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Graphical Models

When every edge in E is undirected, G is an undirected graph
(UG).

When every edge in E is directed, G is a directed graph.

If a directed graph G has no directed cycles, then G is a DAG
(D).

Given G, a family of probability distributions for
y>i = (yi1, . . . , yiq) which factorize according to the graph G is
called a graphical model (wrt G).
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Factorizations

If G = D is a DAG

fD(y i |θD) =

q∏
j=1

f(yij |y i,paD(j)
,θj)

y i,paD(j) = {yil : l ∈ paD(j)}; paD(j): parents of j

If G is decomposable

fG(y i |θG) =

∏
C∈C f (y i,C |θC)∏
S∈S f (y i,S |θS)

C: set of cliques; S: set of separators.
y i,C = {yij : j ∈ C}.

(decomposable=chordal=triangulated)

1 

2 

3 

5 

4 

7 

6 

C = {{1, 2, 5}, {1, 3, 5}, {2, 4, 5}, {3, 5, 6}, {4, 5, 7}, {5, 6, 7}}

S = {{1, 5}, {2, 5}, {3, 5}, {4, 5}, {5, 6}}
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Markov properties

G ≡ D: DAG
Local Markov property
∀u ∈ V

u⊥⊥{nd(u) \ pa(u)} |pa(u)

G: UG
A, B, S disjoint subsets of V
Global Markov property
If S separates A from B in G, then

A⊥⊥B |S
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Typically we do NOT know the structure of the graph

Aim
Discover the graph using data

Structural learning

Graph selection
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Bayes factor

Bayesian modelMk = {fMk (Y |θk ),p(θk )}

M1, . . . ,MK : K models

mMk (Y ) =
∫

fMk (Y |θk )p(θk )dθk
marginal likelihood ofMk

Bayes factor forMk againstMk ′

BFkk ′(Y ) = mMk (Y )/mMk′ (Y )
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Default Improper Priors

Lack of substantive prior information
p(θk ) = pD(θk )
pD(θk ): objective default (non-informative) prior
Often improper

Cannot be used naively to compute Bayes factors
even when mMk (Y ) is finite and non-zero
arbitrary constants do not cancel out in their ratios

Several methods

• Fractional Bayes Factor
• Intrinsic Prior
• Expected Posterior Prior
• . . .
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Fractional Bayes Factor

b = b(n), 0 < b < 1: fraction of sample size n
Fractional marginal likelihood of modelMk

mMk (Y ; b) =

∫
fMk (Y |θk )pD(θk )dθk∫
f b
Mk

(Y |θk )pD(θk )dθk

Can be rewritten as

mMk (Y ; b) =

∫
f 1−b
Mk

(Y |θk )pF (θk |b,Y )dθk

pF (θk |b,Y ) ∝ f b
Mk

(Y |θk )pD(θk ): fractional prior

Fractional Bayes factor (FBF)

BFkk ′(Y ; b) = mMk (Y ; b)/mMk′ (Y ; b)

Default choice: b = n0/n
n0: minimal (integer) training sample size
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Difficulties with parameter priors

• parameter priors should be compatible
related
(e.g. to avoid paradoxes )
Jeffreys-Lindley’s paradox

• parameter space of a graphical model is constrained

Example: Gaussian graphical model

y |µ,ΩG ∼ N(µ, (ΩG)−1)

ΩG Markov w.r.t. UG G
ΩG s.p.d.
but also
(ΩG)ij = 0 whenever there is no edge between i and j in G
constrained parameter space
p(ΩG) must comply with this constraint
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Building parameter priors under DAG-models

Collection of DAG-models
Joint sampling density under DAG-model D

fD(y i |θD) =

q∏
j=1

f(yij |y i,paD(j)
;θj)

Assume
[Geiger and Heckerman (2002) Ann. Statist.]

• 1: Complete model equivalence
Two complete DAG-models represent the same family of
sampling distributions.

• 2: Regularity
Smooth reparametrizations between complete models

• 3: Likelihood modularity
If two DAGs D1 and D2 are such that paD1

(j) = paD2
(j),

they describe the same sampling family for node j
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Collection of priors under each DAG-model D

• 4: Prior modularity
If two DAGs D1 and D2 are such that paD1

(j) = paD2
(j),

prior for θj under D1 same as prior on θj under D2
[“Prior compatibility”]

• 5: Global parameter independence

pD(θD) =

q∏
j=1

pD(θj)

[local parameters θj ’s mutually stochastically independent]

Assumptions 1,2,3 satisfied in the multivariate Gaussian model
Nq(µ,Ω−1)
Assumptions 4 and 5 satisfied with usual conjugate prior
(µ,Ω) ∼ Normal −Wishart
under any complete DAG-model
and imposed under any other DAG-model to build the prior.
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Marginal Lik DAG-models

If Assumptions 1-5 hold, then

mD(Y )
(1)
=

q∏
j=1

∫
pD(θj)

n∏
i=1

fD(yij |y i,paD(j)
;θj)dθj

(2)
=

q∏
j=1

∫
pCj (θj)

n∏
i=1

fCj (yij |y i,paCj
(j);θj)dθj

(3)
=

q∏
j=1

∫
pCj (θj)fCj (Y j |Y paCj

(j);θj)dθj

(4)
=

q∏
j=1

mCj (Y j |Y paCj
(j)),

Cj is any complete DAG such that paCj
(j) = paD(j)

(1) use global parameter independence
(2) use prior and likelihood modularity
(3) recall that Y j = (y ij ; i = 1, . . . ,n)
(4) by definition of mCj (Y j |Y paCj

(j))



Marginal Lik DAG-models (ctd)

In conclusion

mD(Y ) =

q∏
j=1

mCj (Y j |Y paCj
(j)) =

q∏
j=1

mCj (Y faCj (j)
)

mCj (Y paCj
(j))

=

q∏
j=1

m(Y faD(j))

m(Y paD(j))
,

faD(j) = paD(j) ∪ {j}

m(·): marginal under any complete DAG-model

Bottom line
Only one single parameter prior need be elicited
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Score Equivalence

Markov equivalence class
Class of DAG-models embodying same conditional
independencies

Above parameter priors produce a marginal likelihood which is
constant on the Markov equivalence class
Score equivalence

Score equivalence is important because

• we cannot distinguish between equivalent DAGs based on
(observational) data
an inconsistency would arise if score equivalence did not
hold

• we can use our method also to score a decomposable
graphical model G.
[A decomposable graph G always admits a DAG version
G<]
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Marginal Lik Decomposable Graphical Models

C: set of cliques
S: set of separators

mG(Y ) =

∏
C∈C m(Y C)∏
S∈S m(Y S)

m(·): marginal data distribution under any complete graph



Marginal Likelihood of a Gaussian DAG-model

y i |µ,Ω,D
iid∼ Nq(µ,Ω−1

D ); i = 1, . . . ,n
ΩD: constrained precision matrix, Markov with respect to D

Assumptions 1-3 satisfied
Take any complete Gaussian DAG model D = C (ΩC = Ω
unconstrained)
If (µ,Ω) ∼ Normal −Wishart
p(µ |Ω) = Nq(µ |m, (cΩ)−1)
p(Ω) = Wq(a,R)
Then Assumptions 4-5 are satisfied
Closed-form expressions for m(Y J) are available
(J ⊂ {1, . . . ,q})
Geiger & Heckerman (2002)
[corrections in Kuipers, Moffa & Heckerman (2014, Ann.
Statist.)]
C. and La Rocca (2012, Scand. J. Statist.)
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Objective Bayes Marginal Likelihood of a Gaussian
DAG-model

An objective Bayes version is available (µ = 0)
starting from an improper prior

C. and La Rocca (2012) for DAGs
start with an improper standard prior on the unconstrained Ω
and then use the FBF

Carvalho and Scott (2009, Biometrika)
for decomposable UGs
start with an improper Hyper Inverse Wishart on the
constrained ΣG = (Ω)−1

G
and then use the FBF
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Marginal Likelihood of a Multivariate Gaussian
Regression DAG Model

Extension of the previous results to the regression setting
(applied motivation follows)

X : known design matrix

Y |B,Ω ∼ Nn,q(XB, In,Ω
−1
D )

Assume (B) and Ω unrestricted. Prior

B |Ω ∼ Np+1,q(B,C−1,Ω−1),

Ω ∼ Wq(a,R)

Assumptions 1-5 for the construction of compatible priors hold
C., La Rocca and Peluso (2016, Scand. J. Statist, to appear)

Closed form expression for the marginal of any set of variables
Y J given X is available

Marginal likelihood of any regression DAG-model can be
evaluated
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Genetical Genomics Experiments

• measure both genetic variants and gene expression data
on the same subjects

• genome-wide eQTL analysis
(expression quantitative trait loci)

Aim: study conditional independence structures of gene
expressions
after the confounding genetic effects are taken into account.

This greatly improves inference on the network of genes
Cai et. al. (2013, Biometrika)
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p?: number of potential predictors

p: number of truly effective predictors
sparsity
p << p?

• p? ≈ 100− 500; q ≈ 50− 300; n ≈ 50− 200
• p? ≈ 3,000; q ≈ 100; n ≈ 100
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Fractional Marginal Likelihood

Default prior on complete DAG

pD(B,Ω) ∝ |Ω|
aD−q−1

2

G Undirected decomposable graph

mG(Y ) =

∏
C∈C m(Y C)∏
S∈S m(Y S)

m(Y C) = π−
(n−n0)|C|

2

Γ|C|

(
aD+n−p−1−|C|

2

)
Γ|C|

(
aD+n0−p−1−|C|

2

) (n0

n

) |C|(aD+n0−|C|)
2 |Ê>CÊC |−

n−n0
2

Γ|C|(·): multivariate gamma function; ÊC : residuals clique C

Formula for mG(Y ) holds provided n > p + |C|, C ∈ C
sparsity condition on regression and graphical structure

Recommended settings aD = q − 1; n0 = p + 2
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2 |Ê>CÊC |−

n−n0
2

Γ|C|(·): multivariate gamma function; ÊC : residuals clique C
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Variable selection

We do not know which are the truly effective p predictors

Need to perform variable selection

variable indicators
γ1 = 1: intercept
γi = 1 if covariate i − 1 is in the model; otherwise γi = 0;
i = 2, . . .p? + 1

γ> = (γ1, . . . , γp?+1):
regression model

pγ =
∑p?+1

j=2 γj
number of predictors in model γ

Under sparse regression
pγ << p?
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Joint variable and graph selection

γ: regression structure
set of predictors to include in the linear model

G: covariance structure
decomposable graph for the precision matrix

Graphical Gaussian multivariate regression model

Y |Bγ ,ΩG ,γ,G ∼ Nn,q(XγBγ , In,Ω
−1
G )

Aim: making inference simultaneously on (γ,G)
Joint graph and variable selection
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Hierarchical model

Y |γ,G ∼ mG(Y |γ)

γi |ωγ
iid∼ Ber(ωγ); i = 2, . . . ,p? + 1

Gi |ωG
iid∼ Ber(ωG); i = 2, . . . ,q · (q − 1)/2

ωγ ∼ U(0,1)

ωG ∼ U(0,1)

mG(Y |γ): marginal likelihood
generated through our O’Bayes method based on the FBF

G = (G1, . . . ,Gq(q−1)/2):
vectorized adjacency matrix corresponding to G
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method to
In particular
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Sparse block

• Graph structure
Gi=0 for i ≤ q(q−1)/2−10 and Gi=1 otherwise for i > q(q−1)/2−10
q × q adjacency matrix has a sparse bottom-right block of active edges
sparsity of G increases with q.

• Regression structure
Out of p? = 100 potential covariates, true predictors are only the first
and the third
γi = 1 for i ∈ {1, 2, 4}
γi = 0 otherwise
pγ = 2

• Given true G, ΩG is sampled from the G-Wishart distribution with 10
degrees of freedom and scale matrix equal to the identity

• Given true γ and ΩG

B sampled from the Matrix Normal Np?+1,q
(
0p?+1,q , 0.32Ip?+1,Ω

−1
G

)
• Elements of X from the second to last column are randomly drawn from

N(10, 1)
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Magnified block

• q = 150

• Graph structure
Fix a 50× 50 adjacency matrix GI as above
Full G is block diagonal with GI replicated three times

Corresponding ΩG is block diagonal with the three blocks ΩI
G , 5ΩI

G ,
10Ω1

G

ΩG has sequentially magnified signals

• Regression structure
True γ produced by randomly choosing each predictor with probability
0.05 among p? potential predictors
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Comparison with state-of-the-art methods for
covariate-adjusted graphical model selection
• Objective Fractional Bayes Factor

OBFBF
(O’Bayes variable and graph selection)

• Two-step ANTAC (Asymptotically Normal with Thresholding after Adjusting
Covariates) estimator
Chen et al (2016, J. Am. Statist. Asssoc.)
(graph selection; estimation of regression parameters intermediate step)

• Graphical lasso
GLASSO
(only graph selection)
Friedman, Hastie, Tibshirani (2008, Biostatistics)

• Hyper-matrix t method
HYPERT
Bhadri and Mallick (2013, Biometrics)
(Bayes variable and graph selection)

• Sparse Gaussian Conditional method
CONDIT
Wytock and Kolter (2013, J. Mach. Learn. Res.)
(graph selection; estimation of regression parameters intermediate step)

• Low Rank latent variables and sparse method
LOWRANK
Chandrasekaran et al. (2012, Ann. Statist.) (2012)
(graph selection with unobserved latent variable)
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Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate

• Specificity= True negative rate
• Sensitivity=True positive rate
• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate
• Specificity= True negative rate

• Sensitivity=True positive rate
• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate
• Specificity= True negative rate
• Sensitivity=True positive rate

• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate
• Specificity= True negative rate
• Sensitivity=True positive rate
• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate
• Specificity= True negative rate
• Sensitivity=True positive rate
• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Measures of performance for graph selection
(Adjacency matrix)

• Misspecification rate
• Specificity= True negative rate
• Sensitivity=True positive rate
• Matthews correlation coefficient

MISR =
FN + FP
q(q − 1)

, SPE =
TN

TN + FP
,

SEN =
TP

TP + FN

MCC =
TP · TN − FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)



Setting (n, p∗, q) Method MISR SPE SEN MCC Time
Sparse (50, 100, 30) OBFBF 9(1) 92(1) 74(3) 47(5) 4769

HYPERT 10(1) 91(1) 74(4) 46(2) 4270
ANTAC 1(0) 100(0) 72(1) 84(1) 34

GLASSO 83(5) 17(5) 86(4) 15(2) 8
CONDIT 52(11) 48(11) 90(7) 21(4) 99

LOWRANK 49(14) 50(14) 91(7) 22(5) 75
Sparse (50, 100, 60) OBFBF 3(2) 97(2) 84(1) 60(19) 5550

HYPERT 5(0) 95(0) 84(2) 47(1) 5990
ANTAC 0(0) 100(0) 83(1) 91(0) 109

GLASSO 59(5) 41(5) 93(2) 12(1) 57
CONDIT 27(19) 73(20) 89(4) 24(6) 268

LOWRANK 81(3) 18(3) 97(3) 7(1) 236
Sparse (50, 100, 120) OBFBF 0(0) 100(0) 100(0) 95(5) 3745

HYPERT 2(0) 98(0) 91(1) 54(1) 5941
ANTAC 0(0) 100(0) 91(0) 95(0) 676

GLASSO 36(4) 64(4) 95(1) 12(1) 547
CONDIT 48(25) 52(25) 96(2) 11(5) 861

LOWRANK 94(1) 6(1) 99(1) 1(0) 1002
Magnified (50, 100, 150) OBFBF 0(0) 100(0) 93(0) 92(12) 5498

HYPERT 2(0) 99(0) 93(0) 54(1) 6770
ANTAC 0(0) 100(0) 93(0) 96(0) 1971

GLASSO 78(5) 22(5) 97(1) 5(1) 4570
CONDIT 96(3) 4(3) 100(1) 2(1) 3517

LOWRANK 98(0) 2(0) 100(0) 1(0) 5452



Sparse setting: n = 200, p? = 100, q = 30
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Sparse setting: n = 200, p? = 100, q = 30
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• Computational time for MCMC based methods (OBFBF
and HYPERT) higher than rest
However

• they perform also variable selection and return a richer
output

• Computational time for OBFBF increases only marginally
(up to 7% from least to most complex setting)



• Computational time for MCMC based methods (OBFBF
and HYPERT) higher than rest
However

• they perform also variable selection and return a richer
output

• Computational time for OBFBF increases only marginally
(up to 7% from least to most complex setting)



• Computational time for MCMC based methods (OBFBF
and HYPERT) higher than rest
However
• they perform also variable selection and return a richer

output

• Computational time for OBFBF increases only marginally
(up to 7% from least to most complex setting)



• Computational time for MCMC based methods (OBFBF
and HYPERT) higher than rest
However
• they perform also variable selection and return a richer

output
• Computational time for OBFBF increases only marginally

(up to 7% from least to most complex setting)



Runtimes for OBFBF
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ROC curve: graph selection

(b) Graph selection
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Variable selection OBFBF
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Conclusions I

Compatible parameter priors for the comparison of
DAG-models can be constructed based on a single prior for the
complete graph
(unconstrained parameter space)
Can use standard conjugate priors
Our contributions
• Objective Bayes (OB) method for comparing Gaussian

DAG-models
start with default prior
and then apply the Fractional Bayes Factor



Conclusions II

• Covariate-adjusted OB method
Joint graph and variable selection
OBFBF comparable to ANTAC in graph selection for large
and sparse networks
although ANTAC does not perform variable selection
explicitly
OBFBF outperforms Bayesian competitor HYPERT as well
remaining penalization-based methods
OBFBF excellent performance in variable selection
Computing time for MCMC-based methods higher but
scales nicely with n, q and p



Looking ahead

• Extend the scope of covariate-adjusted graph selection
beyond the regression setting and accommodate for

serial dependence
spatial dependence

• Explore the space of Essential DAGs (Markov Equivalence
Class)
Require calculations for Chain Graphs
Use observational and interventional data
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