Examining Exams Using Rasch Models and Assessment of Measurement Invariance

Achim Zeileis

https://eeecon.uibk.ac.at/~zeileis/
Overview

- Topics
 - Large-scale exams
 - Item response theory with Rasch model
 - Assessment of measurement invariance
- Mathematics 101 exam at Universität Innsbruck
 - Classical tests
 - Anchor methods
 - Score-based tests
 - Model-based recursive partitioning
 - Finite mixture models
- Discussion

Large-scale exams

Motivation:
- Statisticians often teach large lecture courses for other fields.
- Statistics, probability, or mathematics in curricula such as business and economics, social sciences, psychology, etc.
- At WU Wien and Universität Innsbruck: Some courses are attended by more than 1,000 students per semester.
- Several lecturers teach lectures and tutorials in parallel.

Typical exams:
- Multiple choice or single choice.
- Evaluated and graded automatically.
- Little further examination of results (if any).
Large-scale exams

Potential questions:

- Ability of students.
- Difficulty of exercises (or items).
- Differential item functioning (DIF).
- Unidimensionality.

At WU: Multiple-choice monitor by Ledermüller, Nettekoven, Weiler/Krakovsky.

Here:

- Rasch model for binary single-choice items.
- Assessment of measurement invariance vs. DIF.
IRT with Rasch model

Motivation: Item response theory (IRT) with Rasch model.
- Measure a single latent trait (here: ability in exam).
- Based on binary items y_{ij} (here: solved correctly vs. not).
- Align person’s ability θ_i ($i = 1, \ldots, n$) and item’s difficulty β_j ($j = 1, \ldots, m$) on the same scale.

Model:

$$
\pi_{ij} = \Pr(\text{person } i \text{ solves item } j) = \Pr(y_{ij} = 1)
$$

$$
\text{logit}(\pi_{ij}) = \theta_i - \beta_j
$$

- Interval scale with arbitrary zero point.
- Fix reference point by zero constraint (e.g., for β_1 or $\sum_j \beta_j$).
- Consistent estimation via conditional maximum likelihood.
- Sufficient statistics for θ_i: Sum of correct items for person i.
Assessment of measurement invariance

Crucial assumption: Measurement invariance (MI). Otherwise observed differences cannot be reliably attributed to the latent variable that the model purports to measure.

Parameter stability: In parametric models, the MI assumption corresponds to stability of parameters across all possible subgroups.

Inference: The typical approach for assessing MI is

- to split the data into reference and focal groups,
- assess the stability of selected parameters (all or only a subset) across these groups
- by means of standard tests: likelihood ratio (LR), Wald, or Lagrange multiplier (LM or score) tests.
Assessment of measurement invariance

Problems:

- Subgroups have to be formed in advance.
- Continuous variables are often categorized into groups in an ad hoc way (e.g., splitting at the median).
- In ordinal variables the category ordering is often not exploited – assessing only if at least one group differs from the others.
- When likelihood ratio or Wald tests are employed, the model has to be fitted to each subgroup which can become numerically challenging and computationally intensive.

Conceivable solutions:

- Score-based tests “along” numerical/ordinal/categorical covariates.
- Recursive partitioning to capture covariate interactions.
- Finite mixture models without covariates.
Mathematics 101 at Universität Innsbruck

Course: Mathematics for first-year business and economics students at Universität Innsbruck.

Format: Biweekly online tests (conducted in OpenOLAT) and two written exams for about 1,000 students per semester.

Here: Individual results from an end-term exam.

- 729 students (out of 941 registered).
- 13 single-choice items with five answer alternatives, covering the basics of analysis, linear algebra, financial mathematics.
- Two groups with partially different item pools (on the same topics). Individual versions of items generated via *exams* in R.
- Correctly solved items yield 100% of associated points. Items without correct solution can either be unanswered (0%) or with an incorrect answer (−25%). Considered as binary here.
Mathematics 101 at Universität Innsbruck

Variables: In MathExam14W.
- solved: Item response matrix (1/0 coding).
- group: Factor for group.
- tests: Number of previous online exercises solved (out of 26).
- nsolved: Number of exam items solved (out of 13).
- gender, study, attempt, semester, ...

In R: Load package/data and exclude extreme scorers.

R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)
Mathematics 101 at Universität Innsbruck

R> plot(mex$solved)
Rasch model

R> mr <- raschmodel(mex$solved)
R> plot(mr, type = "profile")
Rasch model

R> plot(mr, type = "piplot")

Person–Item Plot

Latent trait

lagrange
implicit
hesse
equations
planning
matrix
payflow
annuity
interest
integral
elasticity
deriv
quad

Latent trait
Classical tests

Of interest: Difference between the two exam groups.

Tests: All χ^2_{12} with 95% critical value 21.0.
- LR: 265.0.
- Wald: 249.4.

Question: Which items “cause” this DIF?

Answer: Use item-wise Wald tests.

$$ t_j = \frac{\hat{\beta}_{\text{ref},j} - \hat{\beta}_{\text{foc},j}}{\sqrt{\text{Var}(\hat{\beta}_{\text{ref},j}) + \text{Var}(\hat{\beta}_{\text{foc},j})}}. $$

But: “Anchor” items are needed to align the scales from the two groups.
Classical tests

R> plot(mr1, parg = list(ref = 1), ...)
R> plot(mr2, parg = list(ref = 1), ...)
Classical tests

R> plot(mr1, parg = list(ref = 10), ...)
R> plot(mr2, parg = list(ref = 10), ...)
Anchor methods

Goal: Select DIF-free anchor items to be able to identify items truly associated with DIF (“chicken or the egg” dilemma).

Approaches: Classes of anchors with different characteristics.
- *All other:* All items – except the item currently studied.
- *Constant:* Predefined number of items (e.g., 1 or 4).
- *Forward:* Iteratively add items.

Selection: Rank candidate items based on single-anchor DIF tests.
- Number of significant tests.
- Mean test statistic or *p*-value.
- Mean test statistic or *p*-value beyond median threshold.

Here: Constant anchor class with 4 items and mean *p*-value threshold selection. Single-step adjustment of final inference for multiple testing.
Anchor methods

R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests)

Anchor items: 10, 4, 12, 5
Score-based tests

Questions:

- Is there further DIF in the two exam groups?
- Is there DIF w.r.t. mathematics ability, e.g., for tests \((0, \ldots, 13, \ldots, 26)\) or nsolved \((1, \ldots, 12)\)?

Problem: Numeric variables without predefined subgroups. Hence, many possible patterns of deviation from parameter stability.

Idea: Generalize the LM test.

- Model only has to be fitted once under the MI assumption to the full data set.
- Capture model deviations along a variable \(v\) that is suspected to cause DIF and violate MI.
Score-based tests

Hypotheses: Under MI parameters β do not depend any variable v_i. Hence assess for $i = 1, \ldots, n$

\[
H_0 : \beta_i = \beta, \\
H_1 : \beta_i = \beta(v_i).
\]

Building block: Casewise model deviations.
- Derivative of the casewise log-likelihood w.r.t. the parameters.
- General measure of model deviation (similar to residuals).

\[
s(\beta; y_i) = \left(\frac{\partial \ell(\beta; y_i)}{\partial \beta_2}, \ldots, \frac{\partial \ell(\beta; y_i)}{\partial \beta_m} \right)^\top
\]
Score-based tests

Special case: Two subgroups resulting from one split point \(\nu \).

\[
H_1^* : \beta_i = \begin{cases}
\beta^{(A)} & \text{if } \nu_i \leq \nu \\
\beta^{(B)} & \text{if } \nu_i > \nu
\end{cases}
\]

Tests: LR/Wald/LM tests can be easily employed if pattern \(\beta(v_i) \) is known, specifically for \(H_1^* \) with fixed split point \(\nu \).

For unknown split point: Compute LR/Wald/LM tests for each possible split point \(\nu_1 \leq \nu_2 \leq \cdots \leq \nu_n \) and reject if the maximum statistic is large.

Caution: By maximally selecting the test statistic different critical values are required (not from a \(\chi^2 \) distribution)!

More generally: Consider a class of tests that assesses whether the model “deviations” \(s(\hat{\beta}; y_i) \) depend on \(\nu_i \).
Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of the scores ordered by the variable \(v\).

\[
B(t; \hat{\beta}) = I^{-1/2} n^{-1/2} \sum_{i=1}^{\lfloor n \cdot t \rfloor} s(\hat{\beta}; y(i)) \quad (0 \leq t \leq 1).
\]

- \(\hat{I}\) – estimate of the information matrix.
- \(t\) – proportion of data ordered by \(v\).
- \(\lfloor n \cdot t \rfloor\) – integer part of \(n \cdot t\).
- \(x(i)\) – observation with the \(i\)-th smallest value of the variable \(v\).

Functional central limit theorem: Under \(H_0\) convergence to a (continuous) Brownian bridge process \(B(\cdot; \hat{\beta}) \xrightarrow{d} B^0(\cdot)\), from which critical values can be obtained – either analytically or by simulation.
Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix \(B(\hat{\beta})_{ij} \) with rows \(i = 1, \ldots, n \) (observations) and columns \(j = 1, \ldots, m - 1 \) (parameters). This can be aggregated to scalar test statistics along continuous the variable \(v \).

- \(DM = \max_{i=1,\ldots,n} \max_{j=1,\ldots,m-1} \left| B(\hat{\beta})_{ij} \right| \)
- \(CvM = n^{-1} \sum_{i=1,\ldots,n} \sum_{j=1,\ldots,m-1} B(\hat{\beta})_{ij}^2 \)
- \(\max LM = \max_{i=i',\ldots,\bar{i}} \left\{ \frac{i}{n} \left(1 - \frac{i}{n} \right) \right\}^{-1} \sum_{j=1,\ldots,m-1} B(\hat{\beta})_{ij}^2 \).

Critical values: Analytically for \(DM \). Otherwise by direct simulation or further refined simulation techniques.
Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables \(v \) with \(c \) categories.

\[
WDM_o = \max_{i \in \{i_1, \ldots, i_{c-1}\}} \left\{ \frac{i}{n} \left(1 - \frac{i}{n} \right) \right\}^{-1/2} \max_{j=1,\ldots,m-1} |B(\hat{\beta})_{ij}|,
\]

\[
\max LM_o = \max_{i \in \{i_1, \ldots, i_{c-1}\}} \left\{ \frac{i}{n} \left(1 - \frac{i}{n} \right) \right\}^{-1} \sum_{j=1,\ldots,m-1} B(\hat{\beta})_{ij}^2,
\]

where \(i_1, \ldots, i_{c-1} \) are the numbers of observations in each category.

Critical values: For \(WDM_o \) directly from a multivariate normal distribution. For \(\max LM_o \) via simulation.
Score-based tests: Categorical variables

Test statistic: Aggregation within the c (unordered) categories of v.

$$LM_{uo} = \sum_{\ell=1,...,c} \sum_{j=1,...,m-1} \left(B(\hat{\beta})_{\ell j} - B(\hat{\beta})_{\ell-1 j} \right)^2,$$

Critical values: From a χ^2 distribution (as usual).

Asymptotically equivalent: LR test.
Score-based tests

Here: Test for DIF along tests in group 1 with max LM test (continuous vs. ordinal).

Result: Clear evidence for DIF. Students that performed poorly in the previous online tests have a different item profile.

```r
R> library("strucchange")
R> mex1 <- subset(mex, group == 1)

R> sctest(mr1, order.by = mex1$tests, vcov = "info", +   functional = "maxLM")

M-fluctuation test
data:  mr1
f(efp) = 40.365, p-value = 0.002508

R> sctest(mr1, order.by = mex1$tests, vcov = "info", +   functional = "maxLMo")

M-fluctuation test
data:  mr1
f(efp) = 35.543, p-value = 0.003961
```
Score-based tests

M–fluctuation test

Empirical fluctuation process
Score-based tests

M-fluctuation test

Empirical fluctuation process

M-fluctuation test

tests (ordinal)
Score-based tests

M-fluctuation test

Empirical fluctuation process

LR
LM

0 10 20 30 40

<= 14 15 16 17 18 19 20 21 22 23 24

Tests (ordinal)
Recursive partitioning

Idea: Apply tests recursively.
- Assess all covariates of interest using Bonferroni adjustment.
- Split w.r.t. covariate with smallest significant p-value.
- Select split point by maximizing the log-likelihood.
- Continue until there are no more significant instabilities (or the sample is too small).

Here: Treat numeric variables with few levels as ordinal. Simulate p-values for max LM_0 test.

```r
R> library("psychotree")
R> mex$tests <- ordered(mex$tests)
R> mex$nsolved <- ordered(mex$nsolved)
R> mex$attempt <- ordered(mex$attempt)
R> mex$semester <- ordered(mex$semester)
R> mrt <- raschtree(solved ~ group + tests + nsolved + gender +
+    attempt + study + semester, data = mex,
+    vcov = "info", minsize = 50, ordinal = "L2", nrep = 1e5)
```
Recursive partitioning

group

\[p < 0.001 \]

1

2

\[p = 0.031 \]

\[\leq 16 \quad > 16 \]

Node 3 (n = 81)

●

●

●

●

●

●

Node 4 (n = 227)

●

●

●

●

●

●

Node 6 (n = 65)

●

●

●

●

●

●

Node 7 (n = 315)

●

●

●

●

●

●

[Various graphs and data points are illustrated, showing different splits and node counts.]
Finite mixture models

Question: How to detect DIF without covariate information (e.g., in group 1 without tests)?

Answer: Finite mixture of Rasch models with \(k = 1, \ldots, K \) components. Maximize finite mixture likelihood via EM w.r.t. component-specific weights \(\omega_k \) and item difficulties \(\beta^{(k)} \).

\[
\max_{\omega, \beta^{(1)}, \ldots, \beta^{(K)}} \prod_{i=1}^{n} \sum_{k=1}^{K} \omega_k f(y_i; \beta^{(k)})
\]

Possible extensions:
- Model selection for the number of components \(K \).
- Concomitant variables for the mixture weights \(\omega \).
- Component-specific distributions for the raw scores.
Finite mixture models

Here: 2-component mixture with component-specific raw score distribution (mean-variance specification).

```
R> library("psychomix")
R> mrm <- raschmix(mex1$solved, k = 2, scores = "meanvar")
R> plot(mrm)
```

Result: The “soft” classification found by the mixture model is rather similar to the “hard” split by the tree.

```
R> print(mrm)

Call:
raschmix(formula = mex1$solved, k = 2, scores = "meanvar")

Cluster sizes:
    1  2
  73 235

convergence after 79 iterations
```
Finite mixture models

Centered item difficulty parameters

-1 0 1

Comp. 1

Comp. 2

Items
quad deriv elasticity integral interest annuity payflow matrix planning equations hesse implicit lagrange

Centered item difficulty parameters

comp. 1
comp. 2

Items

-1 0 1
Discussion

Summary:

- Flexible toolbox for assessing measurement invariance in parametric psychometric models.
- Detecting violations along one (tests), none (mixture), or many (tree) covariates.
- Exploit different scales of the covariates: continuous, ordinal, or categorical.

Here: Probably quickest overview of DIF patterns with Rasch tree.

At UIBK: Resulting “policy” implications.

- Avoid exam groups if at all possible.
- Seemingly equivalent items can function very differently if students focus their learning on well-known parts of the item pool.
Discussion

R packages:

- *strucchange* provides an object-oriented implementation of the score-based parameter instability tests.
- Model-based recursive partitioning available in *partykit*.
- Psychometric models that cooperate with *strucchange* and *partykit* are provided in *psychotools*: IRT models (Rasch, partial credit, rating scale), Bradley-Terry, multinomial processing trees.
- Psychometric trees in *psychotree*.
- Psychometric mixture models in *psychomix* (based on *flexmix* plus *psychotools*).
Exams infrastructure: R package *exams*.
- R for random data generation and computations.
- \LaTeX{} or Markdown for text formatting
- Answer types: Single/multiple choice, numeric, string, cloze.

Output:
- PDF – either fully customizable or standardized with automatic scanning/evaluation.
- HTML – either fully customizable or embedded into any of the standard formats below.
- Moodle XML.
- QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
- ARSnova, Blackboard, TCExam, WU-Prüfungsserver, ...
Discussion

Question

In Figure 3, the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Comment: The statements are either correct or clearly wrong.)

- [] a. The location of both distributions is about the same.
- [] b. Both distributions contain no outliers.
- [] c. The spread in sample A is clearly bigger than in B.
- [] d. The skewness of both samples is similar.
- [] e. Distribution A is about symmetric.

Figure 3: Parallel boxplots.
In the following figure, the distributions of a variable given by two samples (A and B) are represented by parallel boxplots. Which of the following statements are correct? (Note: The statements are either correct or clearly wrong.)

- The location of both distributions is about the same.
References

