d(cg + 1)) + v2h? = cph(1 + v(1 4 d)h) + h*v(d + v)
< cph(1 + Ah) 4+ h2X = R2X\keFM M (1 4 AR) + h2A
S h2)\ke(k+1)hk =+ h2)\e(/€+1)h/\ — h2)\(1€ 4 1)e(k+1)hk _ Ck+1h.

In particular, from the first inequality in (71), we get
lekss — 2(thsn)ll < b < o2

Since v > 1, we also have

(73) Jur — utren)ll < fluw — wte) || + |1u(tn) = wtren)l] < d(1+ cx)h+vh
< d(2+¢é)h < (d2+¢)%h < a.

Using (65) with (¢, z,u) := (tga1, Tk+1, Ux) We obtain that there is ug41 which is unique in B, (u(tg+1)) and
satisfies (57). Combining the estimate from (65), (73), and the second inequality in (71), we get that
?(lur = @trsn)II* + lznss — 2(ter)l)
2((d(1 + ex)h + vh)? + i1 h)
h(ck+1 + (d(1 + ck) +v)?h) < V?h(cpir + (d(2+€))?h)
2h(cprr + ) < dh(cpypr +1).

[uns1 = a(tyg)l

The induction step is complete and so is the proof. 0

The obtained error estimate of order O(h) is sharp in the sense that the optimal control @ is at most
a Lipschitz continuous function of time in the presence of constraints. If however, & has better smoothness
properties, in line with the analysis in [8], by applying a Runge-Kutta scheme to the differential equation (54)
and an adjusted Newton iteration to the generalized equation (55) would lead to a higher-order accuracy.
This topic is left for future research.

Finally, we note that time-stepping procedures for solving DVIs have been considered already in [23], see
also the more recent papers [5] and [27] dealing with various discretization schemes. An extensive overview
to time-stepping strategies for time-dependent variational inequalities is presented in [9]. The Euler-Newton
path following procedure we deal here is different from the time-stepping schemes considered in those papers
and the error estimate obtained is a first result in the direction of rigorous numerical analysis of dynamical
systems of the kind of DGE.
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A numerical ezample. As an illustration we consider a slight (nonlinear) modification of the model of a

half-ware rectifier considered in [28, Chapter 1.3.1]. It consists of the differential variational system

() = ( R )m) + < ! )u(t),
21(8) + arctan(u(t)) € F(u(t)),

655 where Z = (z1,72) € R?, u € R, and
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) if u <0,
F(u)=1{ [0,400) ifu=0,
0 ifu>0.

We mention that the inclusion in the above system is equivalent to the complementarity condition

0 < (z1(t) + arctan(u(t))) L u(t) > 0.

The graphs of the exact solution (Z(t),u(t)) and of two approximate solutions are presented in Fig. 6.1.
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F1G. 6.1. The ezact solution (state x1 on the left and control w on the right) and the Euler-Newton approximations with

step sizes h =1/16 and h = 1/64.

The table below presents the errors e = maxg—o n{||ur — u(tr)||} and e = maxz—o n{||lzr — Z(tx)|/}

for various values of h = T/N. On the last line we give the values of the ratios r = e" /e"/* which, due to

the estimation in Theorem 20, are expected to be in average not smaller than 4. This is supported by the

computation.
TABLE 1
The errors el and el for various values of h and the ratios rl'.
h 1/4 1/16 1/64  1/256  1/1024  1/4096
eﬁ 0.1980 0.0302 0.0068 0.0016  0.000384  0.00007
e; 0.1908  0.0299 0.0067 0.0016  0.000382  0.00007
rh 6.55 4.44 4.25 4.19 5.00
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