
 
 
 
 
 
  
 
 

 
 
 
 
 

On the Regularity of Linear-Quadratic Optimal 
Control Problems with Bang-Bang Solutions 

 
Jakob Preininger, Teresa Scarinci, Vladimir M. Veliov 

 
 
 
 
 
 
 
 

Research Report 2017-04 
March 2017 

 
ISSN 2521-313X 

 
 
 
 
 
 
 
 
Operations Research and Control Systems 
Institute of Statistics and Mathematical Methods in Economics 
Vienna University of Technology 

Research Unit ORCOS 
Wiedner Hauptstraße 8 / E105-4  
1040 Vienna, Austria  
E-mail: orcos@tuwien.ac.at  

SWM 
ORCOS 

mailto:orcos@tuwien.ac.at


On the Regularity of Linear-Quadratic Optimal
Control Problems with Bang-Bang Solutions?

J. Preininger1, T. Scarinci2, V.M. Veliov3

1 Institute of Statistics and Mathematical Methods in Economics,
Vienna University of Technology, Austria, jakob.preininger@tuwien.ac.at

2 Department of Statistics and Operations Research, University of Vienna, Austria,
teresa.scarinci@univie.ac.at

3 Institute of Statistics and Mathematical Methods in Economics,
Vienna University of Technology, Austria, http://orcos.tuwien.ac.at/people/veliov/

Abstract. The paper investigates the stability of the solutions of linear-
quadratic optimal control problems with bang-bang controls in terms of
metric sub-regularity and bi-metric regularity. New sufficient conditions
for these properties are obtained, which strengthen the known condi-
tions for sub-regularity and extend the known conditions for bi-metric
regularity to Bolza-type problems.
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1 Introduction

In this paper we investigate the stability with respect to perturbations of the
solutions of the following optimal control problem:

minimize J(x, u)
subject to ẋ(t) = A(t)x(t) +B(t)u(t) + d(t), t ∈ [0, T ],

u(t) ∈ U := [−1, 1]m,
x(0) = x0,

(P)

where

J(x, u) := g(x(T )) +

∫ T

0

(
1

2
x(t)>W (t)x(t) + x(t)>S(t)u(t)

)
dt. (1)

Here, admissible controls are all measurable functions u : [0, T ]→ [−1, 1]m, while
x(t) ∈ Rn denotes the state of the system at time t ∈ [0, T ]. The initial state x0,
the final time T and the terminal function g : Rn → R are given, as well as the
matrices A(t),W (t) ∈ Rn×n, B(t), S(t) ∈ Rn×m and d(t) ∈ Rn, t ∈ [0, T ].
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The stability of the solutions of this problem is investigated within the gen-
eral framework of metric regularity (see e.g. [2, Section 3E]) of the associated
Pontryagin system of necessary optimality conditions.

The issue is challenging due to the linearity of the problem with respect to the
control, which may result in bang-bang solutions. Only a few results are known
in the literature that deal with the regularity of this problem, among which we
mention [4, 6, 1]. The paper [6] introduces the notion of bi-metric regularity as
an appropriate extension of the established notion of metric regularity, which
is more relevant to problems with discontinuous optimal controls. However, the
result in [6] applies to Mayer-type problems only, where the integral term in
the objective functional (1) is missing. The integral term brings a substantial
difference, due the presence of the state and the control in the adjoint equation.

In this paper we obtain a strengthened version of the Hölder sub-regularity
result obtained in [1, Theorem 8], which provides a basis for further investiga-
tions, including error analysis of approximation schemes. We also announce a
result about strong bi-metric regularity of the Pontryagin system of necessary
conditions associated with problem (P), extending [6] to Bolza problems with
bang-bang solutions.

2 Preliminaries

We begin with formulation of assumptions.

Assumption (A1). The matrix-functions A, B, W, S and d are Lipschitz con-
tinuous. The matrix W (t) is symmetric for every t ∈ [0, T ]. The function g is
differentiable with locally Lipschitz derivative.

Let (x̂, û) be a solution of problem (P), from now on fixed; a standard com-
pactness argument implies existence.

Assumption (A2). For every admissible pair (x, u) of (P) it holds that

〈∇g(x(T ))−∇g(x̂(T )), ∆x(T )〉+

∫ T

0

(〈W (t)∆x,∆x〉+ 2〈S(t)∆u,∆x〉)dt ≥ 0,

where ∆x := x(t)− x̂(t) and ∆u := u(t)− û(t), and 〈·, ·〉 is the scalar product.
By the Pontryagin maximum (here minimum) principle, there exists an abso-

lutely continuous function p̂ such that the triple (x̂, p̂, û) solves for a.e. t ∈ [0, T ]
the system

0 = ẋ(t)−A(t)x(t)−B(t)u(t)− d(t),
0 = ṗ(t) +A(t)>p(t) +W (t)x(t) + S(t)u(t),
0 ∈ B(t)>p(t) + S(t)>x(t) +NU (u(t)),
0 = p(T )−∇g(x(T )),

(PMP)

where NU (u) is the normal cone to U at u ∈ Rm:

NU (u) :=

{
∅ if u /∈ U
{l ∈ Rm : 〈l, v − u〉 ≤ 0 ∀v ∈ U} if u ∈ U.
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We recall that σ̂ := B>p̂+S>x̂ is the so-called switching function corresponding
to the triple (x̂, p̂, û). For every j ∈ {1, . . . ,m}, denote by σ̂j its j-th component.

The following assumption requires that the optimal control û is strictly bang-
bang, with a finite number of switching times, and that the switching function
exhibits a certain growth in a neighborhood of any zero. A similar assumption
is introduced in [4] in the case κ = 1 and in [7] for κ > 1.

Assumption (A3) There exist real numbers κ ≥ 1 and α, τ > 0 such that for
each j ∈ {1, . . . ,m} and s ∈ [0, T ] with σ̂j(s) = 0 it holds that

|σ̂j(t)| ≥ α|t− s|κ ∀t ∈ [s− τ, s+ τ ] ∩ [0, T ].

The Pontryagin minimum principle (PMP) can be recast as

0 ∈ F (x, p, u), (2)

where F : X ⇒ Y is a set-valued map defined as

F (x, p, u) :=


ẋ−Ax−Bu− d

ṗ+A>p+Wx+ Su
B>p+ S>x+NU (u)
p(T )−∇g(x(T ))

 . (3)

We will investigate the stability under perturbations of the solution of problem
(P) by studying the stability of the generalized equation y ∈ F (x, p, u) with
respect to a perturbation y. The mapping F is considered as acting in the space

X := W 1,1
x0

([0, T ],Rn)×W 1,1([0, T ],Rn)× L1([0, T ],Rm)

with values in the space

Y := L1([0, T ],Rn)× L1([0, T ],Rn)× L∞([0, T ],Rm)× Rn,

which restricts the set of considered selections of the mapping t 7→ NU (u(t))
to essentially bounded ones. Here W 1,1

x0
([0, T ],Rn) := {x ∈ W 1,1([0, T ],Rn) :

x(0) = x0}. The spaces X and Y are endowed with the usual norms for (x, p, u) ∈
X and (ξ, π, ρ, ν) ∈ Y:

‖(x, p, u)‖X := ‖x‖1,1 +‖p‖1,1 +‖u‖1, ‖(ξ, π, ρ, ν)‖ := ‖ξ‖1 +‖π‖1 +‖ρ‖∞+ |ν|.

3 Metric sub-regularity

We begin with an auxiliary result that is similar in spirit to [7, Lemma 1.3] (also
cf. [8, Theorem 2.1]) but is proved on slightly less restrictive assumptions.

Lemma 1. Let l : [0, T ] → Rm be a continuous function satisfying assump-
tion (A3) (with l at the place of σ̂). Then there exists a constant c > 0 such that
for any v ∈ L∞([0, T ],Rm) the following inequality holds:

‖v‖k∞
∫ T

0

m∑
j=1

|lj(t)vj(t)| dt ≥ c‖v‖κ+1
1 . (4)
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Proof. The claim of this lemma is trivial when v = 0. If v 6= 0 then due to
the homogeneity with respect to v of order κ + 1 of the two sides of (4), it is
enough to prove the lemma in the case ‖v‖∞ = 1, which will be assumed in the
remaining part of the proof. For any 0 < δ ≤ τ , we set

Ij(δ) :=
⋃

s∈[0,T ]: lj(s)=0

(s− δ, s+ δ) ∩ [0, T ], I(δ) :=
⋃

1≤j≤m

Ij(δ).

Since l is continuous and Assumption (A3) holds for lj , we have that

lmin := min
1≤j≤m

min
t∈[0,T ]\Ij(τ)

|lj(t)| > 0.

Now we choose δ̄ ∈ (0, τ) such that αδ̄κ < lmin. Then for all δ ∈ (0, δ̄) and
j ∈ {1, . . . ,m} we have

|lj(t)| ≥ αδκ ∀t ∈ [0, T ] \ I(δ). (5)

Indeed, if t 6∈ Ij(τ) then |lj(t)| ≥ lmin > αδ̄κ ≥ αδκ. If t ∈ Ij(τ) \ I(δ), then
t ∈ Ij(τ) \ Ij(δ). Thus there exists a zero s of lj such that δ ≤ |t − s| < τ .
According to Assumption (A3), |lj(t)| ≥ α|t− s|κ ≥ αδκ. Hence,

φ(v) :=

∫ T

0

m∑
j=1

|lj(t)vj(t)| dt ≥
∫

[0,T ]\I(δ)

m∑
j=1

|lj(t)vj(t)| dt

≥ αδκ
m∑
j=1

∫
[0,T ]\I(δ)

|vj(t)| dt ≥ αδκ
‖v‖1 − m∑

j=1

∫
I(δ)

|vj(t)| dt


≥ αδκ(‖v‖1 − 2λδ),

where λ is sum of the maximum of the number of zeros of lj over all j ∈ {1, . . .m}
(notice that Assumption (A3) implies λ ≤ mT/2τ +m). If ‖v‖1 ≥ 4λδ̄ then we
choose δ := δ̄ to get

φ(v) ≥ αδ̄κ

2
‖v‖1

and since ‖v‖1 ≤ T‖v‖∞ = T we have that φ(u) ≥ αδ̄κ

2Tk
‖v‖κ+1

1 . If, on the other

hand, ‖v‖1 ≤ 4λδ̄ then we choose δ := ‖v‖1
4λ ≤ δ̄ to get

φ(v) ≥ α

22κ+1λκ
‖v‖κ+1

1 .

Hence choosing c := min{αδ̄
κ

2Tκ ,
α

22κ+1λκ } we obtain that

φ(v) ≥ c‖v‖κ+1
1 .

Q.E.D.

The following theorem establishes a property of the mapping F associated
with system (PMP), which is a somewhat stronger form of the well known prop-
erty of metric sub-regularity, [2, Section 3H]. It extends [1, Theorem 8] in several
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directions: Assumption (A3) is weaker than the corresponding assumption there,
the norms are different, and the function g is not necessarily quadratic and con-
vex.

Theorem 1. Let (x̂, p̂, û) be a solution of (PMP) such that (A1)–(A3) are ful-
filled. Then for any b > 0 there exists c > 0 such that for any y ∈ Y with
‖y‖ ≤ b, there exists a triple (x, p, u) ∈ X solving y ∈ F (x, p, u), and any such
triple satisfies

‖(x, p, u)− (x̂, p̂, û)‖X ≤ c‖y‖
1
κ .

Proof. Since the inclusion y ∈ F (x, p, u) represents a system of necessary
optimality conditions of a problem of the form of (P) with appropriate, bounded
in L1, perturbations defined by y (a simple and well known fact), the evident
existence of an optimal solution of this perturbed version of (P) implies existence
of a solution (x, p, u) of the inclusion y ∈ F (x, p, u).

Now let b > 0 be arbitrarily chosen and let (x, p, u) be a solution of y ∈
F (x, p, u), where y = (ξ, π, ρ, ν) ∈ Y and ‖y‖ ≤ b. The following notations will
be used. As before, σ̂(t) := B(t)>p̂(t) + S(t)>x̂(t), while σ(t) := B(t)>p(t) +
S(t)>x(t) − ρ(t). Furthermore, we denote ∆x := x(t) − x̂(t), ∆p = p(t) − p̂(t),
∆u := u(t)− û(t), ∆σ := σ(t)− σ̂(t), and skip the argument t whenever clear.

Integrating by parts, we have∫ T

0

〈∆ṗ,∆x〉 dt = 〈∆p(T ), ∆x(T )〉 −
∫ T

0

〈∆p,∆ẋ〉 dt.

Substituting here the expressions for ∆x and ∆p resulting from the inclusions
y ∈ F (x, p, u) and 0 ∈ F (x̂, p̂, û) in view of (3), we obtain that∫ T

0

〈−A>∆p−W∆x− S∆u+ π,∆x〉 dt

= 〈∇g(x(T ))−∇g(x̂(T )) + ν,∆x(T )〉 −
∫ T

0

〈∆p,A∆x+B∆u+ ξ〉 dt.

Rearranging the terms in this equality and using (A2) we get∫ T

0

(〈∆p,B∆u〉+ 〈S∆u,∆x〉) dt+

∫ T

0

(〈π,∆x〉+ 〈ξ,∆p〉) dt− 〈ν,∆x(T )〉

= 〈∇g(x(T ))−∇g(x̂(T )), ∆x(T )〉+

∫ T

0

(〈W∆x,∆x〉+ 2〈S∆u,∆x〉) dt ≥ 0.

Using this inequality and the definitions of the functions σ and σ̂ we obtain∫ T

0

〈∆σ,∆u〉 dt =

∫ T

0

〈B>∆p+ S>∆x− ρ,∆u〉 dt ≥

≥
∫ T

0

(−〈π,∆x〉 − 〈ξ,∆p〉 − 〈ρ,∆u〉) dt+ 〈ν,∆x(T )〉. (6)
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The third component of the inclusion y ∈ F (x, p, u) reads as −σ(t) ∈ NU (u(t)),
which implies 〈−σ(t), û(t)− u(t)〉 ≤ 0. Then

−
∫ T

0

〈∆σ,∆u〉 dt =

∫ T

0

[−〈σ,∆u〉+ 〈σ̂, ∆u〉] dt ≥
∫ T

0

〈σ̂, ∆u〉 dt.

From here, using that −σ̂j(t) ∈ N[−1,1](ûj(t)), hence σ̂j(t)∆uj(t) ≥ 0 for each
j, Lemma 1 implies that

−
∫ T

0

〈∆σ,∆u〉 dt ≥
∫ T

0

m∑
j=1

|σ̂j ∆uj | dt ≥ c1‖∆u‖κ+1
1 ,

where the constant c1 is independent of y and (x, p, u). Then using (6) and the
Hölder inequality we obtain

‖π‖1 ‖∆x‖∞ + ‖ξ‖1 ‖∆p‖∞ + |ν| |∆x(T )|+ ‖ρ‖∞ ‖∆u‖1 ≥ c1‖∆u‖κ+1
1 . (7)

Using Assumption (A1) and the Cauchy formula for ∆x and ∆p we get

‖∆x‖∞ ≤ c2(‖ξ‖1 + ‖∆u‖1) (8)

and
‖∆p‖∞ ≤ c3(‖ξ‖1 + ‖π‖1 + ‖∆u‖1 + |ν|) (9)

for some constants c2 and c3 that are independent of y and (x, p, u). Therefore,
using (7) we obtain that

(‖y‖2 + ‖y‖‖∆u‖1) ≥ c4‖∆u‖κ+1
1 (10)

for some constant c4, also independent of y and (x, p, u).
Now we distinguish two cases. First, if ‖|∆y‖ ≤ ‖u‖1 then

2‖y‖‖∆u‖1 ≥ c4‖∆u‖κ+1
1 ,

which implies

‖∆u‖1 ≤
(

2

c4
‖y‖
)1/κ

. (11)

Otherwise, if ‖∆u‖1 ≤ ‖y‖ ≤ b then

‖∆u‖1 ≤ ‖y‖1/κ‖y‖(κ−1)/κ ≤ b(κ−1)/κ‖y‖1/κ. (12)

Inequality (11) and (12) imply that for any b > 0 there exists c5 > 0 such that
for any and ‖y‖ ≤ b,

‖∆u‖1 ≤ c5‖y‖1/κ.
Then the claim of the theorem follows with a suitable constant c from the above
estimate, (8) and (9). Q.E.D.

We mention that the property established in Theorem 1 is stronger than
metric sub-regularity (as defined e.g. in [2, Section 3H]) in that it is global with
respect to the solution (x, p, u) ∈ X , and also with respect to the size b of the
“disturbance” y, although the constant c in the theorem may depend on b.
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4 Bi-metric regularity

We begin this section by introducing appropriate modifications of the spaces X
and Y defined in Section 2. First, we consider the set U ⊂ L∞([0, T ],Rm) of
admissible controls (that is, the set of all measurable functions u : [0, T ] → U)
as a metric space with the metric

d#(u1, u2) = meas {t ∈ [0, T ] : u1(t) 6= u2(t)},

in L∞([0, T ],Rm), where “meas” stands for the Lebesgue measure in [0, T ]. This
metric is shift-invariant and we shall shorten d#(u1, u2) = d#(u1 − u2, 0) =:
d#(u1 − u2). Moreover, U is a complete metric space with respect to d# (see [3,
Lemma 7.2]). Then the triple (x, p, u) is considered as an element of the space

X̃ = W 1,1
x0

([0, T ],Rn)×W 1,1([0, T ],Rn)× U ,

endowed with the (shift-invariant) metric

d∼(x, p, u) = ‖x‖1,1 + ‖p‖1,1 + d#(u). (13)

Clearly X̃ is a complete metric space. We also define the space Ỹ ⊂ Y as

Ỹ := L∞([0, T ],Rn)× L∞([0, T ],Rn)×W 1,∞([0, T ],Rm)× Rn

with the usual norm of y = (ξ, π, ρ, ν) ∈ Ỹ:

‖(ξ, π, ρ, ν)‖∼ := ‖ξ‖∞ + ‖π‖∞ + ‖ρ‖1,∞ + |ν|. (14)

The paper [6] introduces the notion of bi-metric regularity as a concept of reg-
ularity that is relevant to problems with bang-bang optimal controls. In the
particular context of the present paper the definition of bi-metric regularity of
the set-valued mapping F : X̃ ⇒ Y (see (3)) reads, in a somewhat more general
form, as follows.

Definition 1. The map F : X̃ ⇒ Y is strongly bi-metrically regular relative to
(disturbance space) Ỹ ⊂ Y at ẑ ∈ X̃ for 0 ∈ Ỹ if (ẑ, 0) ∈ graph(F ) and there
exist numbers ς ≥ 0, β > 0 and a > 0 such that the map BỸ(0;β) 3 y 7→
F−1(y) ∩BX̃ (ẑ; a) is single-valued and

d∼(F−1(y′) ∩BX̃ (ẑ; a), F−1(y) ∩BX̃ (ẑ; a)) ≤ ς‖y′ − y‖ (15)

for all y, y′ ∈ BỸ(0;β). Here BX̃ (ẑ; a) is the ball of radius a centered at ẑ in the

space X̃ , and BỸ(0;β) is the ball of radius β (in the norm ‖ · ‖∼) centered at

0 ∈ Ỹ.
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The following theorem extends the result for bi-metric regularity of F ob-
tained in [6] for Mayer’s problems for linear systems to the present Bolza prob-
lem. For that we need the following strengthened forms of assumptions (A1) and
(A2).

Assumption (A1’). The functions A,W and d are Lipschitz continuous, B and S
have first order Lipschitz derivatives. The matrices W (t) and S>(t)B(t) are sym-
metric for every t ∈ [0, T ]. The function g is differentiable with locally Lipschitz
derivative.

Assumption (A2’). The function J is convex on the set of admissible pairs (x, u).

Theorem 2 (Bi-metric regularity). Let Assumptions (A1’) and (A2’) be ful-
filled. Let (x̂, p̂, û) be a solution to (PMP) such that (A3) is fulfilled with κ = 1.

Then the mapping F : X̃ ⇒ Y introduced in (3) is strongly bi-metrically regular

(relative to Ỹ ⊂ Y) at (x̂, p̂, û) ∈ X̃ for 0 ∈ Ỹ.

The proof of this theorem is too long to be placed here, therefore it will
be presented as a part of a full size paper. This also applies to applications of
Theorem 1 and Theorem 2 in qualitative analysis and error analysis of numerical
approximations in the spirit of [5].

We mention, that the strong bi-metric regularity for Mayer’s problems is
proved in [6] for a general polyhedral set U and also in the case κ > 1. Extension
of Theorem 2 to a general compact polyhedral U set is a matter of modification
of Assumption (A3) and technicalities that we avoid in this paper, while the case
κ > 1 is still open and challenging for the Bolza problem.
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