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Overview
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e Large-scale exams

e ltem response theory with Rasch model

e Assessment of measurement invariance
@ Mathematics 101 exam at Universitat Innsbruck
Classical tests
@ Anchor methods
@ Score-based tests
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Model-based recursive partitioning
Finite mixture models

@ Discussion

Many collaborators: Hannah Frick, Bettina Grin, Kurt Hornik, Torsten
Hothorn, Basil Komboz, Julia Kopf, Friedrich Leisch, Edgar C. Merkle,
Carolin Strobl, Nikolaus Umlauf, Ting Wang, Florian Wickelmaier.



Large-scale exams

Motivation:
@ Statisticians often teach large lecture courses for other fields.

@ Statistics, probability, or mathematics in curricula such as business
and economics, social sciences, psychology, etc.

@ At WU Wien and Universitat Innsbruck: Some courses are
attended by more than 1,000 students per semester.

@ Several lecturers teach lectures and tutorials in parallel.

Typical exams:
@ Multiple choice or single choice.
@ Evaluated and graded automatically.
@ Little further examination of results (if any).



Large-scale exams

Potential questions:
@ Ability of students.
@ Difficulty of exercises (or items).
@ Differential item functioning (DIF).
@ Unidimensionality.

At WU: Multiple-choice monitor by Ledermdiller, Nettekoven,
Weiler/Krakovsky.

Here:
@ Rasch model for binary single-choice items.

@ Assessment of measurement invariance vs. DIF.



IRT with Rasch model

Motivation: ltem response theory (IRT) with Rasch model.
@ Measure a single latent trait (here: ability in exam).
@ Based on binary items yj; (here: solved correctly vs. not).

@ Align person’s ability 0; (i = 1, ..., n) and item’s difficulty 3;
(j=1,...,m)onthe same scale.

Model:
mj = Pr(person isolvesitemj) = Pr(y; =1)
|Ogit(7T,'j) = 60— Bj

@ Interval scale with arbitrary zero point.

@ Fix reference point by zero constraint (e.g., for 51 or Z/ Bj)-
@ Consistent estimation via conditional maximum likelihood.
@ Sufficient statistics for #;: Sum of correct items for person i.



Assessment of measurement invariance

Crucial assumption: Measurement invariance (MI). Otherwise
observed differences cannot be reliably attributed to the latent variable
that the model purports to measure.

Parameter stability: In parametric models, the MI assumption
corresponds to stability of parameters across all possible subgroups.
Inference: The typical approach for assessing Ml is

@ to split the data into reference and focal groups,

@ assess the stability of selected parameters (all or only a subset)
across these groups

@ by means of standard tests: likelihood ratio (LR), Wald, or
Lagrange multiplier (LM or score) tests.



Assessment of measurement invariance

Problems:
@ Subgroups have to be formed in advance.

@ Continuous variables are often categorized into groups in an ad
hoc way (e.g., splitting at the median).

@ In ordinal variables the category ordering is often not exploited —
assessing only if at least one group differs from the others.

@ When likelihood ratio or Wald tests are employed, the model has to
be fitted to each subgroup which can become numerically
challenging and computationally intensive.

Conceivable solutions:
@ Score-based tests “along” numerical/ordinal/categorical covariates.
@ Recursive partitioning to capture covariate interactions.

@ Finite mixture models without covariates.



Mathematics 101 at Universitat Innsbruck

Course: Mathematics for first-year business and economics students at
Universitat Innsbruck.

Format: Biweekly online tests (conducted in OpenOLAT) and two
written exams for about 1,000 students per semester.
Here: Individual results from an end-term exam.

@ 729 students (out of 941 registered).

@ 13 single-choice items with five answer alternatives, covering the
basics of analysis, linear algebra, financial mathematics.

@ Two groups with partially different item pools (on the same topics).
Individual versions of items generated via exams in R.

@ Correctly solved items yield 100% of associated points. ltems
without correct solution can either be unanswered (0%) or with an
incorrect answer (—25%). Considered as binary here.



Mathematics 101 at Universitat Innsbruck

Variables: In MathExam14W.
@ solved: Item response matrix (1/0 coding).
@ group: Factor for group.
@ tests: Number of previous online exercises solved (out of 26).
@ nsolved: Number of exam items solved (out of 13).

@ gender, study, attempt, semester, ...

In R: Load package/data and exclude extreme scorers.

R> library("psychotools")
R> data("MathExam14W", package = "psychotools")
R> mex <- subset(MathExam14W, nsolved > 0 & nsolved < 13)



Mathematics 101 at Universitat Innsbruck

R> plot(mex$solved)
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Rasch model

R> mr <- raschmodel (mex$solved)

R> plot(mr, type =

"profile")
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Rasch model

R> plot(mr, type = "piplot")
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Classical tests

Of interest: Difference between the two exam groups.

Tests: All x2, with 95% critical value 21.0.
@ LR: 265.0.
@ Wald: 249.4.
@ LM/Score: 260.8.

Question: Which items “cause” this DIF?
Answer: Use item-wise Wald tests.
Bref ﬂfoc
\/V&I'(ﬁref)j J + Var(B oc) ,

But: “Anchor” items are needed to align the scales from the two groups.



Classical tests
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Classical tests

R> plot(mrl, parg = list(ref = 10), ...)
R> plot(mr2, parg = list(ref = 10), ...)
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Anchor methods

Goal: Select DIF-free anchor items to be able to identify items truly
associated with DIF (“chicken or the egg” dilemma).
Approaches: Classes of anchors with different characteristics.

@ All other: All items — except the item currently studied.

@ Constant: Predefined number of items (e.g., 1 or 4).

@ Forward: lteratively add items.

Selection: Rank candidate items based on single-anchor DIF tests.
@ Number of significant tests.
@ Mean test statistic or p-value.
@ Mean test statistic or p-value beyond median threshold.

Here: Constant anchor class with 4 items and mean p-value threshold
selection. Single-step adjustment of final inference for multiple testing.



Anchor methods

R> ma <- anchortest(solved ~ group, data = mex, adjust = "single-step")

R> plot(ma$final_tests)
Anchor items: 10, 4, 12,5

solvedquad —|

solvedderiv -

solvedelasticity —
solvedintegral — ——)
solvedinterest — e R

solvedannuity

|

solvedpayflow | € )

|

solvedmatrix

solvedplanning ¢ )
solvedhesse — ¢ )
solvedimplicit | %—-—)
solvedlagrange —| € )
T T f T
-2 -1 0 1

Linear Function



Score-based tests

Questions:
@ Is there further DIF in the two exam groups?

@ Is there DIF w.r.t. mathematics ability, e.g., for tests
(0,...,13,...,26) ornsolved (1,...,12)?

Problem: Numeric variables without predefined subgroups. Hence,
many possible patterns of deviation from parameter stability.

Idea: Generalize the LM test.
@ Model only has to be fitted once under the Ml assumption to the
full data set.
@ Catpure model deviations along a variable v that is suspected to
cause DIF and violate MI.



Score-based tests

Hypotheses: Under Ml parameters 3 do not depend any variable v;.
Hence assessfori=1,...,n

HO :ﬁi = /67
Hi:Bi = B(v).

Building block: Casewise model deviations.
@ Derivative of the casewise log-likelihood w.r.t. the parameters.
@ General measure of model deviation (similar to residuals).

sy = (H0X), 0B



Score-based tests

Special case: Two subgroups resulting from one split point v.

(A ity <wv

BB ifv,>uv

Tests: LR/Wald/LM tests can be easily employed if pattern 3(v;) is
known, specifically for Hf with fixed split point v.

For unknown split point: Compute LR/Wald/LM tests for each
possible split point vi < v» < --- < v, and reject if the maximum
statistic is large.

Caution: By maximally selecting the test statistic different critical
values are required (not from a x? distribution)!

More generally: Consider a class of tests that assesses whether the
model “deviations” s(/3; y;) depend on v;.



Score-based tests

Fluctuation process: Capture fluctuations in the cumulative sum of
the scores ordered by the variable v.

nt|

L
B(t:8) = 12023 s(Biyy)  (0<t<1).
i=1

@ |- estimate of the information matrix.

@ {— proportion of data ordered by v.

@ [n-t| —integer partof n-t.

@ X(;) — observation with the /-th smallest value of the variable v.
Functional central limit theorem: Under Hy convergence to a

(continuous) Brownian bridge process B(; 3) LA B°(-), from which
critical values can be obtained — either analytically or by simulation.



Score-based tests: Continuous variables

Test statistics: The empirical process can be viewed as a matrix
B(3); withrows i = 1,..., n (observations) and columns
j=1,...,m—1 (parameters). This can be aggregated to scalar test

statistics along continuous the variable v.

DM = max max |B(B);l
i=1,...,nj=1,...,om—1
om = n 'Y B
i=1,..,nj=1,...,m—1

. . —1

i i A
LM = —(1—-= B(B)2.

max ILn!aXi {n( n>} /‘1§:m—1 (:3)//

Critical values: Analytically for DM. Otherwise by direct simulation or
further refined simulation techniques.



Score-based tests: Ordinal variables

Test statistics: Aggregation along ordinal variables v with ¢
categories.

; ; —1/2
i j R
WDM, = max (1L max  |B(3);l.
° i€{ityeerig—1} {n < n)} j=1,0em—1 ‘ (16)’1‘
. . 1
i j R
max LM, = max S T B ?7
° i€{it,ic—1} {n < n)} , Z (B)’l
j=1,....m—1
where iy, ..., ic—1 are the numbers of observations in each category.

Critical values: For WDM, directly from a multivariate normal
distribution. For max LM, via simulation.



Score-based tests: Categorical variables

Test statistic: Aggregation within the ¢ (unordered) categories of v.

who= ¥ 5 RCOMLCmE

{=1,....cj=1,..

Critical values: From a x? distribution (as usual).

Asymptotically equivalent: LR test.



Score-based tests

Here: Test for DIF along tests in group 1 with max LM test
(continuous vs. ordinal).

Result: Clear evidence for DIF. Students that performed poorly in the
previous online tests have a different item profile.

R> library("strucchange")

R> mexl <- subset(mex, group == 1)
R> sctest(mrl, order.by = mexl$tests, vcov = "info",
+ functional = "maxLM")

M-fluctuation test
data: mril
f(efp) = 40.365, p-value = 0.002508

R> sctest(mrl, order.by = mexl$tests, vcov = "info",
+ functional = "maxLMo")

M-fluctuation test
data: mril
f(efp) = 35.543, p-value = 0.003961



Score-based tests

Empirical fluctuation process

40

30

20

10

M-fluctuation test

14

T T T T T
16 18 20 22 24

tests (jittered)




Score-based tests

M-fluctuation test
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Score-based tests

M-fluctuation test
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Recursive partitioning

Idea: Apply tests recursively.
@ Asess all covariates of interest using Bonferroni adjustment.
@ Split w.r.t. covariate with smallest significant p-value.
@ Select split point by maximizing the log-likelihood.

@ Continue until there are no more significant instabilities (or the
sample is too small).

Here: Treat numeric variables with few levels as ordinal. Simulate
p-values for max LM, test.

R> library("psychotree")

R> mex$tests <- ordered(mex$tests)

R> mex$nsolved <- ordered(mex$nsolved)

R> mex$attempt <- ordered(mex$attempt)

R> mex$semester <- ordered(mex$semester)

R> mrt <- raschtree(solved ~ group + tests + nsolved + gender +
+ attempt + study + semester, data = mex,

+ vcov = "info", minsize = 50, ordinal = "L2", nrep = 1leb)



Recursive partitioning

<16 >16 <4 >4
3.42 Node 3 (n = 81) 3.42 Node 4 (n = 227) 3.42 Node 6 (n = 65) 3.42 Node 7 (n = 315)
1 i
o M r" l'. L) 1’
AN AN PN, ;
AN . ’ ol L /
AR AV ECRY Y ;
.« v LaRNS « H
* ¥ !
2 o I A e o o e B B L B B R e R R R Y e R R
10 13 1 5 10 13 1 5 10 13 1 5 10 13

1 5



Finite mixture models

Question: How to detect DIF without covariate information (e.g., in
group 1 without tests)?

Answer: Finite mixture of Rasch models with k =1,... K
components. Maximize finite mixture likelihood via EM w.r.t.
component-specific weights wy and item difficulties 3).

n

K
max H Z wif(y;; B4

w7B(1)7"‘7ﬁ(K) ’:1 k:1

Possible extensions:
@ Model selection for the number of components K.
@ Concomitant variables for the mixture weights w.
@ Component-specific distributions for the raw scores.



Finite mixture models

Here: 2-component mixture with component-specific raw score
distribution (mean-variance specification).

R> library("psychomix")

R> mrm <- raschmix(mex1$solved, k = 2, scores = "meanvar")

R> plot (mrm)

Result: The “soft” classification found by the mixture model is rather
similar to the “hard” split by the tree.

R> print (mrm)

Call:
raschmix(formula = mexl$solved, k = 2, scores = "meanvar"

Cluster sizes:
1 2
73 235

convergence after 79 iterations



te mixture models
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Discussion

Summary:

@ Flexible toolbox for assessing measurement invariance in
parametric psychometric models.

@ Detecting violations along one (tests), none (mixture), or many
(tree) covariates.

@ Exploit different scales of the covariates: continuous, ordinal, or
categorical.

Here: Probably quickest overview of DIF patterns with Rasch tree.

At UIBK: Resulting “policy” implications.
@ Avoid exam groups if at all possible.

@ Seemingly equivalent items can function very differently if students
focus their learning on well-known parts of the item pool.



Discussion

R packages:

strucchange provides an object-oriented implementation of the
score-based parameter instability tests.

@ Model-based recursive partitioning available in partykit.

@ Psychometric models that cooperate with strucchange and partykit

are provided in psychotools: IRT models (Rasch, partial credit,
rating scale), Bradley-Terry, multinomial processing trees.

@ Psychometric trees in psychotree.

@ Psychometric mixture models in psychomix (based on flexmix plus

psychotools).



Discussion

Exams infrastructure: R package exams.
@ R for random data generation and computations.
@ IATEX or Markdown for text formatting
@ Answer types: Single/multiple choice, numeric, string, cloze.

Output:
@ PDF — either fully customizable or standardized with automatic
scanning/evaluation.

@ HTML — either fully customizable or embedded into any of the
standard formats below.

@ Moodle XML.
@ QTI XML standard (version 1.2 or 2.1), e.g., for OLAT/OpenOLAT.
@ ARSnova, Blackboard, TCExam, WU-Prifungsserver, ...



Discussion




Discussion

File Edit View History Bookmarks Tools Help

@ OLAT - OLAT: Course templat... | 4 v
& (@ 138.232.202.96:8080/0LAT-LMS-7.6.0.0/auth/1%3A6%3A1 0776%3A1%: ¥ @] (@ DuckDuckGo Q) @
[0 Home G2 Groups |32 Leaming resaure e [ Graup aeministraian | g User managemen | Adminisuation | o gui_demo JECEIOLAT: Coun... O

et scor: 015

a2
1 cercse P p——
13 Guesiion &
2. Ecercise Question
21, queston &
3. Exercise I Figure the disibuons of 2 variable given by to samples (Aund B) are epresented by parallel boxplos. Which of he
21 Quetion 2 folloving satemens e cortect? (Conment: The statemens are eithr about sorect or leary wiong.)
4 cercse
3. queston & . :
5. Ecercse ki :
53 Question E ;

g4 [ 1

? A H

’ T T

A B

Figure 1: Pasalel boxplos.

[ . The Iocation of both disrbutions s sbout the same.
[ b. Both distibutions contain no outiiers.

[ €. The spread insample A's cleay bigger than in 8
] 4. The skewness of both samples i imilar.

[ =. Disrbution Ais abautsymmetic.




Discussion
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