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Endogenous Errors

y=g(p,x)+e and E[pe]#0
If you estimate this using naive ML, you’ll get

Elylp,x] = E¢plg(p,x) + €] = g(p,x) + E[e|p, x]

This works for . It doesn’t work for counterfactual inference:

What happens if | change p independent of e ?



Instrumental Variables (1V)

X > Y
NN

In IV we have a special z L e that influences policy p but not response y.

 Supplier costs that move price independent of demand (e.g., fish, oil)
* Any source of treatment randomization (intent to treat, AB tests, lottery)



Instrumental Variables (IV) V

The exclusion structure implies
Elylx,z] = E[g(p,x)|x,z] + E[e|x] = | g(p,x)dF(p|x, z)

So to solve for structural g(p, x) we have a new learning problem

geaG

2
min ) ( fg(p, x;)dF(plx;, z;) )

cf Newey+Powell 2003



gEeG

2
min ), (_yl — fg(P» xi)dF(plxi'Zi) )

2SLS:
p = [z +vand g(p) = 7p so that | g(p)dP(plz) = 1p = Tﬁz

So you first regress p on z then regress y on p to recover 1.

This requires strict assumptions and homogeneous treatment effects.



2
min ), (yl — fg(P» xi)dF(plxi'Zi) )

gea

Or look to nonparametric 2SLS like in Newey and Powell:
g, x;) = X ox(p,x;) and @i (p, x;) = Zj brj(xi,2i)

But this requires careful crafting and will not scale with dim(x)



2
min ), (yl — fg(P; xi)dF(plxi’Zi) )

gea
Instead, we propose to target the integral loss function directly

For discrete (or discretized) treatment

* Fit distributions F(p|x;, z;) with probability masses f(pp|x;, ;)
. A . . . AN o 2
* Train g to minimize [yi — Db g(pb:xi)f(pblxi;zi)]

And you’ve turned IV into two generic machine learning tasks
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What is a deep net?

A L L L _ L/ L L __ L—1 L—1
Vi = z hy (aik)' aj, = ZjpW-, Zi = z h = (aj 7)), -
k J

And so-on until you get down to the input layer a; = x{WO
Many different variations here: recursive, convolutional, ...

Apart from the bottom, usually h(v) = max{0, v}



e.g., first-stage learning for F(p|x;, z;)

Bishop 96: Final layer of network parametrizes a mixture of Gaussians




Stage 2: Integral Loss

The second stage involves an integral loss function
If p is not discrete or can take many values, not easy!

Brute force just samples from F(p|x;, z;) and you take gradients on

1 1 . R A
N i (yi — 5 20 9Pip X35 3)) , D~ F(plxy, z;)

This is what economists usually do, but this is super inefficient



Stochastic Gradient Descent

You have loss L(D, 8) where D = |d; ...dy]
In the usual GD, you iteratively descend

0, =01 — CtVL(D» 9t—1)

In SGD, you instead follow noisy but unbiased sample gradients

Oy = 0r_1 — CtVL({dtb}]g=1 ,0¢-1)



SGD for integral loss functions

Our one-observation stochastic gradient is
VL(d;, 0) = —2 (Yi - fge (p, xi)dﬁ(mxi»zi)) j!]e'(’P» x)dF (plx;, z)
Do SGD by pairing each observation with two independent treatment draws
VL(d;,0) = =2y — 9o (®,x)) 9o (B, %), P, B~F(plx;,2)

So long as the draws are independent, EVL(d;,0) = EVL(d;,6) = L(D,6)



Validation and model tuning

We can do causal validation via two OOS loss functions

Leave-out deviance on first stage

Z —log f (plx;, z)

i(€ELO
Leave-out loss on second stage (constrained fit of E|y|xz])

z (YL o f g@(pJ xi)dﬁ(plxi'zi))z

IELO

You want to minimize both of these (in order).



heterogeneous price effects

‘time’ dependent prices, sensitivity, utility

y =100+ sy, + (Y, —2)p + e,

p=25+(z+3)Y; +v Customer ‘type’ 1-7 impacts demand
= 743

Vo N{ﬂ, 1) and e ~ N{ PV, 1 — pE )’ observed structural
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Inference? Good question

Data split! Get top node values and averages on left-out data:
Nik = Eppia,znMk (X D) and nyge = 0 (X3, p;)
Stack as instruments H = [7; - 77, ] and treatments H = [n; -1, ]’

Then the treatment effectis = (H'H)~1H'y with usual variance and

var (ﬁ(x,p)) =1'(x,p) Vg n(x,p).



Inference? Good question

Or Approximate Bayes...

When training with SGD, we actually use dropout for regularization
At each update, calculate gradients against W, = =,(); at layer [ where

5= diag( ¢ ...flKl), Skj ~ Bern(c)

i.e., dropout randomly drops rows of each layer’s weight matrix



Variational Bayesian inference via dropout

VB minimizes E,|[ —log p(D|W) —logp(W) + log q(W)]
With q(W) =[], [1x(clw,=q,1 + (1 — ¢) 1w,.=01) and normal prior,
L L
]E-q(ag)[(D|W)—|— Zc'AHQ,;HZ + Z Ki—1|clog(c)+ (1 —c)log(1—rc)].
I=1 =1

So dropout is VB!

(more complex argument in Gal and Ghahramani 2015)
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Figure 3: Bayesian (left) and Frequentist (right) inference for a central slice of the counterfactual function,
taken at the average price and in our 4 customer category. Since the price effect for a given customer at a
specific time is constant in (27), the curves here are a rescaling of the customer price sensitivity function.



Tuning the dropout rate is like treating it as a variational parameter
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Ads Application

Taken from Goldman and Rao (2014)
We have 74 mil click-rates over 4 hour increments for 10k search terms

Treatment: ad position 1-3
Instrument: background AB testing (bench of ~ 100 tests)
Covariates: advertiser id and ad properties, search text, time period



Average Treatment Effects

014 - Average Click Probability by slot
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These compare to observed click probabilities of 0.33, 0.1, and 0.05.
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Alice

Established: December 5, 2016

Automated Learning and Intelligence for Causation and Economics

We use economic theory to build systems of tasks that can be
addressed with deep nets and other state-of-the-art ML.
This is the construction of systems for Economic Al



