

Operations Research and Control Systems ORCOS

On the Regularity of Linear-Quadratic Optimal Control Problems with Bang-Bang Solutions

Jakob Preininger, Teresa Scarinci, Vladimir M. Veliov

Research Report 2017-04 March 2017

ISSN 2521-313X

Operations Research and Control Systems Institute of Statistics and Mathematical Methods in Economics Vienna University of Technology

Research Unit ORCOS Wiedner Hauptstraße 8 / E105-4 1040 Vienna, Austria E-mail: orcos@tuwien.ac.at

On the Regularity of Linear-Quadratic Optimal Control Problems with Bang-Bang Solutions^{*}

J. Preininger¹, T. Scarinci², V.M. Veliov³

 ¹ Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria, jakob.preininger@tuwien.ac.at
 ² Department of Statistics and Operations Research, University of Vienna, Austria, teresa.scarinci@univie.ac.at
 ³ Institute of Statistics and Mathematical Methods in Economics, Vienna University of Technology, Austria, http://orcos.tuwien.ac.at/people/veliov/

Abstract. The paper investigates the stability of the solutions of linearquadratic optimal control problems with bang-bang controls in terms of metric sub-regularity and bi-metric regularity. New sufficient conditions for these properties are obtained, which strengthen the known conditions for sub-regularity and extend the known conditions for bi-metric regularity to Bolza-type problems.

Keywords: optimal control, regularity, linear-quadratic problems, bangbang controls

1 Introduction

In this paper we investigate the stability with respect to perturbations of the solutions of the following optimal control problem:

minimize
$$J(x, u)$$

subject to $\dot{x}(t) = A(t)x(t) + B(t)u(t) + d(t), \quad t \in [0, T],$
 $u(t) \in U := [-1, 1]^m,$
 $x(0) = x_0,$
(P)

where

$$J(x,u) := g(x(T)) + \int_0^T \left(\frac{1}{2}x(t)^\top W(t)x(t) + x(t)^\top S(t)u(t)\right) dt.$$
(1)

Here, admissible controls are all measurable functions $u : [0, T] \to [-1, 1]^m$, while $x(t) \in \mathbb{R}^n$ denotes the state of the system at time $t \in [0, T]$. The initial state x_0 , the final time T and the terminal function $g : \mathbb{R}^n \to \mathbb{R}$ are given, as well as the matrices $A(t), W(t) \in \mathbb{R}^{n \times n}, B(t), S(t) \in \mathbb{R}^{n \times m}$ and $d(t) \in \mathbb{R}^n, t \in [0, T]$.

^{*} This research is supported by the Austrian Science Foundation (FWF) under grant No P26640-N25. The second author is also supported by the Doctoral Programme "Vienna Graduate School on Computational Optimization" funded by the Austrian Science Fund (FWF), project No W1260-N35.

The stability of the solutions of this problem is investigated within the general framework of *metric regularity* (see e.g. [2, Section 3E]) of the associated Pontryagin system of necessary optimality conditions.

The issue is challenging due to the linearity of the problem with respect to the control, which may result in bang-bang solutions. Only a few results are known in the literature that deal with the regularity of this problem, among which we mention [4, 6, 1]. The paper [6] introduces the notion of bi-metric regularity as an appropriate extension of the established notion of metric regularity, which is more relevant to problems with discontinuous optimal controls. However, the result in [6] applies to Mayer-type problems only, where the integral term in the objective functional (1) is missing. The integral term brings a substantial difference, due the presence of the state and the control in the adjoint equation.

In this paper we obtain a strengthened version of the Hölder sub-regularity result obtained in [1, Theorem 8], which provides a basis for further investigations, including error analysis of approximation schemes. We also announce a result about strong bi-metric regularity of the Pontryagin system of necessary conditions associated with problem (P), extending [6] to Bolza problems with bang-bang solutions.

2 Preliminaries

We begin with formulation of assumptions.

Assumption (A1). The matrix-functions A, B, W, S and d are Lipschitz continuous. The matrix W(t) is symmetric for every $t \in [0, T]$. The function g is differentiable with locally Lipschitz derivative.

Let (\hat{x}, \hat{u}) be a solution of problem (P), from now on fixed; a standard compactness argument implies existence.

Assumption (A2). For every admissible pair (x, u) of (P) it holds that

$$\langle \nabla g(x(T)) - \nabla g(\hat{x}(T)), \Delta x(T) \rangle + \int_0^T (\langle W(t)\Delta x, \Delta x \rangle + 2\langle S(t)\Delta u, \Delta x \rangle) dt \ge 0,$$

where $\Delta x := x(t) - \hat{x}(t)$ and $\Delta u := u(t) - \hat{u}(t)$, and $\langle \cdot, \cdot \rangle$ is the scalar product.

By the Pontryagin maximum (here minimum) principle, there exists an absolutely continuous function \hat{p} such that the triple $(\hat{x}, \hat{p}, \hat{u})$ solves for a.e. $t \in [0, T]$ the system

$$0 = \dot{x}(t) - A(t)x(t) - B(t)u(t) - d(t),
0 = \dot{p}(t) + A(t)^{\top}p(t) + W(t)x(t) + S(t)u(t),
0 \in B(t)^{\top}p(t) + S(t)^{\top}x(t) + N_U(u(t)),
0 = p(T) - \nabla g(x(T)),$$
(PMP)

where $N_U(u)$ is the normal cone to U at $u \in \mathbb{R}^m$:

$$N_U(u) := \begin{cases} \emptyset & \text{if } u \notin U \\ \{l \in \mathbb{R}^m : \langle l, v - u \rangle \le 0 \ \forall v \in U \} & \text{if } u \in U. \end{cases}$$

We recall that $\hat{\sigma} := B^{\top} \hat{p} + S^{\top} \hat{x}$ is the so-called *switching function* corresponding to the triple $(\hat{x}, \hat{p}, \hat{u})$. For every $j \in \{1, \ldots, m\}$, denote by $\hat{\sigma}_j$ its *j*-th component.

The following assumption requires that the optimal control \hat{u} is strictly bangbang, with a finite number of switching times, and that the switching function exhibits a certain growth in a neighborhood of any zero. A similar assumption is introduced in [4] in the case $\kappa = 1$ and in [7] for $\kappa > 1$.

Assumption (A3) There exist real numbers $\kappa \geq 1$ and $\alpha, \tau > 0$ such that for each $j \in \{1, \ldots, m\}$ and $s \in [0, T]$ with $\hat{\sigma}_j(s) = 0$ it holds that

$$|\hat{\sigma}_j(t)| \ge \alpha |t-s|^{\kappa} \quad \forall t \in [s-\tau, s+\tau] \cap [0, T].$$

The Pontryagin minimum principle (PMP) can be recast as

$$0 \in F(x, p, u), \tag{2}$$

where $F: \mathcal{X} \rightrightarrows \mathcal{Y}$ is a set-valued map defined as

$$F(x, p, u) := \begin{pmatrix} \dot{x} - Ax - Bu - d\\ \dot{p} + A^{\top}p + Wx + Su\\ B^{\top}p + S^{\top}x + N_U(u)\\ p(T) - \nabla g(x(T)) \end{pmatrix}.$$
(3)

We will investigate the stability under perturbations of the solution of problem (P) by studying the stability of the generalized equation $y \in F(x, p, u)$ with respect to a perturbation y. The mapping F is considered as acting in the space

$$\mathcal{X} := W^{1,1}_{x_0}([0,T],\mathbb{R}^n) \times W^{1,1}([0,T],\mathbb{R}^n) \times L^1([0,T],\mathbb{R}^m)$$

with values in the space

$$\mathcal{Y} := L^1([0,T],\mathbb{R}^n) \times L^1([0,T],\mathbb{R}^n) \times L^\infty([0,T],\mathbb{R}^m) \times \mathbb{R}^n,$$

which restricts the set of considered selections of the mapping $t \mapsto N_U(u(t))$ to essentially bounded ones. Here $W^{1,1}_{x_0}([0,T],\mathbb{R}^n) := \{x \in W^{1,1}([0,T],\mathbb{R}^n) : x(0) = x_0\}$. The spaces \mathcal{X} and \mathcal{Y} are endowed with the usual norms for $(x, p, u) \in \mathcal{X}$ and $(\xi, \pi, \rho, \nu) \in \mathcal{Y}$:

$$\|(x,p,u)\|_{\mathcal{X}} := \|x\|_{1,1} + \|p\|_{1,1} + \|u\|_{1}, \quad \|(\xi,\pi,\rho,\nu)\| := \|\xi\|_{1} + \|\pi\|_{1} + \|\rho\|_{\infty} + |\nu|.$$

3 Metric sub-regularity

We begin with an auxiliary result that is similar in spirit to [7, Lemma 1.3] (also cf. [8, Theorem 2.1]) but is proved on slightly less restrictive assumptions.

Lemma 1. Let $l : [0,T] \to \mathbb{R}^m$ be a continuous function satisfying assumption (A3) (with l at the place of $\hat{\sigma}$). Then there exists a constant c > 0 such that for any $v \in L^{\infty}([0,T],\mathbb{R}^m)$ the following inequality holds:

$$\|v\|_{\infty}^{k} \int_{0}^{T} \sum_{j=1}^{m} |l_{j}(t)v_{j}(t)| dt \ge c \|v\|_{1}^{\kappa+1}.$$
(4)

Proof. The claim of this lemma is trivial when v = 0. If $v \neq 0$ then due to the homogeneity with respect to v of order $\kappa + 1$ of the two sides of (4), it is enough to prove the lemma in the case $||v||_{\infty} = 1$, which will be assumed in the remaining part of the proof. For any $0 < \delta \leq \tau$, we set

$$I_j(\delta) := \bigcup_{s \in [0,T]: \, l_j(s) = 0} (s - \delta, s + \delta) \cap [0,T], \qquad I(\delta) := \bigcup_{1 \le j \le m} I_j(\delta).$$

Since l is continuous and Assumption (A3) holds for l_j , we have that

$$l_{\min} := \min_{1 \le j \le m} \min_{t \in [0,T] \setminus I_j(\tau)} |l_j(t)| > 0.$$

Now we choose $\bar{\delta} \in (0, \tau)$ such that $\alpha \bar{\delta}^{\kappa} < l_{\min}$. Then for all $\delta \in (0, \bar{\delta})$ and $j \in \{1, \ldots, m\}$ we have

$$|l_j(t)| \ge \alpha \delta^{\kappa} \quad \forall t \in [0, T] \setminus I(\delta).$$
(5)

Indeed, if $t \notin I_j(\tau)$ then $|l_j(t)| \geq l_{\min} > \alpha \bar{\delta}^{\kappa} \geq \alpha \delta^{\kappa}$. If $t \in I_j(\tau) \setminus I(\delta)$, then $t \in I_j(\tau) \setminus I_j(\delta)$. Thus there exists a zero *s* of l_j such that $\delta \leq |t-s| < \tau$. According to Assumption (A3), $|l_j(t)| \geq \alpha |t-s|^{\kappa} \geq \alpha \delta^{\kappa}$. Hence,

$$\begin{split} \phi(v) &:= \int_0^T \sum_{j=1}^m |l_j(t)v_j(t)| \, dt \ge \int_{[0,T] \setminus I(\delta)} \sum_{j=1}^m |l_j(t)v_j(t)| \, dt \\ &\ge \alpha \delta^\kappa \sum_{j=1}^m \int_{[0,T] \setminus I(\delta)} |v_j(t)| \, dt \ge \alpha \delta^\kappa \left(\|v\|_1 - \sum_{j=1}^m \int_{I(\delta)} |v_j(t)| \, dt \right) \\ &\ge \alpha \delta^\kappa (\|v\|_1 - 2\lambda \delta), \end{split}$$

where λ is sum of the maximum of the number of zeros of l_j over all $j \in \{1, \ldots m\}$ (notice that Assumption (A3) implies $\lambda \leq mT/2\tau + m$). If $||v||_1 \geq 4\lambda \overline{\delta}$ then we choose $\delta := \overline{\delta}$ to get

$$\phi(v) \ge \frac{\alpha \delta^{\kappa}}{2} \|v\|_1$$

and since $\|v\|_1 \leq T \|v\|_{\infty} = T$ we have that $\phi(u) \geq \frac{\alpha \bar{\delta}^{\kappa}}{2T^k} \|v\|_1^{\kappa+1}$. If, on the other hand, $\|v\|_1 \leq 4\lambda \bar{\delta}$ then we choose $\delta := \frac{\|v\|_1}{4\lambda} \leq \bar{\delta}$ to get

$$\phi(v) \geq \frac{\alpha}{2^{2\kappa+1}\lambda^{\kappa}} \|v\|_1^{\kappa+1}.$$

Hence choosing $c := \min\{\frac{\alpha \bar{\delta}^{\kappa}}{2T^{\kappa}}, \frac{\alpha}{2^{2\kappa+1}\lambda^{\kappa}}\}$ we obtain that

$$\phi(v) \ge c \|v\|_1^{\kappa+1}.$$
 Q.E.D.

The following theorem establishes a property of the mapping F associated with system (PMP), which is a somewhat stronger form of the well known property of *metric sub-regularity*, [2, Section 3H]. It extends [1, Theorem 8] in several

directions: Assumption (A3) is weaker than the corresponding assumption there, the norms are different, and the function q is not necessarily quadratic and convex.

Theorem 1. Let $(\hat{x}, \hat{p}, \hat{u})$ be a solution of (PMP) such that (A1)–(A3) are fulfilled. Then for any b > 0 there exists c > 0 such that for any $y \in \mathcal{Y}$ with $\|y\| \leq b$, there exists a triple $(x, p, u) \in \mathcal{X}$ solving $y \in F(x, p, u)$, and any such triple satisfies 1

$$||(x, p, u) - (\hat{x}, \hat{p}, \hat{u})||_{\mathcal{X}} \le c ||y||^{\frac{1}{\kappa}}.$$

Proof. Since the inclusion $y \in F(x, p, u)$ represents a system of necessary optimality conditions of a problem of the form of (P) with appropriate, bounded in L^1 , perturbations defined by y (a simple and well known fact), the evident existence of an optimal solution of this perturbed version of (P) implies existence of a solution (x, p, u) of the inclusion $y \in F(x, p, u)$.

Now let b > 0 be arbitrarily chosen and let (x, p, u) be a solution of $y \in$ F(x, p, u), where $y = (\xi, \pi, \rho, \nu) \in \mathcal{Y}$ and $||y|| \leq b$. The following notations will be used. As before, $\hat{\sigma}(t) := B(t)^{\top} \hat{p}(t) + S(t)^{\top} \hat{x}(t)$, while $\sigma(t) := B(t)^{\top} p(t) + S(t)^{\top} \hat{x}(t)$. $S(t)^{\top}x(t) - \rho(t)$. Furthermore, we denote $\Delta x := x(t) - \hat{x}(t), \ \Delta p = p(t) - \hat{p}(t),$ $\Delta u := u(t) - \hat{u}(t), \ \Delta \sigma := \sigma(t) - \hat{\sigma}(t), \ \text{and skip the argument } t \ \text{whenever clear.}$

Integrating by parts, we have

$$\int_0^T \langle \Delta \dot{p}, \Delta x \rangle \, dt = \langle \Delta p(T), \Delta x(T) \rangle - \int_0^T \langle \Delta p, \Delta \dot{x} \rangle \, dt$$

Substituting here the expressions for Δx and Δp resulting from the inclusions $y \in F(x, p, u)$ and $0 \in F(\hat{x}, \hat{p}, \hat{u})$ in view of (3), we obtain that

$$\int_0^T \langle -A^\top \Delta p - W \Delta x - S \Delta u + \pi, \Delta x \rangle dt$$

= $\langle \nabla g(x(T)) - \nabla g(\hat{x}(T)) + \nu, \Delta x(T) \rangle - \int_0^T \langle \Delta p, A \Delta x + B \Delta u + \xi \rangle dt.$

Rearranging the terms in this equality and using (A2) we get

$$\int_{0}^{T} (\langle \Delta p, B \Delta u \rangle + \langle S \Delta u, \Delta x \rangle) dt + \int_{0}^{T} (\langle \pi, \Delta x \rangle + \langle \xi, \Delta p \rangle) dt - \langle \nu, \Delta x(T) \rangle$$
$$= \langle \nabla g(x(T)) - \nabla g(\hat{x}(T)), \Delta x(T) \rangle + \int_{0}^{T} (\langle W \Delta x, \Delta x \rangle + 2 \langle S \Delta u, \Delta x \rangle) dt \ge 0.$$

Using this inequality and the definitions of the functions σ and $\hat{\sigma}$ we obtain

$$\int_{0}^{T} \langle \Delta \sigma, \Delta u \rangle dt = \int_{0}^{T} \langle B^{\top} \Delta p + S^{\top} \Delta x - \rho, \Delta u \rangle dt \ge \\ \ge \int_{0}^{T} (-\langle \pi, \Delta x \rangle - \langle \xi, \Delta p \rangle - \langle \rho, \Delta u \rangle) dt + \langle \nu, \Delta x(T) \rangle.$$
(6)

The third component of the inclusion $y \in F(x, p, u)$ reads as $-\sigma(t) \in N_U(u(t))$, which implies $\langle -\sigma(t), \hat{u}(t) - u(t) \rangle \leq 0$. Then

$$-\int_0^T \langle \Delta \sigma, \Delta u \rangle \, dt = \int_0^T \left[-\langle \sigma, \Delta u \rangle + \langle \hat{\sigma}, \Delta u \rangle \right] dt \ge \int_0^T \langle \hat{\sigma}, \Delta u \rangle \, dt.$$

From here, using that $-\hat{\sigma}_j(t) \in N_{[-1,1]}(\hat{u}_j(t))$, hence $\hat{\sigma}_j(t) \Delta u_j(t) \ge 0$ for each j, Lemma 1 implies that

$$-\int_0^T \langle \Delta \sigma, \Delta u \rangle \, dt \ge \int_0^T \sum_{j=1}^m |\hat{\sigma}_j \, \Delta u_j| \, dt \ge c_1 \|\Delta u\|_1^{\kappa+1}$$

where the constant c_1 is independent of y and (x, p, u). Then using (6) and the Hölder inequality we obtain

$$\|\pi\|_{1} \|\Delta x\|_{\infty} + \|\xi\|_{1} \|\Delta p\|_{\infty} + |\nu| |\Delta x(T)| + \|\rho\|_{\infty} \|\Delta u\|_{1} \ge c_{1} \|\Delta u\|_{1}^{\kappa+1}.$$
 (7)

Using Assumption (A1) and the Cauchy formula for Δx and Δp we get

$$\|\Delta x\|_{\infty} \le c_2(\|\xi\|_1 + \|\Delta u\|_1) \tag{8}$$

and

$$\|\Delta p\|_{\infty} \le c_3(\|\xi\|_1 + \|\pi\|_1 + \|\Delta u\|_1 + |\nu|)$$
(9)

for some constants c_2 and c_3 that are independent of y and (x, p, u). Therefore, using (7) we obtain that

$$(\|y\|^2 + \|y\|\|\Delta u\|_1) \ge c_4 \|\Delta u\|_1^{\kappa+1}$$
(10)

for some constant c_4 , also independent of y and (x, p, u).

Now we distinguish two cases. First, if $|||\Delta y|| \le ||u||_1$ then

$$2\|y\|\|\Delta u\|_1 \ge c_4\|\Delta u\|_1^{\kappa+1}$$

which implies

$$\|\Delta u\|_1 \le \left(\frac{2}{c_4}\|y\|\right)^{1/\kappa}.$$
(11)

Otherwise, if $\|\Delta u\|_1 \le \|y\| \le b$ then

$$\|\Delta u\|_{1} \le \|y\|^{1/\kappa} \|y\|^{(\kappa-1)/\kappa} \le b^{(\kappa-1)/\kappa} \|y\|^{1/\kappa}.$$
(12)

Inequality (11) and (12) imply that for any b > 0 there exists $c_5 > 0$ such that for any and $||y|| \le b$,

$$\|\Delta u\|_1 \le c_5 \|y\|^{1/\kappa}$$

Then the claim of the theorem follows with a suitable constant c from the above estimate, (8) and (9). Q.E.D.

We mention that the property established in Theorem 1 is stronger than metric sub-regularity (as defined e.g. in [2, Section 3H]) in that it is global with respect to the solution $(x, p, u) \in \mathcal{X}$, and also with respect to the size b of the "disturbance" y, although the constant c in the theorem may depend on b.

4 Bi-metric regularity

We begin this section by introducing appropriate modifications of the spaces \mathcal{X} and \mathcal{Y} defined in Section 2. First, we consider the set $\mathcal{U} \subset L^{\infty}([0,T],\mathbb{R}^m)$ of admissible controls (that is, the set of all measurable functions $u: [0,T] \to U$) as a metric space with the metric

$$d^{\#}(u_1, u_2) = \max \{t \in [0, T] : u_1(t) \neq u_2(t)\},\$$

in $L^{\infty}([0,T], \mathbb{R}^m)$, where "meas" stands for the Lebesgue measure in [0,T]. This metric is shift-invariant and we shall shorten $d^{\#}(u_1, u_2) = d^{\#}(u_1 - u_2, 0) =:$ $d^{\#}(u_1 - u_2)$. Moreover, \mathcal{U} is a complete metric space with respect to $d^{\#}$ (see [3, Lemma 7.2]). Then the triple (x, p, u) is considered as an element of the space

$$\widetilde{\mathcal{X}} = W^{1,1}_{x_0}([0,T],\mathbb{R}^n) \times W^{1,1}([0,T],\mathbb{R}^n) \times \mathcal{U},$$

endowed with the (shift-invariant) metric

$$d_{\sim}(x, p, u) = \|x\|_{1,1} + \|p\|_{1,1} + d^{\#}(u).$$
(13)

Clearly $\widetilde{\mathcal{X}}$ is a complete metric space. We also define the space $\widetilde{\mathcal{Y}} \subset \mathcal{Y}$ as

$$\widetilde{\mathcal{Y}} := L^{\infty}([0,T],\mathbb{R}^n) \times L^{\infty}([0,T],\mathbb{R}^n) \times W^{1,\infty}([0,T],\mathbb{R}^m) \times \mathbb{R}^n$$

with the usual norm of $y = (\xi, \pi, \rho, \nu) \in \widetilde{\mathcal{Y}}$:

$$\|(\xi, \pi, \rho, \nu)\|_{\sim} := \|\xi\|_{\infty} + \|\pi\|_{\infty} + \|\rho\|_{1,\infty} + |\nu|.$$
(14)

The paper [6] introduces the notion of bi-metric regularity as a concept of regularity that is relevant to problems with bang-bang optimal controls. In the particular context of the present paper the definition of bi-metric regularity of the set-valued mapping $F : \tilde{\mathcal{X}} \rightrightarrows \mathcal{Y}$ (see (3)) reads, in a somewhat more general form, as follows.

Definition 1. The map $F: \widetilde{\mathcal{X}} \rightrightarrows \mathcal{Y}$ is strongly bi-metrically regular relative to (disturbance space) $\widetilde{\mathcal{Y}} \subset \mathcal{Y}$ at $\hat{z} \in \widetilde{\mathcal{X}}$ for $0 \in \widetilde{\mathcal{Y}}$ if $(\hat{z}, 0) \in \operatorname{graph}(F)$ and there exist numbers $\varsigma \geq 0$, $\beta > 0$ and a > 0 such that the map $B_{\widetilde{\mathcal{Y}}}(0; \beta) \ni y \mapsto F^{-1}(y) \cap B_{\widetilde{\mathcal{X}}}(\hat{z}; a)$ is single-valued and

$$d_{\sim}(F^{-1}(y') \cap B_{\widetilde{\mathcal{X}}}(\hat{z};a), F^{-1}(y) \cap B_{\widetilde{\mathcal{X}}}(\hat{z};a)) \le \varsigma \|y' - y\|$$
(15)

for all $y, y' \in B_{\widetilde{\mathcal{Y}}}(0; \beta)$. Here $B_{\widetilde{\mathcal{X}}}(\hat{z}; a)$ is the ball of radius a centered at \hat{z} in the space $\widetilde{\mathcal{X}}$, and $B_{\widetilde{\mathcal{Y}}}(0; \beta)$ is the ball of radius β (in the norm $\|\cdot\|_{\sim}$) centered at $0 \in \widetilde{\mathcal{Y}}$.

The following theorem extends the result for bi-metric regularity of F obtained in [6] for Mayer's problems for linear systems to the present Bolza problem. For that we need the following strengthened forms of assumptions (A1) and (A2).

Assumption (A1'). The functions A, W and d are Lipschitz continuous, B and S have first order Lipschitz derivatives. The matrices W(t) and $S^{\top}(t)B(t)$ are symmetric for every $t \in [0, T]$. The function g is differentiable with locally Lipschitz derivative.

Assumption (A2'). The function J is convex on the set of admissible pairs (x, u).

Theorem 2 (Bi-metric regularity). Let Assumptions (A1') and (A2') be fulfilled. Let $(\hat{x}, \hat{p}, \hat{u})$ be a solution to (PMP) such that (A3) is fulfilled with $\kappa = 1$. Then the mapping $F : \widetilde{\mathcal{X}} \rightrightarrows \mathcal{Y}$ introduced in (3) is strongly bi-metrically regular (relative to $\widetilde{\mathcal{Y}} \subset \mathcal{Y}$) at $(\hat{x}, \hat{p}, \hat{u}) \in \widetilde{\mathcal{X}}$ for $0 \in \widetilde{\mathcal{Y}}$.

The proof of this theorem is too long to be placed here, therefore it will be presented as a part of a full size paper. This also applies to applications of Theorem 1 and Theorem 2 in qualitative analysis and error analysis of numerical approximations in the spirit of [5].

We mention, that the strong bi-metric regularity for Mayer's problems is proved in [6] for a general polyhedral set U and also in the case $\kappa > 1$. Extension of Theorem 2 to a general compact polyhedral U set is a matter of modification of Assumption (A3) and technicalities that we avoid in this paper, while the case $\kappa > 1$ is still open and challenging for the Bolza problem.

References

- W. Alt, C. Schneider, M. Seydenschwanz. Regularization and implicit Euler discretization of linear-quadratic optimal control problems with bang-bang solutions. Appl. Math. and Comp. 287-288 (2016) 104-105.
- A.L. Dontchev, R.T. Rockafellar. Implicit Functions and Solution Mappings: A View from Variational Analysis. Second edition. Springer, New York, 2014.
- I. Ekeland. On the variational principle. J. Math. Anal. and Appl., 47:324–353, 1974.
- U. Felgenhauer. On stability of bang-bang type controls, SIAM J. Control Optim., vol.41(6), 2003, 1843–1867.
- A. Pietrus, T. Scarinci, and V.M. Veliov. High order discrete approximations to Mayer's problems for linear systems. To appear. See also, *Research Report* 2016-04, ORCOS, TU Wien, 2016.
- M. Quincampoix, V. Veliov. Metric Regularity and Stability of Optimal Control Problems for Linear Systems, SIAM J. Control Optim, 2013, 51(5), 4118–4137.
- M. Seydenschwanz. Convergence results for the discrete regularization of linearquadratic control problems with bang-bang solutions. Comput. Optim. Appl., 61(3) (2015) 731–760.
- V.M. Veliov. On the Convexity of Integrals of Multivalued Mappings: Applications in Control Theory, Journal of Optimization Theory and Applications, Vol. 54, No. 3, Sept. 1987.