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Jump identification from daily close prices for the 600 stocks of the
EuroStoxx 600 index (January 8 of 2007 - November 5 of 2014).
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Dots denote estimated probability of a jump > 0.5; Bottom graph
depicts the total number of estimated jumps




Observe only returns y;, everything else is unobserved:

Nt

Y = exp(ht/Z)et = ij, €t I\I(O7 ].)
j=1

he = p+ ¢(he—1 — p) + e, ne ~ N(O, 0727)

\{

N ~ Poisson(A:A¢), Ay is the distance between two

successive observations

» A+ ~ gamma(1,50) ( ) so that the probability of no
jump at time t is .98

> (G} " Nlpe, 02), e ~ N(0,5R?), oF ~ IG(3, R2/18)

where R is the range of the data.

> ho ~ N(/,L,J% (1 - ¢2))

» u~ N(0,10)

» (¢p+1)/2 ~ Beta(20,1.5) ( )

> 0727 ~ X3, does not bound o, away from zero a priori, see

Kastner and Friihwirth-Schnatter (2014) and
Frithwirth-Schnatter and Wagner (2010).



Disentangling Volatility from Jumps

Bayesian inference with MCMC: how we sample the full conditional
densities

» Sample simultaneously the vector of the log-volatility process
» Sample the number of jumps with rejection sampling

» Sample the parameters using interweaving; see Yu and Meng
(2011) and Kastner and Frithwirth-Schnatter (2014).

» Contribution: we separate the volatility from the jump process
without using any approximation of the model as it was
proposed by Chib et al. (2002).



Sampling the volatility process

> DenOte Y = (y17y27"'7_yT)1 9 = (,LL,¢,O',,27,'U/£,O'§),
H:(hl,...,hT), N:(Nl,...,NT) and E:(fl,...,fT).

» Conditioning on number of jumps N and integrating out jump
sizes =, sample from

p(HI0, Y)  p(Y|H,0)p(H|0)

» Prior p(H) = N(H|M, Q1)

» There are many ways to do this -here we use an idea by Titsias
that was first appeared in the discussion of the RSSB
discussion paper by Girolami and Calderhead (2011).

» The advantage is that we sample the whole vector H as a
block with one Metropolis move.



Sampling p(H|0, Y') o< p(Y'|H,0)p(H|0)

» Current state of H is H,,. Say we wish to use slice Gibbs:

» Introduce auxiliary variables U that live in the same space as
H: p(U|Hn) = N'(U|Hn + 5V log p( Y |Hn), $1)

» U injects Gaussian noise into U, and shifts it by
(6/2)V log p( Y | Ha)

» We cannot sample from p(H|U) so we use a Metropolis step:
Propose H* from proposal g:

a(H*|U) = ZggAH1U. 50(H")
Y PN B S
=N(H ’(H_EQ) 1(U+§QM)7§(/+§Q) b).

where Z(U) = [ N(H*|U, $1)p(H*)dH*.



» Accept H* with Metropolis-Hastings probability min(1, r):

p(Y|H*)p(U|H*)p(H*) q(Ha|V)
p(Y|Hn)p(U|Hn)p(Hn) q(H*|U)
p(Y|H*)p(U|H*)p(H*) %,)N(HnIU%/)p(Hn)
p(Y|Hn)p(U[Hn)p(Hn) {5y N (H*|U, §1)p(H*)
p(Y|H*N(UIH* + 3Gy, $1) N(Ha|U, 31)

p(Y |Hn)N (U[Hn + £ Ge, $1) N(H*|U, 1)
p(YIH") |

= p(YIHy) P {*(U —Hn) Ge+ (U= H")T Gy — g(ucynz - ||ct|\2)}

where G: = Vlog p(Y|H,), G, = Vlog p(Y|H*) and ||Z|| denotes the
Euclidean norm of a vector Z.

» The Gaussian prior terms p(H,) and p(H*) have been cancelled out from the
acceptance probability, so their evaluation is not required: the resulting q(H*|U)
is invariant under the Gaussian prior.

» Tune 6 to achieve an acceptance rate of around 50 — 60%.



Rejection sampling for the number of jumps

» Target: the discrete log-concave distribution with density
p(N¢|he, Nty ye, ).

» Proposal: Choose as m any point after the mode, use as a
proposal the red-dotted discrete density: it is a geometric after
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Jumps prediction

» Key idea: Use a Bayesian hierarchical model for all
i=1,,...,p =600 stocks to borrow strength

Njt ~ Poisson(NjzAjr)
Nie = A(L + exp(—b; — WiF;)) ™

A = 0.15 is the maximum intensity of each stock, Wisa p x K
matrix of factor loadings with rows W; and each F; are
K-dimensional time-varying independent factors

Ft:AFt_1+et, 1'.':27...,7_7

€t ~ NK(O, IK), A= diag(al, PN ,aK).



The full model

N;
yir = exp(hit/2)eje + Zfija eie ~ N(0,1)
j=1
hie = pi + @i(hie—1 — wi) +Mie,  Mie ~ N(07Ui2n)

. did
{&i My = N(uie, 0%), pie ~ N(0,5R?), 0% ~ IG(3, R? /18)

Nt ~ Poisson(NiAjt)

Nie = A (1 + exp(—b; — W;F:)) ™
Fe = AFt 1 + e



MCMC

» We integrate out the jump sizes = and we target the posterior

distribution
p(0. h,N,F|Y)

where the parameters and the data correspond to all stocks.

» p(hi|N, F,0): Metropolis as in the 1-dim

» p(N;|H, F,0): rejection sampling as in the 1-dim

» p(F|H, N,0): Label and sign switching are not taken care of
during MCMC, see also ARmann et al. (2016); we choose

prior distributions for the parameters of the factor

process such that 2 jumps are expected on average every 100

days. We sample all factors simultaneously based on the
auxiliary Metropolis algorithm described for the 1-d case.

» p(O|H, N, F): we use interweaving



We choose prior distributions for the parameters b, the factor
loadings in the matrix W and for the persistent parameters of the
matrix A such that the induced prior (histogram) for the intensity
Aj of the ith stock at time t is comparable with the Gamma(1,50)
prior (red line) used in the univariate model.




Separating volatility and jumps: simulation results
Simulated log returns (top) and their volatility path (bottom -blue)
for 3 of the p = 300 time series of length T = 1500 with K =2
factors. Bottom, Red: posterior mean of the volatility path. Black
circles: simulated jumps. Red and green crosses: estimated
probability of jump greater than 50% and 70%.
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factors. Bottom, Red: posterior mean of the volatility path. Black
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Separating volatility and jumps
Simulated log returns (top) and their volatility path (bottom -blue)
for 3 of the p = 300 time series of length T = 1500 with K =2
factors. Bottom, Red: posterior mean of the volatility path. Black
circles: simulated jumps. Red and green crosses: estimated
probability of jump greater than 50% and 70%.
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Jump identification
Black circles: simulated jumps for 50 of the p = 300 simulated
times series. Red crosses: estimated probability of at least one
jump greater than 50%.




Posterior distributions |

Posterior (black lines) and prior (orange lines) distributions of the
persistent parameters of the simulated latent factors. The vertical
lines represent the simulated values.




Posterior distributions for factor loadings (W)

95% credible intervals; red crosses indicate the simulated values.




Posterior distributions for factor loadings (W) after sign
switching

95% credible intervals; red crosses indicate the simulated values.




Centered, Non Centered and Interweaving

» Simulation of p = 150 series and K = 2 factors (A = 0.15,
T = 1500). The table belows ESS per unit of time for oy,
based on M = 3000 iterations (thinned by 10).

> ESS = M/IF where IF = ~q/s°.

» ~p estimated spectral density of the Markov chain at zero.
» 52 is the sample variance of the MCMC draws.

scheme a1 =08 | ap =0.8
A : centered 50 70
B : Non centered 20 50
C : Interw. (Cent.-Non Cent.) 400 200
D : Interweaving (Non Cent.- Cent.) | 150 60




Results on real data

» Our dataset contains daily close prices for the 600 stocks of
the EuroStoxx 600 index from the January 8 of 2007 until the
November 5 of 2014.

» After removing stocks with less than 1500 prices and stocks
with more than 10 consecutive zero returns we applied our
MCMC algorithm on the log-returns of each one of the rest
571 stocks.

» We only present here results based on subset of this dataset
-running in progress! We have used K = 2 factors in the
intensity process.



ldentified jumps




Posterior (black) and prior (orange) distributions for the persistent
parameters of the K = 2 factors and posterior mean of the path of
the two latent factors (right).




Factor 1: 95% credible intervals for each stock loading




Factor 2: 95% credible intervals for each stock loading




Posterior correlations

Posterior mean correlations of jump intensities: 175 stocks of the
London stock exchange.




Network based on jump intensities

Nodes represent stocks, edges are present when the posterior mean
correlation of jump intensities is > 0.9.
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Model comparison

For two competing models M; and M and out of sample
observations y141,..., YT+, we compute the sequence of Bayes

factors

p(yT1ly1:7, M) P(YT4+1, Y742, -+ YT+nlyr:T, Mi)
p(yT+1ly1: 7, M) p(YT41, YT 42y - -, YT4n|y1:T, M2)’

where for every model M and j=1,...,n

T+j

p(yTe1,yT42, - y1ailyer. M) = [ p(velyr:e—1, M).
t=T+1



Problem

Assume 6 is known and equal with the posterior mean. For each
t=T+1,..., T + n, we need to compute the likelihood
increments

P(Yt|}/1:t717 M) =
/ p(bore_1, Frota|yre1) p(helhe—1)p(Fe| Fot)dhocdFi

Typically the above integral is computed using SMC methods but
since in our case the is the product of the terms
p(yit| Ft, hi) it contains a lot of information for the latent state F;
resulting in poor MC estimation of the integral (Beskos et al.,
2014).



Solution

By observing that for each t = T +1,..., T + n, the marginal
likelihood increment p(yit|y1:t—1) of the ith stock is given by

/P(hi(o:t—1)7 Fr.e—1ly1:e-1)P(Yie| Fe, hie) p(hiel hie—1)) P(Fe| Fe—1)dhico.eydFi:

we use annealed importance sampling (Neal, 2001) to obtain
estimates of the marginal likelihoods

P(}/i(T+1)\)/1:T7 M),..., P(YI(T—H)a Yi(T+2)) - - - a)/i(T+n)\)/1:T7 M)
and we compute the predictive Bayes factors

P(Yi(T41)ly1:7, Mi) PYi(T41)s Yi(T+2)s - - - » Yi(T4m) [y1:7, M)
PYiT+0y T, M2) "7 p(Yi(T41)s Yi(T+2)s - - 5 Yi(T4n)lY1: 7, M2)’

to compare the competing models M; and M.



Log-Bayes factor of the univariate SV model with jumps against a
univariate SV model without jumps for 16 stocks of London. Here
T = 1967 and out of sample size is n = 50. For each stock we

report estimated in-sample and out-of-sample (red circles) jumps.
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Log-Bayes factor of the factor SV model with jumps against a SV
model with jumps for 16 stocks of London. Here T = 1967 and out
of sample size is n = 50. For each stock we report estimated
in-sample and out-of-sample jumps.
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Discussion

we have presented:

» A new algorithm for univariate SV with jumps

» A way to forecasting of jump intensities through joint
modelling of many stocks

» Evidence for better predictive performance



