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Large-scale exams

Motivation:

Statisticians often teach large lecture courses for other fields.

Statistics, probability, or mathematics in curricula such as business
and economics, social sciences, psychology, etc.

At WU Wien and Universität Innsbruck: Some courses are
attended by more than 1,000 students per semester.

Several lecturers teach lectures and tutorials in parallel.

Typical exams:

Multiple choice or single choice.

Evaluated and graded automatically.

Little further examination of results (if any).



Large-scale exams

Potential questions:

Ability of students.

Difficulty of exercises (or items).

Differential item functioning (DIF).

Unidimensionality.

At WU: Multiple-choice monitor by Ledermüller, Nettekoven,
Weiler/Krakovsky.

Here:

Rasch model for binary single-choice items.

Assessment of measurement invariance vs. DIF.



IRT with Rasch model

Motivation: Item response theory (IRT) with Rasch model.

Measure a single latent trait (here: ability in exam).

Based on binary items yij (here: solved correctly vs. not).

Align person’s ability θi (i = 1, . . . , n) and item’s difficulty βj

(j = 1, . . . ,m) on the same scale.

Model:

πij = Pr(person i solves item j) = Pr(yij = 1)

logit(πij) = θi − βj

Interval scale with arbitrary zero point.

Fix reference point by zero constraint (e.g., for β1 or
∑

j βj ).

Consistent estimation via conditional maximum likelihood.

Sufficient statistics for θi : Sum of correct items for person i .



Assessment of measurement invariance

Crucial assumption: Measurement invariance (MI). Otherwise
observed differences cannot be reliably attributed to the latent variable
that the model purports to measure.

Parameter stability: In parametric models, the MI assumption
corresponds to stability of parameters across all possible subgroups.

Inference: The typical approach for assessing MI is

to split the data into reference and focal groups,

assess the stability of selected parameters (all or only a subset)
across these groups

by means of standard tests: likelihood ratio (LR), Wald, or
Lagrange multiplier (LM or score) tests.



Assessment of measurement invariance

Problems:

Subgroups have to be formed in advance.

Continuous variables are often categorized into groups in an ad
hoc way (e.g., splitting at the median).

In ordinal variables the category ordering is often not exploited –
assessing only if at least one group differs from the others.

When likelihood ratio or Wald tests are employed, the model has to
be fitted to each subgroup which can become numerically
challenging and computationally intensive.

Conceivable solutions:

Score-based tests “along” numerical/ordinal/categorical covariates.

Recursive partitioning to capture covariate interactions.

Finite mixture models without covariates.



Mathematics 101 at Universität Innsbruck

Course: Mathematics for first-year business and economics students at
Universität Innsbruck.

Format: Biweekly online tests (conducted in OpenOLAT) and two
written exams for about 1,000 students per semester.

Here: Individual results from an end-term exam.

729 students (out of 941 registered).

13 single-choice items with five answer alternatives, covering the
basics of analysis, linear algebra, financial mathematics.

Two groups with partially different item pools (on the same topics).
Individual versions of items generated via exams in R.

Correctly solved items yield 100% of associated points. Items
without correct solution can either be unanswered (0%) or with an
incorrect answer (−25%). Considered as binary here.



Mathematics 101 at Universität Innsbruck

Variables: In MathExam14W.

solved: Item response matrix (1/0 coding).

group: Factor for group.

tests: Number of previous online exercises solved (out of 26).

nsolved: Number of exam items solved (out of 13).

gender, study, attempt, semester, . . .

In R: Load package/data and exclude extreme scorers.

R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)



Mathematics 101 at Universität Innsbruck

R> plot(mex$solved)
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Rasch model

R> mr <- raschmodel(mex$solved)
R> plot(mr, type = "profile")
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Rasch model

R> plot(mr, type = "piplot")
Person−Item Plot
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Classical tests

Of interest: Difference between the two exam groups.

Tests: All χ2
12 with 95% critical value 21.0.

LR: 265.0.

Wald: 249.4.

LM/Score: 260.8.

Question: Which items “cause” this DIF?

Answer: Use item-wise Wald tests.

tj =
β̂ ref

j − β̂ foc
j√

V̂ar(β̂ ref)j,j + V̂ar(β̂ foc)j,j

.

But: “Anchor” items are needed to align the scales from the two groups.



Classical tests

R> plot(mr1, parg = list(ref = 1), ...)
R> plot(mr2, parg = list(ref = 1), ...)
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Classical tests

R> plot(mr1, parg = list(ref = 10), ...)
R> plot(mr2, parg = list(ref = 10), ...)
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Anchor methods

Goal: Select DIF-free anchor items to be able to identify items truly
associated with DIF (“chicken or the egg” dilemma).

Approaches: Classes of anchors with different characteristics.

All other: All items – except the item currently studied.

Constant: Predefined number of items (e.g., 1 or 4).

Forward: Iteratively add items.

Selection: Rank candidate items based on single-anchor DIF tests.

Number of significant tests.

Mean test statistic or p-value.

Mean test statistic or p-value beyond median threshold.

Here: Constant anchor class with 4 items and mean p-value threshold
selection. Single-step adjustment of final inference for multiple testing.



Anchor methods

R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")
R> plot(ma$final_tests)

Anchor items: 10, 4, 12, 5
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Score-based tests

Questions:

Is there further DIF in the two exam groups?

Is there DIF w.r.t. mathematics ability, e.g., for tests
(0, . . . , 13, . . . , 26) or nsolved (1, . . . , 12)?

Problem: Numeric variables without predefined subgroups. Hence,
many possible patterns of deviation from parameter stability.

Idea: Generalize the LM test.

Model only has to be fitted once under the MI assumption to the
full data set.

Catpure model deviations along a variable v that is suspected to
cause DIF and violate MI.



Score-based tests

Hypotheses: Under MI parameters β do not depend any variable vi .
Hence assess for i = 1, . . . , n

H0 : βi = β,

H1 : βi = β(vi).

Building block: Casewise model deviations.

Derivative of the casewise log-likelihood w.r.t. the parameters.

General measure of model deviation (similar to residuals).

s(β; y i) =

(
∂`(β; y i)

∂β2
, . . . ,

∂`(β; y i)

∂βm

)>



Score-based tests

Special case: Two subgroups resulting from one split point ν.

H∗1 : βi =

{
β(A) if vi ≤ ν
β(B) if vi > ν

Tests: LR/Wald/LM tests can be easily employed if pattern β(vi) is
known, specifically for H∗1 with fixed split point ν.

For unknown split point: Compute LR/Wald/LM tests for each
possible split point v1 ≤ v2 ≤ · · · ≤ vn and reject if the maximum
statistic is large.

Caution: By maximally selecting the test statistic different critical
values are required (not from a χ2 distribution)!

More generally: Consider a class of tests that assesses whether the
model “deviations” s(β̂; y i) depend on vi .



Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of
the scores ordered by the variable v .

B(t; β̂) = Î
−1/2

n−1/2
bn·tc∑
i=1

s(β̂; y(i)) (0 ≤ t ≤ 1).

Î – estimate of the information matrix.

t – proportion of data ordered by v .

bn · tc – integer part of n · t .
x(i) – observation with the i-th smallest value of the variable v .

Functional central limit theorem: Under H0 convergence to a

(continuous) Brownian bridge process B(·; β̂) d→ B0(·), from which
critical values can be obtained – either analytically or by simulation.



Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix
B(β̂)ij with rows i = 1, . . . , n (observations) and columns
j = 1, . . . ,m − 1 (parameters). This can be aggregated to scalar test
statistics along continuous the variable v .

DM = max
i=1,...,n

max
j=1,...,m−1

|B(β̂)ij |

CvM = n−1
∑

i=1,...,n

∑
j=1,...,m−1

B(β̂)2
ij ,

max LM = max
i=i,...,ı

{
i
n

(
1− i

n

)}−1 ∑
j=1,...,m−1

B(β̂)2
ij .

Critical values: Analytically for DM. Otherwise by direct simulation or
further refined simulation techniques.



Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables v with c
categories.

WDMo = max
i∈{i1,...,ic−1}

{
i
n

(
1− i

n

)}−1/2

max
j=1,...,m−1

|B(β̂)ij |,

max LMo = max
i∈{i1,...,ic−1}

{
i
n

(
1− i

n

)}−1 ∑
j=1,...,m−1

B(β̂)2
ij ,

where i1, . . . , ic−1 are the numbers of observations in each category.

Critical values: For WDMo directly from a multivariate normal
distribution. For max LMo via simulation.



Score-based tests: Categorical variables

Test statistic: Aggregation within the c (unordered) categories of v .

LMuo =
∑

`=1,...,c

∑
j=1,...,m−1

(
B(β̂)i` j − B(β̂)i`−1 j

)2
,

Critical values: From a χ2 distribution (as usual).

Asymptotically equivalent: LR test.



Score-based tests

Here: Test for DIF along tests in group 1 with max LM test
(continuous vs. ordinal).

Result: Clear evidence for DIF. Students that performed poorly in the
previous online tests have a different item profile.

R> library("strucchange")
R> mex1 <- subset(mex, group == 1)

R> sctest(mr1, order.by = mex1$tests, vcov = "info",
+ functional = "maxLM")

M-fluctuation test
data: mr1
f(efp) = 40.365, p-value = 0.002508

R> sctest(mr1, order.by = mex1$tests, vcov = "info",
+ functional = "maxLMo")

M-fluctuation test
data: mr1
f(efp) = 35.543, p-value = 0.003961



Score-based tests
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Score-based tests

tests (ordinal)
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Score-based tests
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Recursive partitioning

Idea: Apply tests recursively.

Asess all covariates of interest using Bonferroni adjustment.

Split w.r.t. covariate with smallest significant p-value.

Select split point by maximizing the log-likelihood.

Continue until there are no more significant instabilities (or the
sample is too small).

Here: Treat numeric variables with few levels as ordinal. Simulate
p-values for max LMo test.

R> library("psychotree")
R> mex$tests <- ordered(mex$tests)
R> mex$nsolved <- ordered(mex$nsolved)
R> mex$attempt <- ordered(mex$attempt)
R> mex$semester <- ordered(mex$semester)
R> mrt <- raschtree(solved ~ group + tests + nsolved + gender +
+ attempt + study + semester, data = mex,
+ vcov = "info", minsize = 50, ordinal = "L2", nrep = 1e5)



Recursive partitioning
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Finite mixture models

Question: How to detect DIF without covariate information (e.g., in
group 1 without tests)?

Answer: Finite mixture of Rasch models with k = 1, . . . ,K
components. Maximize finite mixture likelihood via EM w.r.t.
component-specific weights ωk and item difficulties β(k).

max
ω,β(1),...,β(K )

n∏
i=1

K∑
k=1

ωk f (y i ;β
(k))

Possible extensions:

Model selection for the number of components K .

Concomitant variables for the mixture weights ω.

Component-specific distributions for the raw scores.



Finite mixture models

Here: 2-component mixture with component-specific raw score
distribution (mean-variance specification).

R> library("psychomix")
R> mrm <- raschmix(mex1$solved, k = 2, scores = "meanvar")
R> plot(mrm)

Result: The “soft” classification found by the mixture model is rather
similar to the “hard” split by the tree.

R> print(mrm)

Call:
raschmix(formula = mex1$solved, k = 2, scores = "meanvar")

Cluster sizes:
1 2
73 235

convergence after 79 iterations



Finite mixture models
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Discussion

Summary:

Flexible toolbox for assessing measurement invariance in
parametric psychometric models.

Detecting violations along one (tests), none (mixture), or many
(tree) covariates.

Exploit different scales of the covariates: continuous, ordinal, or
categorical.

Here: Probably quickest overview of DIF patterns with Rasch tree.

At UIBK: Resulting “policy” implications.

Avoid exam groups if at all possible.

Seemingly equivalent items can function very differently if students
focus their learning on well-known parts of the item pool.



Discussion

R packages:

strucchange provides an object-oriented implementation of the
score-based parameter instability tests.

Model-based recursive partitioning available in partykit.

Psychometric models that cooperate with strucchange and partykit
are provided in psychotools: IRT models (Rasch, partial credit,
rating scale), Bradley-Terry, multinomial processing trees.

Psychometric trees in psychotree.

Psychometric mixture models in psychomix (based on flexmix plus
psychotools).



Discussion

Exams infrastructure: R package exams.

R for random data generation and computations.

LATEX or Markdown for text formatting

Answer types: Single/multiple choice, numeric, string, cloze.

Output:

PDF – either fully customizable or standardized with automatic
scanning/evaluation.

HTML – either fully customizable or embedded into any of the
standard formats below.

Moodle XML.

QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.

ARSnova, Blackboard, TCExam, WU-Prüfungsserver, . . .



Discussion
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