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Section 1

Sequential model-based optimization
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Expensive Black-Box Optimization

y = f (x) , f : X→ R (1)
x∗ = arg min

x∈X
f (x) (2)

I y , target value
I x ∈ X ⊂ Rd , domain
I f (x) function with considerably long

runtime
I Goal: Find optimum x∗
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Sequential model-based optimization

I Setting: Expensive black-box problem f : x → R = min!

I Classical problem: Computer simulation with a bunch of control
parameters and performance output; or algorithmic performance on
1 or more problem instances; we often optimize ML pipelines

I Idea: Let’s approximate f via regression!

Generic MBO Pseudo Code
I Create initial space filling design and evaluate with f

I In each iteration:
I Fit regression model on all evaluated points to

predict f̂ (x) and uncertainty ŝ(x)
I Propose point via infill criterion

EI(x) ↑ ⇐⇒ f̂ (x) ↓ ∧ ŝ(x) ↑

I Evaluate proposed point and add to design
I EGO proposes kriging (aka Gaussian Process) and EI

Jones 1998, Efficient Global Opt. of Exp. Black-Box Functions
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Latin Hypercube Designs

I Initial design to train first regression model
I Not too small, not too large
I LHS / maximin designs: Min dist between points is maximized
I But: Type of design usually has not the largest effect on MBO, and

unequal distances between points could even be beneficial
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Kriging and local uncertainty prediction
Model: Zero-mean GP Y (x) with const. trend and cov. kernel kθ(x1, x2).

I y = (y1, . . . , yn)T , K = (k(x i , x j))i,j=1,...,n
I k∗(x) = (k(x1, x), . . . , k(xn, x))T

I µ̂ = 1TK−1y/1TK−11 (BLUE)
I Prediction: f̂ (x) = E [Y (x)|Y (xi ) = yi , i = 1, . . . , n] =
µ̂+ kn(x)TK−1(y− µ̂1)

I Uncertainty: ŝ2(x) = Var [Y (x)|Y (xi ) = yi , i = 1, . . . , n] =

σ2 − kT
n (x)K−1kn(x) +

(1−1TK−1kT
n (x))

2

1TK−11
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Kriging / GP is a spatial model
I Correlation between outcomes (y1, y2) depends on dist of x1, x2

E.g. Gaussian covar kernel k(x1, x2) = exp(−||x1−x2||2σ )

I Useful smoothness assumption for optimization
I Posterior uncertainty at new x increases with dist to design points
I Allows to enforce exploration
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Infill Criteria: Expected Improvement

I Define improvement at x over best visited point with y = fmin as
random variable I (x) = |fmin − Y (x)|+

I For kriging Y (x) ∼ N(f̂ (x), ŝ2(x)) (given x = x)
I Now define EI (x) = E [I (x)|x = x ]

I Expectation is integral over normal density starting at fmin

I Alternative: Lower confidence bound (LCB) f̂ (x)− λŝ(x)

Result: EI (x) =
(
fmin − f̂ (x)

)
Φ
(

fmin−f̂ (x))
ŝ(x)

)
+ ŝ(x)φ

(
fmin−f̂ (x)

ŝ(x)

)
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Focussearch

I EI optimization is multimodal and not that simple
I But objective is now cheap to evaluate
I Many different algorithms exist, from gradient-based methods with

restarts to evolutionary algorithms
I We use an iterated, focusing random search coined “focus search”
I In each iteration a random search is performed
I We then shrink the constraints of the feasible region towards the

best point in the current iteration (focusing) and iterate, to enforce
local convergence

I Whole process is restarted a few times
I Works also for categorical and hierarchical params
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mlrMBO: Model-Based Optimization Toolbox

I Any regression from mlr
I Arbtritrary infill
I Single - or multi-crit
I Multi-point proposal
I Via parallelMap and

batchtools runs on
many parallel backends
and clusters

I Algorithm configuration
I Active research
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I mlr: https://github.com/mlr-org/mlr
I mlrMBO: https://github.com/mlr-org/mlrMBO
I mlrMBO Paper on arXiv (under review)

https://arxiv.org/abs/1703.03373
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Benchmark MBO on artificial test functions

I Comparison of mlrMBO on multiple different test functions
I Multimodal
I Smooth
I Fully numeric
I Well known

I We use GPs with
I LCB with λ = 1
I Focussearch
I 200 iterations
I 25 point initial design, created by LHS sampling

I Comparison with
I Random search
I CMAES
I other MBO implementations in R
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MBO GP vs. competitors in 5D
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Section 2

Parallel batch proposals
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Motivation for batch proposal

I Function evaluations expensive
I Often many cores available on a cluster
I Underlying f can in many cases not be easily parallelized
I Natural to consider batch proposal
I Parallel MBO: suggest q promising points to evaluate: x∗1, . . . , x∗q
I We need to balance exploration and exploitation
I Non-trivial to construct infill criterion for this
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Review of parallel MBO strategies

I Constant liar: (Ginsbourger et al., 2010)
I Fit kriging model based on real data and find x∗1 according to

EI-criterion.
I “Guess” f (x∗i−1), update the model and find x∗i , i = 2, ..., q
I Use fmin for “guessing”

I q-LCB: (Hutter et al., 2012)
I q times: sample λ from Exp(1) and optimize single LCB criterion
I x∗ = argminx∈X LCB(x) = argminx∈X f̂ (x)− λŝ(x) .
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Multiobjectivization and proposed idea

I Multiobjectivization
I Originates from multi-modal optimization
I Add distance to neighbors for current set as artificial objective
I Use multiobjective optimization
I Select by hypervolume or first objective or . . .

I Our approach
I Decouple f̂ (x) and ŝ(x) as objectives – instead of EI – to have

different exploration / exploitation trade-offs
I Consider distance measure as potential extra objective
I Run multiobjective EA to select q well-performing, diverse points
I Distance is possible alternative if no or bad ŝ(x) estimator
I Decoupling y(x), ŝ(x) potential alternative when EI derivation does

not hold for other model classes

Bischl, Wessing et al:MOI-MBO: Multiobjective infill for parallel
model-based optimization, LION 2014
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Experimental setup

Problem Instances
I All 24 test functions of the black-box optimization benchmark

(BBOB) noise-free test suite
I Dimensions d ∈ {5, 10}

Budget
I For every function 10 initial designs of size 5 · d
⇒ 10 statistical replications for each problem instance

I 40 · d function evaluations on top of the initial design
I Parallel optimization: batches of size q = 5

Visualization: Preference relation graph
I Each node represents an approach (mean rank in braces)
I Two nodes are connected with an edge if one approach (the upper)

is significantly better than the other (the lower) according to the
sign test

19 / 52



Result Graphs

 1 (6.7) 

 10 (6.2) 

 11 (13.1) 

 12 (7.4) 

 13 (13.2) 

 14 (7.1) 

 15 (8.3) 

 16 (7.5) 

 17 (15.3) 

 2 (8.0) 

 3 (5.9) 

 4 (9.5) 

 5 (9.1) 

 6 (9.8) 

 7 (10.3) 

 8 (7.1) 

 9 (8.6) 

 1 (6.0)  10 (5.6) 

 11 (13.3) 

 12 (7.3) 

 13 (14.1) 

 14 (6.4) 

 15 (9.2) 

 16 (6.8) 

 17 (15.9) 

 2 (8.6) 

 3 (4.5) 

 4 (10.1)  5 (9.7)  6 (10.0) 

 7 (11.2) 

 8 (6.3) 

 9 (8.0) 

01: ego
02: ego_ea_ei
03: ego_ea_mean
04: moi_ei.dist_nb_first
05: moi_ei.dist_nb_hv
06: moi_ei.dist_nn_first
07: moi_ei.dist_nn_hv
08: moi_mean.se.dist_nb_first
09: moi_mean.se.dist_nb_hv

10: moi_mean.se.dist_nn_first
11: moi_mean.se.dist_nn_hv
12: moi_mean.se_nn_first
13: moi_mean.se_nn_hv
14: par_cl
15: par_cl_ea
16: par_lcb
17: random_search

20 / 52



Section 3

Multicriteria SMBO
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Model-based multi-objective optimization

in

outB
la
ck
-B
ox

x1 x2 . . . xd

y1 y2

min
x∈X

f(x) = y = (y1, ..., ym) with f : Rd → Rm

(3)I y dominates ỹ if

∀i ∈ {1, ...,m} :yi ≤ ỹi (4)
and ∃i ∈ {1, ...,m} :yi < ỹi (5)

I Set of non-dominated solutions:

X ∗ := {x ∈ X|@x̃ ∈ X : f(x̃) dominates f(x)}

I Pareto set X ∗, Pareto front f(X ∗)
I Goal: Find X̂ ∗ of non-dominated

points that estimates the true set X ∗
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Model-based multi-objective optimization
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Taxonomy

Candidate 
selection

Candidate 
generation

Model fitting

Initial design
Latin 
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Sampling

Individual 
models for 

each objective

Model of
 scalarization

Scalarize 
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Single-obj. 
optimization of
(aggregating)
infill criterion

Multiple single-
obj. optim. of
(aggregating)
infill criterion

Multi-obj. 
optimization of 
infill criterion 

on each model

Select design 
point(s) with 

regard to 
infill criterion

Update
design

Arbitrary DOE 
(e. g. random, 
Sobol, grid)

Select design 
point(s) with 

regard to 
other criterion

Stopping 
decision

Decide 
termination
based on 

approximation

Decide 
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based on

 total budget

Return approximation

Horn, Wagner, Bischl et al:Model-based multi-objective optimization:
Taxonomy, multi-point proposal, toolbox and benchmark, EMO 2014
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Batch Proposal

I Most MBMO lack way to propose N > 1 points (batch evaluation)
I Batch evaluations are essential for distributed computing
I We integrated such mechanism(s) for arbitrary MBMO
I Replaced single phases of the taxonomy
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ParEGO

1. Scalarize objectives using the augmented Tchebycheff norm

max
i=1,...,d

[wi fi (x)] + ρ

d∑
i=1

wi fi (x)

with uniformly distributed weight vector w (
∑

wi = 1) and fit
surrogate model to the respective scalarization.

2. Single-objective optimization of EI (or LCB?)

Batch proposal: Increase the number and diversity of randomly
drawn weight vectors

I If N points are desired, cN (c > 1) weight vectors are considered
I Greedily reduce set of weight vectors by excluding one vector of the

pair with minimum distance
I Scalarizations implied by each weight vector are computed
I Fit and optimize models for each scalarization
I Optima of each model build the batch to be evaluated
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Animation of ParEGO
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SMS-EGO

I Individual models for each objective
I Single-objective optimization of aggregating infill criterion:

Calculate contribution of the confidence bound of representative
solution to the current front approximation

I Calculate LCB for each objective
I Measure contribution with regard to

the hypervolume indicator
I For ε-dominated (�ε) solutions, a

penalty
Ψ(x) = −1+

∏m
j=1

(
1 + (l(x)− y

(i)
j )
)

is added
(Actually not needed for Focussearch.) 0.0 0.2 0.4 0.6 0.8 1.0
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SMS-EGO: Batch proposal

Modification of phase candidate generation: Use simulated evaluations
for candidate generation

I The proposed point ~x∗ is not directly evaluated, but the LCB l(~x∗)
is added to the current approximation without refitting the model

I Repeat until N points for a batch evaluation have been found
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Approximative RBF-SVM Training Algorithms

SVM solver Description

Pegasos Stochastic Gradient Descent
BSGD Budgeted Stochastic Gradient Descent
LLSVM Low-rank kernel approximation + linear solver
LIBSVM “Exact” SMO solver
LASVM Online variant of SMO solver
LIBBVM/CVM Minimum Enclosing Ball (only squared hinge loss)
SVMperf Cutting Plane Algorithm

I What is the trade-off between training time and prediction error?
I Most solvers have 2 additional parameters on top of C and γ
I Optimizing 2 expensive objectives in a 4-dim parameter space.
I Replace grid search with more sophisticated PAREGO-algorithm.
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Approximative SVM Training Algorithms

I We expect: Every solver has a trade-off between training time and
prediction error: Given more time a solver (should) reach a better
solution.

I Our goal: Analyze this trade-off! Solve the multi-criteria
optimization problem with respect to the two objectives error and
training time by varying the parameters.

I The challenge: Optimizing 2 expensive objectives in a
4-dimensional parameter space.

I Our approach: Replace standard grid search with more
sophisticated PAREGO-algorithm.
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Approximative SVM Training Algorithms

The parameters (C , γ) of the SVM itself were optimized over 2[−15,15]

respectively. Every solver has further approximation parameters:

SVM solver Parameters Optimization Space

Pegasos #Epochs 2[0,7]

BGSD Budget size, #Epochs 2[4,11], 2[0,7]

LLSVM Matrix rank 2[4,11]

LIBSVM ε (Accuracy) 2[−13,−1]

LASVM ε (Accuracy), #Epochs 2[−13,−1], 2[0,7]

LIBBVM/CVM ε (Accuracy) 2[−19,−1]

SVMperf ε (Accuracy), #Cutting planes 2[−13,−1], 2[4,11]

Additional parameters set to default values.
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Datasets

data set # points # features class ratio sparsity

wXa 34 780 300 34.45 95.19 %
aXa 36 974 123 3.17 88.72 %
protein 42 153 357 1.16 71.46 %
mnist 70 000 780 0.96 80.76 %
vehicle 98 528 100 1.00 0 %
shuttle 101 500 9 0.27 0.23 %
spektren 175 090 22 0.80 0 %
ijcnn1 176 691 22 9.41 40.91 %
arthrosis 262 142 178 1.19 0.01 %
cod-rna 488 565 8 2.00 0.02 %
covtype 581 012 54 1.05 78 %
poker 1 025 010 10 1.00 0 %

Table: Overview of the data sets.
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Test error landscape (LIBSVM)
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All Pareto fronts for ijcnn1 dataset
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I 176 691 samples
22 features
9.41 class ratio

I Wee see:
LIBSVM: exact but slow
LIBBVM/CVM: good
front - speed increase with
small accuracy loss
SVMperf / LLSVM /
BSGD: can be really fast,
but higher accuracy loss
LASVM / Pegasos: less
exact and even slower as
LIBSVM
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Section 4

Interesting Challenges

35 / 52



Challenge: The correct surrogate?

I GPs are very much tailored to what we want to do, due to their
spatial structure in the kernel and the uncertainty estimator.

I But GPs are rather slow. And (fortunately) due to parallization (or
speed-up tricks like subsampling) we have more design points to
train on.

I Categorical features are also a problem in GPs (although methods
exist, usually by changing the kernel)

I Random Forests handle categorical features nicely, are much faster.
But they don’t rely on a spatial kernel and the uncertainty estimation
is much more heuristic / may not represent what we want.
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Challenge: Time Heterogeneity

I Complex configuration spaces across many algorithms results in
vastly different runtimes in design points.

I Actually just the RBF-SVM tuning can result in very different
runtimes.

I We don’t care how many points we evaluate, we care about total
walltime of the configuration.

I The option to subsample further complicates things.
I Parallelization further complicates things.
I Option: Estimate runtime as well with a surrogate, integrate it into

acquisition function.
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Section 5

ML Model Selection and
Hyperparameter Optimization
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Automatic Model Selection

Prior approaches:
I Looking for the silver bullet model
 Failure

I Exhaustive benchmarking / search
 Very expensive, often contradicting results

I Meta-Learning:
 Good meta-features are hard to construct
 IMHO: Gets more interesting when combined with SMBO

Goal for AutoML:
I Data dependent
I Automatic
I Include every relevant modeling decision
I Efficient
I Learn on the model-settings level!
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From Normal SMBO to Hyperarameter Tuning

I Objective function is resampled performance measure
I Parameter space θ ∈ Θ

might be discrete and dependent / hierarchical
I No derivative for f (·, θ), black-box
I Objective is stochastic / noisy
I Objective is expensive to evaluate
I In general we face a problem of algorithm configuration:
I  Usual approaches: racing or model-based / bayesian optimization
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From Normal SMBO to Hyperarameter Tuning

Black Box
Optimizer

Data Set

Learning Machine

Preprocessing

Model Fit

Postprocessing

Feature Filter

Train / Test Data

Resampling

Features Hyperparameters

Resampled Performace Function

Features Hyperparameters

Selected

defines
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Complex Parameter Space

Parameter Set

cl.weights learner

2[−7,...,7) randomForest L2 LogReg svm

mtry nodesize cost cost

kernel

radiallinear

γ

{0.1p, ..., 0.9p} {1, ..., 0.5n} 2[−15,15] 2[−15,15] 2[−15,15]
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From Normal SMBO to Hyperarameter Tuning

I Initial design: LHS principle can be extended, or just use random
I Focus search: Can be (easily) extended, as it is based on random

search. To zoom in for categorical parameters we randomly drop a
category for each param which is not present in the currently best
configuration.

I Few approaches for GPs with categorical params exist (usually with
new covar kernels), not very established

I Alternative: Random regression forest (mlrMBO, SMAC)
I Estimate uncertainty / confidence interval for mean response by

efficient bootstrap technique1, or jackknife, so we can define EI (x)
for the RF

I Dependent params in mlrMBO: Imputation:
I Many of the current techniques to handle these problems are (from

a theoretical standpoint) somewhat crude

1Sexton et al, “Standard errors for bagged and random forest estimators, 2009.”
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Hyperparameter Tuning

I Still common practice: grid seach
For a SVM it might look like:

I C ∈ (2−12, 2−10, 2−8, . . . , 28, 210, 212)
I γ ∈ (2−12, 2−10, 2−8, . . . , 28, 210, 212)
I Evaluate all 132 = 169 combinations C × γ

I Bad beacause:
I optimum might be "off the grid"
I lots of evaluations in bad areas
I lots of costy evaluations

I How bad?
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Hyperparameter Tuning

I Because of budget restrictions grid might even be smaller!
I Unpromising area quite big!
I Lots of costly evaluations!

With mlrMBO it is not hard to do it better!
More interesting applications to time-series regression and cost-sensitive
classification2

2Koch, Bischl et al:Tuning and evolution of support vector kernels, EI 2012
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Hyperparameter Tuning
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Hyperparameter Tuning
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HPOlib

I HPOlib is a set of standard benchmarks for hyperparameter
optimizer

I Allows comparison with
I Spearmint
I SMAC
I Hyperopt (TPE)

I Benchmarks:
I Numeric test functions (similar to the ones we’ve seen bevor)
I Numeric machine learning problems (lda, SVM, logistic regression)
I Deep neural networks and deep belief networks with 15 and 35

parameters.
I For benchmarks with discrete and dependent parameters (hpnnet,

hpdbnet) a random forest with standard error estimation is used.
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MBO: HPOlib
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Deep Learning Configuration Example

I Dataset: CIFAR-10 (60000 32x32 images with 3 color channels; 10
classes)

I Configuration of a deep neural network (mxnet)
I Size of parameter set: 30, including number of hidden layers,

activation functions, regularization, convolution layer setting, etc.
I Split: 2/3 training set, 1/6 test set, 1/6 validation set
I Time budget per tuning run: 4.5h (16200 sec)
I Surrogate: Random forest
I Acquisition: LCB with λ = 2
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Deep Learning Configuration Example
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Thanks! Any

comments or

questions?
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