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Abstract. The paper investigates the stability of the solutions of linear-
quadratic optimal control problems with bang-bang controls in terms of
metric sub-regularity and bi-metric regularity. New sufficient conditions
for these properties are obtained, which strengthen the known condi-
tions for sub-regularity and extend the known conditions for bi-metric
regularity to Bolza-type problems.
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1 Introduction

In this paper we investigate the stability with respect to perturbations of the
solutions of the following optimal control problem:

minimize J(x,u)

subject to #(t) = A(t)z(t) + B(t)u(t) +d(t), te€][0,T], P)
u(t) e U :=[-1,1]™,
z(0) = zo

where

T
J(z,u) == g(z(T)) Jr/o (;x(t)TW(t):p(t) er(t)TS(t)u(t)) dt. (1)

Here, admissible controls are all measurable functions u : [0,T] — [—1, 1]™, while
x(t) € R™ denotes the state of the system at time ¢ € [0, T]. The initial state xo,

the final time 7" and the terminal function g : R™ — R are given, as well as the
matrices A(t), W(t) € R™*™, B(t),S(t) € R"*™ and d(t) € R", ¢t € [0,T].
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No P26640-N25. The second author is also supported by the Doctoral Programme
“Vienna Graduate School on Computational Optimization” funded by the Austrian
Science Fund (FWF), project No W1260-N35.



The stability of the solutions of this problem is investigated within the gen-
eral framework of metric regularity (see e.g. [2, Section 3E]) of the associated
Pontryagin system of necessary optimality conditions.

The issue is challenging due to the linearity of the problem with respect to the
control, which may result in bang-bang solutions. Only a few results are known
in the literature that deal with the regularity of this problem, among which we
mention [4,6,1]. The paper [6] introduces the notion of bi-metric regularity as
an appropriate extension of the established notion of metric regularity, which
is more relevant to problems with discontinuous optimal controls. However, the
result in [6] applies to Mayer-type problems only, where the integral term in
the objective functional (1) is missing. The integral term brings a substantial
difference, due the presence of the state and the control in the adjoint equation.

In this paper we obtain a strengthened version of the Holder sub-regularity
result obtained in [1, Theorem 8], which provides a basis for further investiga-
tions, including error analysis of approximation schemes. We also announce a
result about strong bi-metric regularity of the Pontryagin system of necessary
conditions associated with problem (P), extending [6] to Bolza problems with
bang-bang solutions.

2 Preliminaries
We begin with formulation of assumptions.

Assumption (A1). The matrix-functions A, B, W, S and d are Lipschitz con-
tinuous. The matrix W (¢) is symmetric for every t € [0,7]. The function g is
differentiable with locally Lipschitz derivative.

Let (Z,4) be a solution of problem (P), from now on fixed; a standard com-
pactness argument implies existence.

Assumption (A2). For every admissible pair (x,u) of (P) it holds that

T
(Vg(z(T)) — Vg(&(T)), Az(T)) + /O (W (t) Az, Az) + 2(S(t) Au, Ax))dt > 0,

where Az := z(t) — Z(t) and Au := u(t) — 4(t), and (-, -) is the scalar product.
By the Pontryagin maximum (here minimum) principle, there exists an abso-
lutely continuous function p such that the triple (Z, p, @) solves for a.e. t € [0, T

the system
0=a(t) — A(t)z(t) — B(t)u(t) — d(?),
0= p(t) + A(t) "p(t) + W (t)x(t) + S(t)u(t),
0eB(t)" () S(t) " (t) + Nu(u(t)),
0=p(T) = Vg(z(T)),

where Ny (u) is the normal cone to U at u € R™:

No(a) = {@ ifugU

(PMP)

{lteR™: (l,bv—u)<0VweU} ifuel.



We recall that 6 := BTp+S "4 is the so-called switching function corresponding
to the triple (&, p, @). For every j € {1,...,m}, denote by &; its j-th component.

The following assumption requires that the optimal control 4 is strictly bang-
bang, with a finite number of switching times, and that the switching function
exhibits a certain growth in a neighborhood of any zero. A similar assumption
is introduced in [4] in the case x =1 and in [7] for £ > 1.

Assumption (A3) There exist real numbers £ > 1 and a,7 > 0 such that for
each j € {1,...,m} and s € [0,T] with 6;(s) = 0 it holds that
|6;(t)] > alt —s|® Vte[s—T1,s+7]N[0,T].
The Pontryagin minimum principle (PMP) can be recast as
0€ F(z,p,u), (2)
where F' : X = ) is a set-valued map defined as
i — Ar — Bu—d
p+ATp+ Wz + Su 3)
B'p+ STz +Ny(u) |-
p(T) = Vg(z(T))

We will investigate the stability under perturbations of the solution of problem
(P) by studying the stability of the generalized equation y € F(x,p,u) with
respect to a perturbation y. The mapping F' is considered as acting in the space

X =W ([0,T),R™) x WH([0,T],R™) x L*([0,T],R™)

F(z,p,u) =

with values in the space
Y= LY([0,T],R") x L*([0,T],R") x L>([0, T},R™) x R",

which restricts the set of considered selections of the mapping ¢ — Ny (u(t))
to essentially bounded ones. Here W_-1([0,T],R™) := {z € W'([0,T],R") :
x(0) = zo}. The spaces X and Y are endowed with the usual norms for (z, p, u) €
X and (&, 7, p,v) € V:

vt el +lully, (1€ m )| = gl + Il +lplloc +[v]-

Gz, )| = [||

3 Metric sub-regularity

We begin with an auxiliary result that is similar in spirit to [7, Lemma 1.3] (also
cf. [8, Theorem 2.1]) but is proved on slightly less restrictive assumptions.

Lemma 1. Let | : [0,T] — R™ be a continuous function satisfying assump-
tion (A3) (with 1 at the place of 6). Then there exists a constant ¢ > 0 such that
for any v € L*°([0,T],R™) the following inequality holds:

T m
IIUII'SO/0 DIty ()] dt > elfollF . (4)
j=1



Proof. The claim of this lemma is trivial when v = 0. If v # 0 then due to
the homogeneity with respect to v of order k + 1 of the two sides of (4), it is
enough to prove the lemma in the case ||v]|oo = 1, which will be assumed in the
remaining part of the proof. For any 0 < < 7, we set

I;(6) := U  G-das+on1, 106):= |J L©

s€[0,T]:1;(s)=0 1<j<m
Since [ is continuous and Assumption (A3) holds for /;, we have that

lmin = Li(t 0.
nin te[or;l]lg( |L; ()] >

Now we choose § € (0,7) such that ad® < lyi,. Then for all § € (0,9) and
je{l,...,m} we have

[L;(®)] > ad®™ Yt e [0,T]\ I(9). (5)

Indeed, if ¢ ¢ I;(7) then |L;(t)| > lmin > ad® > ad®. If t € I;(7) \ 1(8), then
t € I;j(1) \ I;(0). Thus there exists a zero s of [; such that § < |t —s| < 7.
According to Assumption (A3), |I;(¢)| > a|t — s|® > «ad”. Hence,

= Li(t)v; dt>/ ;i dt
/OD olazf Z| (0
>a5“2/ bl o |UH1—Z/ o, (1)) it

> ad”([|vfly — 2/\5),

where A is sum of the maximum of the number of zeros of [; over all j € {1,...m}
(notice that Assumption (A3) implies A < mT/27 + m). If ||v||; > 4A\ then we
choose 6 := 6 to get

s

$(v) =

and since ||v||1 < T)|v|lcc = T we have that ¢(u) > O“Sk [lo]|5+1. If, on the other
hand, ||v]|; < 4\d then we choose § := % < d to get

5 vl

[0
¢(v) = WHU”?H'

Hence choosing ¢ := min{zaTiz, szery= | We obtain that
$(v) = cllofli™
Q.E.D.
The following theorem establishes a property of the mapping F' associated

with system (PMP), which is a somewhat stronger form of the well known prop-
erty of metric sub-regularity, [2, Section 3H]. It extends [1, Theorem 8] in several



directions: Assumption (A3) is weaker than the corresponding assumption there,
the norms are different, and the function g is not necessarily quadratic and con-
vex.

Theorem 1. Let (Z,p,4) be a solution of (PMP) such that (A1)-(A3) are ful-
filled. Then for any b > 0 there exists ¢ > 0 such that for any y € Y with
llyll < b, there exists a triple (x,p,u) € X solving y € F(x,p,u), and any such
triple satisfies )

||($7p7 ’LL) - (i'vﬁa {L)HX < C”yHE

Proof. Since the inclusion y € F(z,p,u) represents a system of necessary
optimality conditions of a problem of the form of (P) with appropriate, bounded
in L', perturbations defined by y (a simple and well known fact), the evident
existence of an optimal solution of this perturbed version of (P) implies existence
of a solution (z,p,u) of the inclusion y € F(x,p,u).

Now let b > 0 be arbitrarily chosen and let (x,p,u) be a solution of y €
F(z,p,u), where y = (¢, 7, p,v) € Y and ||y|| < b. The following notations will
be used. As before, 6(t) := B(t)"p(t) + S(t)"£(t), while o(t) := B(t) "p(t) +
S(t)Tz(t) — p(t). Furthermore, we denote Ax := z(t) — &(t), Ap = p(t) — p(t),
Au = u(t) — a(t), Ao := o(t) — 6(t), and skip the argument ¢ whenever clear.

Integrating by parts, we have

/ (Ap, Az) dt = (Ap(T), Az(T)) — / (Ap, Az) dt.
0 0

Substituting here the expressions for Az and Ap resulting from the inclusions
y € F(x,p,u) and 0 € F(&,p, ) in view of (3), we obtain that

T
/ (=ATAp — WAz — SAu + 7, Az) dt
0

T
— (Vg(a(T)) = Vg(#(T)) + v, A(T)) — /O (Ap, ADx + BAu +€) dt.

Rearranging the terms in this equality and using (A2) we get

T

/O ((Ap, BAu) + (SAu, Az)) dt + /0 ((r, Az) + (€, Ap)) dt — (v, Ax(T))
T
= (Vyg(x(T)) — Vg(z(T)), Ax(T)) —I—/O (W Az, Az) + 2(S Au, Az)) dt > 0.

Using this inequality and the definitions of the functions ¢ and 6 we obtain

T T
/ (Ao, Au) dt = / (BT Ap + ST Az — p, Au) dt >
0 0

> / (—{m, Ax) — (€, Ap) — {p, Aw) dt + (v, Ax(T)).  (6)



The third component of the inclusion y € F(z,p,u) reads as —o(t) € Ny (u(t)),
which implies (—o(t), @(t) — u(t)) < 0. Then

—/OT(AU,Au>dt:/OT[—(U,Au>+<6, Au>]dt2/0T(&, Au) dt.

From here, using that —;(t) € Ni_1 (@;(t)), hence G;(t) Au;(t) > 0 for each
j, Lemma 1 implies that

T T m
7/ (Ao, Au) dtz/ > 165 Aujldt > e Aul|FH,
0 0 =1

where the constant ¢; is independent of y and (x,p,u). Then using (6) and the
Holder inequality we obtain

7l 1Az ]|oo + (1]l | APllos + (2] [A2(T)| + [Ipllos [|Aull > e AullfT (7)
Using Assumption (A1) and the Cauchy formula for Az and Ap we get
[Az]|oc < ca([I€]]x + [[Aullr) (8)

and
[Aplloo < es(I€lln + [I7llx + [[Aullr + |v]) (9)

for some constants co and ¢z that are independent of y and (z,p, u). Therefore,
using (7) we obtain that

(lyl® + Iyl Aully) > eaf| Aullf™ (10)

for some constant ¢4, also independent of y and (x, p, u).
Now we distinguish two cases. First, if ||| Ay|| < ||u||; then

2llyllllAully > eall AullF*,

which implies

9 1/k
jau < (21) - (1)
¢y
Otherwise, if || Aull; < [ly|]| < b then
1Ay < [yl lyl D7 < Dy (12)

Inequality (11) and (12) imply that for any b > 0 there exists ¢5 > 0 such that
for any and ||y|| < b,
[Aully < esllyll*/"

Then the claim of the theorem follows with a suitable constant ¢ from the above
estimate, (8) and (9). Q.E.D.

We mention that the property established in Theorem 1 is stronger than
metric sub-regularity (as defined e.g. in [2, Section 3H]) in that it is global with
respect to the solution (z,p,u) € X, and also with respect to the size b of the
“disturbance” y, although the constant ¢ in the theorem may depend on b.



4 Bi-metric regularity

We begin this section by introducing appropriate modifications of the spaces X
and Y defined in Section 2. First, we consider the set & C L*°([0,T],R™) of
admissible controls (that is, the set of all measurable functions u : [0,7] — U)
as a metric space with the metric

d* (u1,ug) = meas {t € [0,T] : ui(t) # ua(t)},
in L*°([0,T],R™), where “meas” stands for the Lebesgue measure in [0, 7). This
metric is shift-invariant and we shall shorten d# (uy,us) = d#(u; — uz,0) =:

d# (uy — ug). Moreover, U is a complete metric space with respect to d* (see [3,
Lemma 7.2]). Then the triple (x,p, u) is considered as an element of the space

X = Whi([0,T],R") x WhL([0,T],R") x U,

endowed with the (shift-invariant) metric

do(@,pyu) = [zl + Il + d% (u). (13)

Clearly Xisa complete metric space. We also define the space yc Y as
Y= L=([0,T],R") x L=([0,T],R™) x W*([0,T],R™) x R"
with the usual norm of y = (¢, 7, p,v) € Y

1,7, p, )]~ = [l€lloe + NIl + [loll1,00 + [1]- (14)

The paper [6] introduces the notion of bi-metric regularity as a concept of reg-
ularity that is relevant to problems with bang-bang optimal controls. In the
particular context of the present paper the definition of bi-metric regularity of
the set-valued mapping F: X = Y (see (3)) reads, in a somewhat more general
form, as follows.

Definition 1. The map F : X = Y _is strongly bi-metrically regular relative to
(disturbance space) Y C Y at 2 € X for 0 € Y if (£,0) € graph(F') and there
exist numbers ¢ > 0, B > 0 and a > 0 such that the map Bj}(O;B) Sy
F~'(y) N By(2;a) is single-valued and

d(F~'(y )N Bg(%;a), F~'(y) N By(2a)) <s<lly’ —yl| (15)

for all 2 y € Bj;(O; B). Here B3(%;a) is the ball of radius a centered at 2 in the
space X, and By;(0; B) is the ball of radius B (in the norm || - ||~) centered at
0el.



The following theorem extends the result for bi-metric regularity of F' ob-
tained in [6] for Mayer’s problems for linear systems to the present Bolza prob-
lem. For that we need the following strengthened forms of assumptions (A1) and

(A2).

Assumption (A1’). The functions A, W and d are Lipschitz continuous, B and S
have first order Lipschitz derivatives. The matrices W (¢) and ST (t) B(t) are sym-
metric for every t € [0, T]. The function g is differentiable with locally Lipschitz
derivative.

Assumption (A2’). The function J is convex on the set of admissible pairs (x, u).

Theorem 2 (Bi-metric regularity). Let Assumptions (A1) and (A2’) be ful-
filled. Let (&,p,0) be a solution to (PMP) such that (A8) is fulfilled with k = 1.

Then the mapping F : X = Y introduced in (3) is strongly bi-metrically regular
(relative to Y C V) at (&,p,0) € X for0 e .

The proof of this theorem is too long to be placed here, therefore it will
be presented as a part of a full size paper. This also applies to applications of
Theorem 1 and Theorem 2 in qualitative analysis and error analysis of numerical
approximations in the spirit of [5].

We mention, that the strong bi-metric regularity for Mayer’s problems is
proved in [6] for a general polyhedral set U and also in the case £ > 1. Extension
of Theorem 2 to a general compact polyhedral U set is a matter of modification
of Assumption (A3) and technicalities that we avoid in this paper, while the case
k > 1 is still open and challenging for the Bolza problem.
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