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Abstract

We present an objective Bayes method for covariance selection in Gaussian multivari-

ate regression models having a sparse regression and covariance structure, the latter

being Markov with respect to a Directed Acyclic Graph (DAG). Our procedure can

be easily complemented with a variable selection step, so that variable and graphical

model selection can be performed jointly. In this way, we offer a solution to a problem

of growing importance especially in the area of genetical genomics (eQTL analysis).

The input of our method is a single default prior, essentially involving no subjective

elicitation, while its output is a closed form marginal likelihood for every covariate-

adjusted DAG model, which is constant over each class of Markov equivalent DAGs;

our procedure thus naturally encompasses covariate-adjusted decomposable graphical

models. In realistic experimental studies our method is highly competitive, especially

when the number of responses is large relative to the sample size.

Keywords : Bayesian model selection; covariance selection; decomposable graphical

model; directed acyclic graphical model; fractional Bayes factor; Gaussian graphical

model; Gaussian multivariate regression; marginal likelihood; model sparsity; variable

selection.



1 Introduction

Graphical models are a well-established tool in multivariate statistics. They allow to

simplify high-dimensional distributions, both in terms of computations and in terms

of interpretation, on the basis of a graph representing independencies between vari-

ables. We assume the reader is familiar with the basic theory of undirected and acyclic

directed graphical models, as presented for instance in Cowell et al. (1999), or Lau-

ritzen (1996); see also Whittaker (1990). A brief summary of our graph terminology

is available online as supporting information for this article.

Our interest lies in a collection of q random variables whose joint distribution,

having density with respect to a product measure, embodies a conditional indepen-

dence structure which can be represented by a Directed Acyclic Graph (DAG). This

means that each variable is conditionally independent of its non-descendants given its

parents; see Cowell et al. (1999, sect. 5.3). Such a distribution is said to be Markov

with respect to the DAG. A DAG model is a (parametric) family of multivariate dis-

tributions which are Markov with respect to a DAG. We will consider in particular

Gaussian DAG models. Then, the DAG structure will be reflected in the covariance

matrix Σ: if the DAG is complete, Σ will be unconstrained; for an incomplete DAG,

Σ will present constrained entries. Notice that an unconstrained covariance matrix

still has to be s.p.d. (symmetric positive definite).

Typically, the DAG structure is unknown, and we want to infer it from n joint

observations of the q variables. From a Bayesian viewpoint one starts with a prior

distribution on the collection of all DAGs (prior on model space), as well as with a

prior distribution on the parameter space of each given DAG (parameter prior). Given

these prior inputs, Bayesian inference produces a posterior probability on the space

of all DAGs, which summarizes all the uncertainty in the light of the available data.

Several papers have addressed this problem for the case in which the n observations

are i.i.d. (independent and identically distributed) conditionally on the parameters

of the model; see for instance Dawid & Lauritzen (1993); Spiegelhalter et al. (1993);

Heckerman et al. (1995); Madigan et al. (1996). Of special interest for this paper

is the work by Geiger & Heckerman (2002); see also Consonni & La Rocca (2012)

and Kuipers et al. (2014) for a correction. Geiger & Heckerman (2002) listed a set

of assumptions on the collection of parameter priors (across DAGs) which permit

their construction starting from a single parameter prior under a complete DAG.

This represents a dramatic simplification because: i) the specification of only one

distribution is required, while all the remaining priors are derived from this one;
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ii) the latter distribution is placed on an unconstrained parameter space describing

the model with no conditional independencies. In the Gaussian case ii) means that one

can use a standard Inverse Wishart on the covariance matrix, equivalently a Wishart

on the corresponding precision matrix (defined as the inverse of the covariance matrix)

so that the marginal likelihood can be expressed in closed form.

Different DAGs may define the same set of conditional independencies, in which

case they are called Markov equivalent. Accordingly, the set of all DAGs for the q vari-

ables can be partitioned into Markov equivalence classes (corresponding to distinct

statistical models). If DAGs are meant to specify exclusively conditional indepen-

dencies, as opposed to causal relationships (Lauritzen, 2001; Dawid, 2003), then all

DAGs within the same equivalence class should be regarded as indistinguishable using

observational data. The method by Geiger & Heckerman (2002) ensures that DAGs

belonging to the same equivalence class obtain the same marginal likelihood. As a

consequence, their method can also be used to infer decomposable graph structures,

by simply replacing each structure with an equivalent DAG (no matter which).

Despite its many advantages, the inferential procedure proposed by Geiger &

Heckerman (2002) still requires the specification of a potentially high-dimensional

parameter prior (especially in large q settings). This naturally suggests an objective

Bayes approach, which is virtually free from prior elicitation. We carried out this

program in Consonni & La Rocca (2012) for Gaussian DAG models, using the method

of the fractional Bayes factor (O’Hagan, 1995). Our findings were consistent with,

and extended, those presented in Carvalho & Scott (2009) for Gaussian decomposable

graphical models, which relied on the use of the hyper-inverse Wishart distribution

(Letac & Massam, 2007).

More recently, research has shifted towards covariate-adjusted estimation of co-

variance matrices. Motivation for this research stems from the analysis of genetical

genomics data (eQTL analysis) where the aim is to study conditional dependence

structures of gene expressions after the confounding genetic effects are taken into

account. Indeed, an important finding from many genetical genomics experiments

is that the gene expression level of many genes is inheritable and can be partially

explained by genetic variation; see e.g. Brem & Kruglyak (2005). Since some genetic

variants have effects on the expression of multiple genes, they act as confounders when

trying to learn the association between the genes. Accordingly, ignoring the effects

of genetic variants on the gene expression levels can lead to both false positive and

false negative associations in the gene network graph. The effect of genetic variants

on gene expression therefore needs to be adjusted in estimating the high-dimensional
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precision matrix. Work in this direction was carried out by Rothman et al. (2010);

Yin & Li (2011); Sohn & Kim (2012); Zhang & Kim (2014); Chen et al. (2016). Sohn

& Kim (2012) also considered a financial application, while Wytock & Kolter (2013)

dealt with large-scale energy forecasting in the same framework.

The problem is usually formulated as one of joint estimation of multiple regression

coefficients and a precision matrix, with the latter assumed to be Markov with respect

to some graph. Since these models are used in high-dimensional settings, both the

regression and the covariance structure are assumed to be sparse. All of the above

work assumes that the error term is multivariate normal; this assumption is relaxed in

the paper by Cai et al. (2013). The literature in the area, as exemplified by the above

papers, is carried out within a penalized likelihood maximization approach (under a

suitable norm). Bayesian contributions are still very limited; a notable exception is

Bhadra & Mallick (2013) who perform variable and covariance selection jointly, using

decomposable graphs and weakly informative hierarchical priors.

In this paper we deal with covariate-adjusted selection of Gaussian DAG models

within an objective Bayes framework. Specifically, we reconsider the foundations of

the approach by Geiger & Heckerman (2002), originally presented for the case of

i.i.d. sampling, and show that it can be meaningfully extended to the multivariate

regression setting. We provide closed-form expressions for the marginal likelihood of

any DAG, then we propose an objective Bayes procedure, based on the fractional

Bayes factor, which works for DAGs with small parent sets. Our results extend to

the regression setup those of Consonni & La Rocca (2012) and Carvalho & Scott

(2009); they also complement those of Bhadra & Mallick (2013), because they are

derived within an objective framework, and cope with a broader family of graphs,

while requiring a theoretically simpler setup.

The paper is organized as follows. Section 2 reviews the matrix distributions

used in the paper, and section 3 presents the Gaussian multivariate regression setup.

Section 4 illustrates our objective framework, while section 5 contains our proposal

for covariance selection. In section 6 our method is compared through simulations to

available alternative approaches. Finally, section 7 briefly discusses our work.
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2 Matrix distributions

Consider n independent observations on q continuous dependent variables, arranged

in an n× q response matrix:

Y =


y>1
...

y>n

 =
(
Y1 . . . Yq

)
, (1)

where yi = (yi1, . . . , yiq) is the i-th observation, and Yj = (y1j, . . . , ynj) represents the

observations on the j-th variable. Let X be a design matrix with n rows and p + 1

columns (p predictors plus intercept) which we assume known without error; denote

by x>1 , . . . ,x
>
n its rows. We model the observations as yi |B,Σ ∼ Nq(B>xi,Σ),

independently over i = 1, . . . , n, where B is an unconstrained (p + 1) × q matrix,

Σ is an unconstrained (s.p.d.) q × q matrix, and Nq(µ,Σ) denotes the q-variate

normal distribution with mean vector µ and covariance matrix Σ. The j-th column

of B, namely Bj, is the vector of regression coefficients for the j-th variable, and

E(Y |B,Σ) = XB. The distribution of Y , given B and Σ, is a special case of

the matrix normal distribution; the general case, reviewed in section 2.1, will give

a conjugate prior for B (given Σ). A conjugate prior for Σ−1 will be given by the

Wishart distribution, which is reviewed in section 2.2.

2.1 Matrix normal

We say that the random matrix Y follows the matrix normal distribution with mean

matrix M , row covariance matrix Φ, and column covariance matrix Σ, when vec(Y )

follows the multivariate normal distribution with mean vector vec(M) and covariance

matrix Σ⊗Φ; recall that vec(Y ) is the vector obtained from Y by stacking its columns

on top of one another, while ⊗ denotes the Kronecker product. If Y is an n×q matrix,

M will be an n× q matrix, Φ an s.p.d. n× n matrix, Σ an s.p.d. q × q matrix, and

we will write

Y |M ,Φ,Σ ∼ Nn,q(M ,Φ,Σ); (2)

see Gupta & Nagar (2000, p. 55), and Dawid (1981), for more information. We obtain

the special case where Y is the response matrix described above by lettingM = XB,

and Φ = In, where In is the n× n identity matrix; this will be taken up in section 3.

Let φii′ denote the generic element of Φ, and σjj′ the generic element of Σ. Clearly,

we have E(Y |M ,Φ,Σ) = M . Moreover, we have Cov(yij, yi′j′ |M ,Φ,Σ) = φii′σjj′ ,
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so that Var(yi |M ,Φ,Σ) = φiiΣ, i = 1, . . . , n, whereas Var(Yj |M ,Φ,Σ) = σjjΦ,

j = 1, . . . , q, with Var(u) denoting the covariance matrix of the random vector u.

More generally, we find Cov(yi,yi′ |M ,Φ,Σ) = φii′Σ and Cov(Yj,Yj′ |M ,Φ,Σ) =

σjj′Φ, if we denote by Cov(u,v) the cross-covariance matrix of u and v, whose

elements are the covariances between all pairs consisting of one element in u and the

other in v. Notice that Cov(u,u) = Var(u).

Reparameterizing from Σ s.p.d. to Ω = Σ−1 s.p.d., and from Φ s.p.d. toK = Φ−1

s.p.d., which we will find useful for Bayesian analysis, the density of the matrix normal

distribution Nn,q(M ,K−1,Ω−1) can be written as

f(Y |M ,K,Ω) =
|K| q2 |Ω|n2

(2π)
nq
2

exp

{
−1

2
tr
(
Ω(Y −M)>K(Y −M )

)}
, (3)

where |Ψ| denotes the determinant of the matrix Ψ, and tr(Ψ) its trace. Formula (3)

follows from the density of vec(Y ) | vec(M),Ω−1 ⊗K−1, keeping into account that

tr(ΩΨKΨ>) = tr(Ψ>ΩΨK) is the value at (Ψ,Ψ) of the bilinear form associated

to Ω ⊗ K = (Ω−1 ⊗ K−1)−1, which is the precision matrix of vec(Y ), and that

|Ω⊗K| = |Ω|n|K|q; see Lauritzen (1996, appendix B). We call K the row precision

matrix of Y , and Ω its column precision matrix. Clearly, whenever Y |M ,K,Ω ∼
Nn,q(M ,K−1,Ω−1), we have Y > |M ,K,Ω ∼ Nq,n(M>,Ω−1,K−1), which means

vec(Y >) |M ,K,Ω ∼ Nqn(vec(M>),K−1 ⊗Ω−1).

Now let J be a proper subset of {1, . . . , q}, and denote by YJ the submatrix

of Y consisting of the columns indexed by J . It is immediate to check that vec(YJ)

is multivariate normal with mean vector vec(MJ) and covariance matrix ΣJJ ⊗ Φ,

where ΣJJ is the submatrix of Σ consisting of the rows and columns indexed by J ;

see Lauritzen (1996, prop. (C.4)). Hence, column marginalization results in

YJ |M ,Φ,Σ ∼ Nn,|J |(MJ ,Φ,ΣJJ). (4)

Notice that, if M = XB, then MJ = XBJ .

Finally, letting J̄ = {1, . . . , q}\J , it is well known that vec(YJ) | vec(YJ̄) is multi-

variate normal with mean vector vec(MJ)−(Ω−1
JJ⊗K−1)(ΩJJ̄⊗K)vec(YJ̄−MJ̄), and

precision matrix ΩJJ ⊗K, where Ω−1
JJ = (ΩJJ)−1; see Lauritzen (1996, prop. C.5).

Since (Ω−1
JJ ⊗K−1)(ΩJJ̄ ⊗K) = (Ω−1

JJΩJJ̄)⊗ (K−1K) = (Ω−1
JJΩJJ̄)⊗ In, we find

YJ |YJ̄ ,M ,K,Ω ∼ Nn,|J |(MJ − (YJ̄ −MJ̄)ΩJ̄JΩ
−1
JJ ,K

−1,Ω−1
JJ) (5)
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for column conditioning. In the case K = In, formula (5) returns yiJ |M ,K,Ω ∼
N|J |(miJ−Ω−1

JJΩJJ̄(yiJ̄−miJ̄),Ω−1
JJ), independently over i = 1, . . . , n, where yiJ and

miJ are the subvectors of yi and mi, respectively, consisting of the elements indexed

by J , while m>i is the i-th row of M .

2.2 Wishart

Let Ω be a q × q unconstrained s.p.d. random matrix. We will write Ω ∼ Wq(a,R)

to mean that Ω follows a Wishart distribution with density

p(Ω) =
1

2
aq
2 Γq(

a
2
)
|R|

a
2 |Ω|

a−q−1
2 exp

{
−1

2
tr(ΩR)

}
, (6)

Ω s.p.d., and p(Ω) = 0, otherwise, whereR is a q×q s.p.d. matrix, a is a scalar strictly

greater than q− 1, and Γq(
a
2
) = π

q(q−1)
4

∏q
j=1 Γ

(
a
2

+ 1−j
2

)
is the q-dimensional gamma

function evaluated at a/2 (generalizing Γ(a/2) =
∫∞

0
z

a
2
−1e−zdz). As for parameter

interpretation, it can be shown that E[Ω|R, a] = aR−1. Our notation Wq(a,R) for

the density (6) is essentially that of DeGroot (1970, p. 59); other authors (Press,

1982; Lauritzen, 1996) would use R−1 in place of R.

We now recall some useful results. Let Ω be the precision matrix of y |µ,Σ ∼
Nq(µ,Σ), that is, Ω = Σ−1. Think of y as the generic row of the matrix Y (dropping

subscript i). Partition Σ and Ω into the blocks corresponding to the variables indexed

by J and its complement J̄ , for a given proper subset J of {1, . . . , q}:

Σ =

[
ΣJJ ΣJJ̄

ΣJ̄J ΣJ̄ J̄

]
, Ω =

[
ΩJJ ΩJJ̄

ΩJ̄J ΩJ̄ J̄

]
. (7)

The block ΣJJ is the marginal covariance matrix of yJ (obtained from y by selecting

the elements of y indexed by J). Denote by ΣJJ ·J̄ the conditional covariance matrix

Var(yJ |yJ̄) of yJ given yJ̄ (obtained from y by complementary selection). Then

ΣJJ ·J̄ = ΣJJ −ΣJJ̄Σ
−1
J̄ J̄

ΣJ̄J = Ω−1
JJ , (8)

that is, ΣJJ ·J̄ is the Schur complement of ΣJ̄ J̄ in Σ, as well as the inverse of ΩJJ .

Formula (8) expresses a relationship between four blocks of Σ and a corresponding

block of Σ−1 = Ω. Hence, by switching the roles of Σ and Ω, we obtain

ΣJJ =
(
ΩJJ −ΩJJ̄Ω

−1
J̄ J̄

ΩJ̄J

)−1
= Ω−1

JJ ·J̄ , (9)

6



where Ω−1
JJ ·J̄ is to be interpreted as Schur complementation followed by inversion.

Therefore, working with covariance matrices, marginalization corresponds to subma-

trix extraction and conditioning to Schur complementation, whereas, working with

precision matrices, marginalization corresponds to Schur complementation and con-

ditioning to submatrix extraction.

Now let Ω ∼ Wq(a,R), with R an s.p.d. matrix and a > q−1. If Ω is partitioned

as in (7), and R is partitioned accordingly, then

ΩJJ ·J̄ ∼ W|J |(a− |J̄ |,RJJ), (10)

independently of (ΩJJ̄ ,ΩJ̄ J̄), where of course |J̄ | = q − |J |; see Lauritzen (1996,

prop. C.15) who also gives the distribution of (ΩJJ̄ ,ΩJ̄ J̄).

3 Gaussian multivariate regression

We return to the scenario discussed in the Introduction, leading to covariate-adjusted

graphical model selection, and to the response matrix Y introduced at the beginning

of section 2. Denote by Z the n × p? matrix of all possible p? predictors. In eQTL

analysis p? is typically very large, and often much larger than n. However, because

of sparsity considerations, only models of the type Y = XB + E need be taken

into consideration, where X is an n × (p + 1) design matrix having the unit vector

1n as first column and p � p? predictors selected from Z as remaining columns,

while E is an n× q matrix of error terms with distribution Nn,q(0, In,Ω−1), B is an

unconstrained (p+ 1)× q matrix of regression coefficients, 0 is the n× q zero matrix,

and Ω is an unconstrained (s.p.d.) q×q matrix. Henceforth we will assume n > p+1,

which is quite a reasonable assumption as illustrated in section 6. Notice that the p

predictors to be used will not be known a priori, and thus it will be necessary to carry

out variable selection together with covariance selection; this will be feasible using

the marginal likelihoods corresponding to different design matrices. For simplicity,

we will use a single X in our notation (without explicitly conditioning on it).

In section 3.1 we summarize the main features of a standard conjugate analysis of

the model

Y |B,Ω ∼ Nn,q(XB, In,Ω−1). (11)

This is done for completeness and for the benefit of the reader, so that the subse-

quent sections can be followed more easily; see also Rowe (2003), whose notation is

somewhat different from ours. We remark that, because of the theory presented in
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section 5.1, we need only consider an unconstrained Ω even when the actual context

involves covariance matrices having a graphical structure. This is indeed a major sim-

plification characterizing the approach taken in this paper; we will return to this issue

later on. Next, in section 3.2, we derive the marginal data distribution for a subset of

variables (selected columns of Y ) which represents the building block for computing

the marginal likelihood of a general DAG model (as detailed in section 5.1).

3.1 Conjugate analysis

If we denote by B̂ = (X>X)−1X>Y the least squares estimator of B, the likelihood

function can be written as

f(Y |B,Ω) =
|Ω|n2

(2π)
nq
2

exp

{
−1

2
tr
(
Ω{(B − B̂)>X>X(B − B̂) + Ê>Ê}

)}
, (12)

where Ê = (Y −XB̂) is the matrix of residuals. Hence, a conjugate prior for (B,Ω)

is obtained by letting

B |Ω ∼ Np+1,q(B,C
−1,Ω−1),

Ω ∼ Wq(a,R),

which results in the prior density

p(B,Ω) =
|Ω|

(p+1)+(a−q−1)
2

K(C,R, a)
exp

{
−1

2
tr
(
Ω{(B −B)>C(B −B) +R}

)}
, (13)

where

K(C,R, a) =
(2π)

q(p+1)
2 2

aq
2 Γq(

a
2
)

|C| q2 |R|a2
(14)

is the prior normalizing constant. We remark that C is the prior precision matrix of

(Ω−1)jjBj, given Ω, for all j = 1, . . . , q. The prior (13) is a matrix normal Wishart.

Some algebraic manipulations show that the posterior distribution of (B,Ω) is

B |Ω,Y ∼ Np+1,q(B, (C +X>X)−1,Ω−1),

Ω |Y ∼ Wq(a+ n,R+ Ê>Ê +D),

where B = (C +X>X)−1(X>Y +CB) is the posterior expectation (matrix) of B,

and D = (B−B̂)>{C−1 +(X>X)−1}−1(B−B̂) is a measure of discrepancy between
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B and B̂ (prior and data). Prior-to-posterior updating thus takes the form

B 7→ B, C 7→ C +X>X, a 7→ a+ n, R 7→ R+ Ê>Ê +D, (15)

and the posterior density p(B,Ω |Y ) is as in (13) with hyper-parameters updated

by (15); the posterior normalizing constant will be given by

K(C +X>X,R+ Ê>Ê +D, a+ n), (16)

with the function K(·, ·, ·) defined in (14).

3.2 Marginal data distribution

The marginal distribution of the matrix Y can be obtained as

m(Y ) =
f(Y |B,Ω)p(B,Ω)

p(B,Ω |Y )
,

which in light of conjugacy gives

m(Y ) =
K(C +X>X,R+ Ê>Ê +D, a+ n)

(2π)
nq
2 K(C,R, a)

, (17)

that is, up to a multiplicative factor, the ratio of the posterior and prior normalizing

constants, (16) and (14), respectively.

In the sequel, we will also need the marginal distribution of selected columns of

the data matrix Y , corresponding to a proper subset J of the full set of q response

variables. Let YJ be the n×|J | selected data submatrix, andBJ be the corresponding

(p + 1) × |J | submatrix of B, whose columns contain the regression coefficients for

the selected responses. When restricted to the set J of response variables, by the

results presented in section 2, the Gaussian multivariate regression model (11) can be

written as

YJ |BJ ,ΩJJ ·J̄ ∼ Nn,|J |
(
XBJ , In,Ω

−1
JJ ·J̄

)
,

with induced prior

BJ |ΩJJ ·J̄ ∼ Np+1,|J |
(
BJ ,C

−1,Ω−1
JJ ·J̄

)
,

ΩJJ ·J̄ ∼ W|J |(a− |J̄ |,RJJ),

where BJ is the appropriate submatrix of B.
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One readily sees that the formal structure of model and prior for a subset J of

response variables is the same as for the full data matrix. As a consequence, the

marginal data distribution for the submatrix YJ is given by (17) with the following

substitutions:

q 7→ |J |, R 7→ RJJ , a 7→ a− |J̄ |, B 7→ BJ , B̂ 7→ B̂J , Ê 7→ ÊJ , D 7→DJJ ,

while n, C and X remain unchanged.

4 Objective analysis

We assume the reader is familiar with the basic concepts of model selection from the

Bayesian perspective, as described for instance in O’Hagan & Forster (2004, ch. 7).

Here, in section 4.1, we provide some background on objective Bayes model selection,

focusing in particular on a proposal by O’Hagan (1995). Then, in section 4.2, we give

the expression for the marginal data distribution of a generic subset of columns of Y

under the prior implied by such proposal; this will be instrumental in the construction

of the marginal likelihood of a DAG model given in section 5.1.

4.1 Fractional parameter priors

LetM1, . . . ,MK be a collection of Bayesian models for the same observable Y . Each

modelMk, k = 1, . . . , K, consists of a family of sampling densities fk(Y |θk), indexed

by a model specific parameter θk, and of a prior density pk(θk) on θk, which we assume

to be proper. We focus on the comparison ofMk withMk′ through the Bayes factor.

The Bayes factor for Mk against Mk′ is defined as BFkk′(Y ) = mk(Y )/mk′(Y ),

where mk(Y ) =
∫
fk(Y |θk)pk(θk)dθk is the marginal density of Y under Mk, also

known as the marginal likelihood of Mk.

In lack of substantive prior information, we would like to take pk(θk) = pDk (θk) for

some objective default (non-informative) parameter prior pDk (θk). However, objective

priors are often improper and they cannot be naively used to compute Bayes factors,

even when the marginal likelihoods mk(Y ) are finite and non-zero, because of the

presence of arbitrary constants which do not cancel out in their ratios. Pericchi

(2005) reviews several proposals put forward to address this issue. In this paper,

we take advantage of the fractional Bayes factor originally introduced by O’Hagan

(1995); see also O’Hagan & Forster (2004).
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Let b = b(n), 0 < b < 1, be a fraction of the number of observations n. Define

mk(Y ; b) =

∫
fk(Y |θk)pDk (θk)dθk∫
f bk(Y |θk)pDk (θk)dθk

, (18)

where f bk(Y |θk) is the sampling density under model Mk raised to the b-th power,

and the two integrals are assumed to be finite and non-zero. The fractional marginal

likelihood (18) of model Mk, can be rewritten as

mk(Y ; b) =

∫
f 1−b
k (Y |θk)pFk (θk | b,Y )dθk,

where pFk (θk | b,Y ) ∝ f bk(Y |θk)pDk (θk) is the implied fractional prior (actually a

“posterior” based on the fractional likelihood and the default prior). The fractional

Bayes factor forMk againstMk′ is then defined as the ratio of mk(Y ; b) to mk′(Y ; b).

In essence, a fraction of the likelihood is used to obtain a proper prior, which is then

applied to the complementary fraction.

Clearly, the fractional prior depends on the choice of b. Usually b will be small,

so that dependence of the prior on the data will be weak. Consistency is achieved as

long as b → 0 for n → ∞. O’Hagan (1995, sect. 4) suggests b = n0/n as a default

choice, where n0 is the minimal (integer) training sample size for which the fractional

marginal likelihood is well defined, together with a couple of alternative choices, to be

used when robustness is an issue. Moreno (1997) has an argument according to which

the default choice is the only valid one, and we stick to this choice in this paper.

4.2 Fractional marginal likelihoods

Consider the Gaussian multivariate regression model (11). We start from the im-

proper prior

pD(B,Ω) ∝ |Ω|
aD−q−1

2 , (19)

which is flexible enough to accommodate different choices of default distributions. In

particular, aD = 0 gives pD(B,Ω) ∝ |Ω|
−(q+1)

2 , equivalently pD(B,Σ) ∝ |Σ|
−(q+1)

2 for

Σ = Ω−1, because the Jacobian of (B,Ω) 7→ (B,Σ) is proportional to |Σ|(q+1). This

is the “independence” Jeffreys prior, that is, the prior obtained by multiplying the

Jeffreys priors for the two parameters assuming the other one is known; see Press

(1982, sect. 3.6.2 and (14.2.7)). Alternatively, aD = q − 1 gives pD(B,Ω) ∝ |Ω|−1,

or pD(B,Σ) ∝ |Σ|−q. Both these priors are discussed in Geisser & Cornfield (1963),
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whereas Geisser (1965) focusses more deeply on the independence Jeffreys prior. Sun

& Berger (2007) present further objective priors for the multivariate normal model,

but we content ourselves with these two well-established alternatives.

The default prior (19) formally corresponds to the conjugate prior (13) withC = 0,

R = 0, and a = aD − p − 1. Setting the fraction b equal to n0/n, the posterior

hyperparameters in (15) are given by B̂, n0n
−1X>X, aD−p−1+n0, and n0n

−1Ê>Ê.

Hence, the fractional prior for the multivariate regression model (11) is a matrix

normal Wishart of the form (13) with

B = B̂, C = n0C̃, a = aD + n0 − p− 1, R = n0R̃,

if we define C̃ = n−1X>X and R̃ = n−1Ê>Ê. In this way, we can write

p(B,Ω) ∝ |Ω|
aD+n0−q−1

2 exp
{
−n0

2
tr
(
Ω
{

(B − B̂)>C̃ (B − B̂) + R̃
})}

, (20)

which is proper under two conditions: i) aD + n0 − p > q, so that a > q − 1;

ii) n− p− 1 > q − 1, so that Ê>Ê is (almost surely) positive definite.

Condition ii), which simplifies to n > p+ q, may not be met in realistic scenarios,

but we will be able to relax it in the context of sparse DAG models; see section 5.1.

Condition i) becomes n0 > p + q, if aD = 0, or n0 > p + 1, if aD = q − 1. Clearly,

a larger n0 is needed in the case aD = 0 (independence Jeffreys prior) with respect

to the case aD = q − 1 (Geisser & Cornfield, 1963), especially if q is much larger

than 1. Since n0 is intended to be minimal, we recommend setting aD = q − 1, and

n0 = p + 2, so that a = q. Notice that, for the fraction b = n0/n to be small with

n0 = p+2, we need p << n, which is a stronger requirement than assuming n > p+1

as in section 3. However, as illustrated in section 6, this requirement will be typically

satisfied in our intended application setting.

Posterior updating of the hyper-parameters leads to

B = B̂, C 7→ nC̃, a 7→ aD + n− p− 1, R 7→ nR̃,

keeping into account that the fractional prior is to be applied to the likelihood (12)

raised to the (1 − b)-th power, which corresponds to n − n0 observations having the

same B̂, C̃ and R̃, as the whole dataset. Consequently, using (17), one gets

m(Y ) =
K(X>X, Ê>Ê, aD + n− p− 1)

(2π)
nq
2 K(n0n−1X̂>X̂, n0n−1Ê>Ê, aD + n0 − p− 1)

,
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which after some simplifications leads to

m(Y ) = π−
(n−n0)q

2
Γq(

aD+n−p−1
2

)

Γq(
aD+n0−p−1

2
)

(n0

n

) q(aD+n0)

2 |Ê>Ê|−
n−n0

2 . (21)

In order to apply the method presented in section 5 one also needs the fractional

marginal likelihood based on the submatrix YJ which only contains the columns of Y

belonging to the subset J , which we write as m(YJ). This marginal likelihood is

germane to our approach, and represents a half-way house towards computing the

entire fractional marginal likelihood for a DAG model; see section 5.1. Based on

the results presented in section 3.2, it is immediate to conclude that m(YJ) can be

obtained from equation (21) upon making the substitutions

q 7→ |J |, aD 7→ aD − |J̄ |, Ê 7→ ÊJ = (YJ −XB̂J).

These substitutions lead to

m(YJ) = π−
(n−n0)|J|

2

Γ|J |

(
aD+n−p−1−|J̄ |

2

)
Γ|J |

(
aD+n0−p−1−|J̄ |

2

) (n0

n

) |J|(aD+n0−|J̄|)
2 |Ê>JÊJ |−

n−n0
2 , (22)

which returns (21) upon setting J = {1, . . . , q}.
Formula (22) derives from ΩJJ ·J̄ ∼ W|J |(aJ ,RJJ) with aJ = aD +n0− p− 1−|J̄ |,

which is (almost surely) proper if n > p+|J |. The latter condition guarantees positive

definiteness of RJJ , while aJ = q − |J̄ | = |J | using our recommended choices for aD

and n0. Therefore, formula (22) provides us with a valid value for m(YJ), whenever

|J | < n − p, even if n ≤ p + q. We will exploit this fact in section 5.1 to derive the

marginal likelihood of a sparse DAG. In the next paragraph we specialize (22) to the

simplest regression setup, which is of some interest in its own right.

If the sampling distribution corresponds to i.i.d. observations from a q-dimensional

Gaussian density with expectation µ and precision Ω, conditionally on µ and Ω,

the corresponding marginal data distribution m(YJ) can be derived from (22) upon

setting p = 0 (no predictors) and Ê = Y −1nȳ
>, where ȳ is the q-dimensional vector

of sample means. In this way we obtain

m(YJ) = π−
(n−n0)|J|

2

Γ|J |

(
aD+n−1−|J̄ |

2

)
Γ|J |

(
aD+n0−1−|J̄ |

2

) (n0

n

) |J|(aD+n0−|J̄|)
2 |Ê>JÊJ |−

n−n0
2 , (23)
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with (Ê>Ê)jj′ =
∑

i(yij − ȳj)(yij′ − ȳj′). Expression (23) complements formula (22)

in Consonni & La Rocca (2012), which holds for i.i.d. q-dimensional Gaussian obser-

vations with zero expectation.

5 Covariance selection

So far we have analyzed the Gaussian multivariate regression model (11) under the

condition that Ω is unconstrained. We now assume instead that Ω is constrained by

a DAG, aiming at graphical model (or covariance) selection after having adjusted for

the presence of covariates. In section 5.1, we develop an extension of the approach

by Geiger & Heckerman (2002) explicitly for the regression setup. An advantage of

the method we present is that the computation of the marginal likelihood for each

DAG only requires the results established, for an unconstrained Ω, in section 4.2.

In section 5.2, taking advantage of the fact that any two Markov equivalent DAGs

obtain the same marginal likelihood, we specify our results to the case of Gaussian

decomposable graphical models, and relate them to those obtained by Carvalho &

Scott (2009) in the i.i.d. case.

5.1 Error term with directed acyclic graph structure

Let D be a DAG with vertex set {1, . . . , q}. Denote by paD(j) the parents of j in D,

that is, the set of all vertices in D from which an edge points to vertex j, and by

yipaD(j) the subvector of yi indexed by paD(j). The Gaussian multivariate regression

sampling density of yi |B,Ω, assumed Markov with respect to D, can be written as

fD(yi |θD) =

q∏
j=1

fD(yij |yipaD(j);θj), (24)

where θj = (αj,γj, λj) is defined by

E(yij |yipaD(j);B,Ω) = x>i αj + y>ipaD(j)γj, (25)

Var(yij |yipaD(j);B,Ω) = λ−1
j , (26)

and θD = (θ1, . . . ,θq) is the collection of all θjs; recall that x>i is the i-th row of the

design matrix X, and notice that we drop dependence on D when we move from θD

to its components (to lighten notation). We illustrate below the reparameterization

from (B,Ω), with Ω s.p.d., to θD, with λj > 0, j = 1, . . . , q, after a remark on (24).
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The conditional vertex density fD(yij |yipaD(j);θj) is a univariate normal density

with expectation and variance given by (25) and (26), respectively. It is important

to remark that such density depends on D only through paD(j). In other words,

if two DAGs D1 and D2 are such that paD1
(j) = paD2

(j), then the vertex-specific

parameter θj varies in the same space under D1 and D2, because γj has the same

dimension under the two DAGs, and fD1(yij |yipaD1
(j);θj) = fD2(yij |yipaD2

(j);θj).

This property, called likelihood modularity by Geiger & Heckerman (2002), represents

a condition to be satisfied for the subsequent theory to apply.

Assume (without loss of generality) that the vertices of D are well-numbered; this

means that, if j′ is a parent of j, then j′ < j. If D is complete, that is, it has all

pairs of vertices joined by an edge, then the parameters indexing the last (j = q)

conditional vertex density in (24) are: αq = Bq + Bq̄Ωq̄qΩ
−1
qq , γq = −Ωq̄qΩ

−1
qq , and

λq = Ωqq, where q̄ = {1, . . . , q − 1} = paD(q); see the end of section 2.1. Then, since

yiq̄ |B,Ω ∼ Nq−1(B>q̄ xi,Ω
−1
q̄q̄.q), one can repeat the previous argument and recursively

find θq−1, . . . ,θ1. If D is incomplete, its missing edges will impose on θ1, . . . ,θq

the constraints γjj′ = 0, j′ /∈ paD(j), j = 1, . . . , q, so that a corresponding set of

constraints will be imposed on Ω.

We now show that, for complete DAGs, the transformation (B,Ω) 7→ θD is a

smooth bijection. This fact, which is arguably not new, is reported here because it

will be used below for constructing priors under general DAGs. Given the recursive

definition of (B,Ω) 7→ θD, it is enough to show that the transformation from (B,Ω),

with Ω s.p.d., to (Bq̄,Ωq̄q̄·q;αq,γq, λq), with Ωq̄q̄·q s.p.d. and λq > 0, is a smooth

bijection. We do this by composing a few simpler reparameterizations. First, we go

from (B,Ω), with Ω s.p.d., to (B,Ωq̄q̄·q,Ωq̄q,Ωqq), with Ωq̄q̄·q s.p.d. and Ωqq > 0,

where the smooth inverse map is provided by Ωq̄q̄ = Ωq̄q̄·q + Ωq̄qΩ
−1
qq Ω>q̄q, recalling

that Ωqq̄ = Ω>q̄q (unconstrained); see for instance Lauritzen (1996, Lemma B.1).

Then, we trivially split B as (Bq,Bq̄), and replace Bq with αq, where the smooth

inverse map is given by Bq = αq −Bq̄Ωq̄qΩ
−1
qq . Finally, we reparameterize from Ωq̄q

to γq, with smooth inverse map given by Ωq̄q = −Ωqqγq, and we rename Ωqq as λq

(constrained to be positive).

In light of the above discussion, all complete DAGs define the same statistical

model, in which Ω is unconstrained, and there is a smooth bijection between their

collections of parameters; in the terminology of Geiger & Heckerman (2002) we have

complete model equivalence, and regularity. It follows that any prior on (B,Ω) will

induce a prior on θD, if D is complete. We now show that, if we let (B,Ω) follow the

conjugate prior (13), then pD(θD) =
∏q

j=1 pD(θj), so that θ1, . . . ,θq will be a priori
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independent. This property is called global parameter independence, and represents a

crucial ingredient in the approach of Geiger & Heckerman (2002); it can be obtained

by recursive application of the following result.

Proposition 1. If B |Ω ∼ N(p+1)×q(B,C
−1,Ω−1) and Ω ∼ Wq(a,R), then the pair

(Bq̄,Ωq̄q̄·q) is independent of the triple (Bq +Bq̄Ωq̄qΩ
−1
qq ,Ωq̄q,Ωqq).

Proof. Consider the reparameterization in terms of Ωq̄q̄·q s.p.d., Ωq̄q, Ωqq > 0, Bq̄,

αq = Bq +Bq̄Ωq̄qΩ
−1
qq , and factorize the corresponding joint parameter density as

p(αq |Bq̄,Ωq̄q̄·q,Ωq̄q,Ωqq)× p(Bq̄ |Ωq̄q̄·q,Ωq̄q,Ωqq)× p(Ωq̄q̄·q,Ωq̄q,Ωqq).

We know, from our statement following (10), that Ωq̄q̄·q is independent of (Ωq̄q,Ωqq)

under the assumed distribution for Ω. Moreover, from the law of B |Ω, we obtain

Bq̄ |Ωq̄q̄·q,Ωq̄q,Ωqq ∼ N(p+1),(q−1)(B q̄,C
−1,Ω−1

q̄q̄·q),

αq |Bq̄,Ωq̄q̄·q,Ωq̄q,Ωqq ∼ Np+1(Bq −B q̄Ωq̄qΩ
−1
qq ,Ω

−1
qq C

−1),

first using column marginalization (4), and (9), then using column conditioning (5).

Therefore, the joint density of Ωq̄q̄·q, Ωq̄q, Ωqq, Bq̄, and αq, factorizes as

p(αq |Ωq̄q,Ωqq)× p(Bq̄ |Ωq̄q̄·q)× p(Ωq̄q̄·q)× p(Ωq̄q,Ωqq),

which implies the desired result.

If D is incomplete, global parameter independence can be guaranteed by letting

pD(θD) =
∏q

j=1 pCj(θj), where Cj is any complete DAG such that paCj(j) = paD(j).

The actual choice of each Cj is immaterial, because all j′ /∈ paD(j), j′ 6= j, are such

that j ∈ paCj(j
′), and therefore they follow j in the well-ordering of Cj, so that pCj(θj)

is induced by the law of (BF ,ΩFF ·F̄ ), where F = faD(j) = paD(j)∪ {j} is the family

of j in D. Notice that j is the last element of faD(j) in the well-ordering of Cj, and

recall that BF |ΩFF ·F̄ ∼ N(p+1)×|F |(BF ,C
−1,Ω−1

FF ·F̄ ), by column marginalization,

while ΩFF ·F̄ ∼ W|F |(a − |F |,RFF ), as per (10). Assigning parameter priors in this

way, we also guarantee prior modularity : pD1(θj) = pD2(θj), if paD1
(j) = paD2

(j).

This is the last ingredient required by the method of Geiger & Heckerman (2002) to

compute the marginal likelihood of any DAG model, based on the assignment of the

single prior (13). We now detail the computations for our regression setting.

The marginal density of the matrix Y under the DAGD, equivalently the marginal

likelihood of D observing Y , can be found as mD(Y ) =
∫
fD(Y |θD)pD(θD)dθD,
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where fD(Y |θD) =
∏n

i=1 fD(yi |θD) with fD(yi |θD) given by (24), and furthermore

pD(θD) =
∏q

j=1 pD(θj) by global parameter independence. We can thus write

mD(Y ) =

q∏
j=1

∫
pD(θj)

n∏
i=1

fD(yij |yipaD(j);θj)dθj

=

q∏
j=1

∫
pCj(θj)

n∏
i=1

fCj(yij |yipaCj (j);θj)dθj

=

q∏
j=1

∫
pCj(θj)fCj(Yj |YpaCj (j);θj)dθj,

where the second equality is based on prior and likelihood modularity. It follows that

mD(Y ) =

q∏
j=1

mCj(Yj |YpaCj (j)) =

q∏
j=1

mCj(YfaCj (j))

mCj(YpaCj (j))
=

q∏
j=1

m(YfaD(j))

m(YpaD(j))
, (27)

recalling that paCj(j) ≡ paD(j), by construction, and mCj(·) is nothing else but m(·)
under our prior (13), by complete model equivalence and regularity.

The great advantage of (27) is that the computations of the required terms in the

rightmost product can be done under the assumption that the precision matrix Ω is

unconstrained, and thus one can use the standard matrix normal Wishart prior (13).

Notice that the DAG D enters (27) only through the specification of the set of parents,

paD(j), for each vertex j. The expressions for m(YfaD(j)) and m(YpaD(j)) are available

in section 3.2, upon replacing J with faD(j) and paD(j), respectively.

Prior (13) requires to specify the hyper-parameters B, C, a, and R. This can

be problematic, especially when the dimension of the problem is large, and we know

that marginal likelihoods are quite sensitive to changes in the hyper-parameters; see

O’Hagan & Forster (2004, Ch. 7). We therefore suggest an objective choice, based

on the fractional matrix normal Wishart prior (20) applied to the Gaussian likeli-

hood (12) with (n− n0) observations and the same B̂, C̃ and R̃ as the whole data.

With this choice, the terms m(YfaD(j)) and m(YpaD(j)) in formula (27) can be com-

puted from (22) provided that the condition |faD(j)| = |paD(j)|+1 < n−p is satisfied.

This condition guarantees a valid value for m(Yj|YpaD(j)) = m(YfaD(j))/m(YpaD(j)) by

granting a proper distribution to the marginal precision matrix ΩfaD(j)faD(j)·faD(j); see

section 4.2. In this way, formula (27) provides a marginal likelihood for every DAG

D whose parent sets have size smaller than the number of observations minus the

number of columns in the design matrix X (number of predictors in the model plus
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one). The latter is a sparsity condition on the structure of the DAG, involving the

maximal number of parents across vertices, which is quite reasonable in our intended

application setting (eQTL analysis) as discussed in the Introduction.

5.2 Error term with decomposable graph structure

It is often appropriate to model the conditional independence structure of a set of

variables in terms of an undirected graph; see Lauritzen (1996) for an authoritative

exposition. This is for instance the approach followed in Cai et al. (2013) and Chen

et al. (2016) for the analysis of genetical genomics data. With reference to the Gaus-

sian multivariate regression model (11), this means that the precision matrix Ω of

the response vector yi is constrained by an undirected graph G: if an edge is missing

between j and j′ in G, then Ωjj′ = 0. Equivalently, yi is Markov with respect to G,

that is, if j and j′ are not joined by an edge in G, the responses yij and yij′ are condi-

tionally independent, under the sampling distribution, given all remaining responses;

in symbols yij⊥⊥yij′ |yi({1,...,q}\{j,j′}),B,Ω (Drton & Perlman, 2004).

To enhance tractability, the undirected graph G is often assumed to satisfy some

conditions, such as decomposability ; see for instance Bhadra & Mallick (2013). Recall

that G is decomposable when all cycles in G admit a chord, that is, an edge joining

two non-consecutive vertices of the cycle (Cowell et al., 1999, sect. 4.2). It is well

known that a decomposable G is Markov equivalent to some DAG (Andersson et al.,

1997). Specifically, one can always well-number the vertices of G and construct a

directed version G<, which is a DAG Markov equivalent to G; see Lauritzen (1996,

p. 18). It follows that the methodology developed in section 5.1 can also be applied

to decomposable graphs, because the marginal likelihoods given by such methodology

are invariant with respect to Markov equivalence. Indeed, the proof of Theorem 4

in Geiger & Heckerman (2002) directly carries over into our regression setting.

In practice, the marginal likelihood of the model defined by the decomposable

graph G, mG(Y ) = mG<(Y ), will be given by (27) with D = G<. Since the parameter

prior used to compute (27) satisfies global parameter independence, mG<(Y ) is readily

seen to be G<-Markov; see for instance Cowell et al. (1999, sect. 9.4). Then mG(Y )

is also G-Markov, and thus it admits the representation

mG(Y ) =

∏
C∈Cm(YC)∏
S∈S m(YS)

, (28)

where C is the set of cliques (inclusion maximal complete subgraphs) and S the set
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of separators in a perfect ordering of C; see Lauritzen (1996, sect. 2.1.3). The explicit

expression of each factor in (28) can be deduced from (17) as explained in section 3.2.

In particular, when using the fractional matrix normal Wishart prior (20), one

computes m(YC) and m(YS) in (28) by means of (22), with J = C and J = S,

respectively, assuming |C| < n−p (hence |S| < n−p) whenever C is a clique (S ⊆ C

a separator) of G. In this way, we cope with decomposable graphs whose clique sizes

are smaller than the number of observations minus the number of predictors in the

model. This is again a sparsity assumption on the graph, well-suited to our intended

application setting, which grants a proper distribution to ΩCC·C̄ (hence to ΩSS·S̄);

see section 4.2. We remark that formulae (28) and (22) generalize to the multivariate

regression setup the results established by Carvalho & Scott (2009) for i.i.d. Gaussian

observations with zero expectation. As a special case, formulae (28) and (22) also

cover the i.i.d. Gaussian setup with unknown expectation.

6 Experimental studies

In the present section the proposed methodology is applied to a problem of joint

variable and graphical model selection. Different simulated scenarios are discussed,

and the results are compared with state-of-the-art competing approaches. To this

aim, the theoretical results developed in the previous sections are operationalized in

a Markov chain Monte Carlo (MCMC) algorithm that follows the structure of the

sampling algorithm proposed in Bhadra & Mallick (2013). All codes were written for

parallel computing in R (R Core Team, 2016) and are available upon request.

Given p? available predictors (or variables) we assume a regression model which

includes only a subset of the variables. Specifically, let γ = (γ1, . . . , γp?) denote

the vector of binary indicators which identifies the predictors present in the model:

γi = 1 if the i-th predictor is present, γi = 0 otherwise. Let
∑p?

i=1 γi = pγ denote the

dimension of the regression model. For simplicity we identify the regression model

with γ. Additionally, given a graph G, we assume that the precision matrix of the q

response variables ΩG is Markov with respect to G.

This leads to the following graphical Gaussian multivariate regression model

Y |Bγ ,ΩG,G,γ ∼ Nn,q
(
XγBγ , In,Ω

−1
G
)
, (29)

where Xγ is an n×(pγ+1) matrix of selected predictors, Bγ is a (pγ+1)×q matrix of

regression coefficients, and ΩG is a q × q precision matrix constrained by G. Clearly,
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neither γ not G are known, and the goal is to perform the joint task of variable

and graph selection. This is reflected in the notation used in (29) which indexes

parameters by either γ or G. Notice that this differs from the notation employed in

the more general section 5 where a fixed regression structure was tacitly understood.

As discussed at the beginning of section 3, in a typical scenario for genetical

genomics applications the total number of predictors p? is comparable to, or larger

than, the number of observations, but interest lies in sparse models. For instance, the

two simulations considered by Bhadra & Mallick (2013) have: i) p? = 498, q = 300,

and n = 120, with pγ = 11 for the actual data generating distribution; ii) p? = 498,

q = 100, and n = 120, with pγ = 3 for the actual data generating distribution.

Similarly, their real data analysis (eQTL Analysis on Publicly Available Human Data)

has p? = 3125, q = 100, and n = 60, with pγ = 1 or pγ = 2 identified as the most likely

values. Accordingly we restrict our simulation studies to scenarios wherein pγ � n.

Now consider a Gaussian multivariate regression model γ having linear predictor

XγBγ , and an unconstrained precision matrix Ω. In order to compare our results

with those obtained using alternative methods, we assume that G is an undirected

decomposable graph, and let Gj denote the indicator of the j-th off-diagonal element

of the lower triangular part of the adjacency matrix of G. We assign to (Bγ,Ω) the

fractional prior shown in (20), while the remaining prior specifications are standard

and follow Bhadra & Mallick (2013):

γi ∼ Ber(πγ), i = 1, . . . , p?,

Gj ∼ Ber(πG), j = 1, . . . , q(q − 1)/2,

πγ, πG ∼ Unif(0, 1),

all independently.

Our MCMC procedure is a collapsed Metropolis-Hastings algorithm, because the

marginal data distribution, after marginalization ofBγ and Ω, but conditionally on γ

and G, is available in closed form from formula (22) and factorization (28), thus per-

mitting draws from the full conditionals of γ and G. In this way the parameter space

investigated by the sampler is significantly reduced, with substantial computational

gains. The sampler iteratively extracts instances of γ and G from their conditional

posteriors; we omit the details of the algorithm and we refer the interested reader to

sections 2.3 and 2.4 of Bhadra & Mallick (2013). It should be noted however that we

depart from the latter authors in a few significant directions. First of all, they employ

weakly informative parameter priors, which are not tailor cut for model selection in
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the same way as our fractional priors are. Next, they resort to hyper-inverse Wishart

priors on the constrained covariance matrices ΣG = Ω−1
G , whereas we only need a

single distribution on the unconstrained precision matrix Ω which turns out to be,

in the implied fractional prior, a standard Wishart distribution with data dependent

hyperparameters; see (20). As a consequence, the data distribution conditional on γ

and G will be different in the two approaches. Finally, the moves in the space of

decomposable graphical models are implemented in our approach following a most

recent theoretical contribution, as we detail shortly below.

In each step of the MCMC algorithm, acceptance of proposed moves are subject

to the verification of the conditions outlined in the previous sections for the validity

of formula (22) and factorization (28). We also verify that local perturbations of the

graph at the current iteration result in a new graph which is still decomposable: this

can be done by accepting only those moves which satisfy two conditions outlined in

Green & Thomas (2013) on the junction tree representation of the proposed graph.

Following the simulation settings in Bhadra & Mallick (2013) and Chen et al.

(2016), we explore the performance of our method and other competing procedures

in two scenarios: sparse block and magnified block settings (both described below).

In the sparse block setting, we let Gj=0 for j ≤ q(q − 1)/2 − 10 and Gj=1 for

j > q(q− 1)/2− 10, so that the q× q adjacency matrix of G has a sparse right-below

block of active edges, where the sparsity of G increases with q. Given G, we extract

ΩG from the G-Wishart distribution (Roverato, 2002; Letac & Massam, 2007) with

degrees of freedom and scale matrix parameters respectively equal to 10 and the

identity matrix (as in Bhadra & Mallick 2013). The actual number of covariates is

also very sparse: out of p? = 100 potential covariates, the true model γ assumes only

two predictors (plus the intercept), namely the first and the third. Then, conditionally

on ΩG, we sample Bγ from N3,q

(
03,q, 0.3

2I3,Ω
−1
G
)
, where again the hyperparameters

are set as in Bhadra & Mallick (2013). Given the true γ and G, and the sampled

ΩG and Bγ , we generate 60 repetitions of Xγ and Y , for a sample size n = 50:

beyond its first column of ones, all the elements of Xγ are drawn from N (10, 1),

whilst Y is drawn from (29). The experiment is then replicated for different values of

q ∈ {30, 60, 120}, so that in all scenarios the number of potential predictors is greater

than the sample size (p? > n), and in two of the three scenarios the number of vertices

in the graph is greater than the sample size (q > n).

In the magnified block setting, we first create a graph GI by fixing a 50 × 50

adjacency matrix as in the previous scenario. Given GI , we extract ΩGI from the GI-
Wishart distribution with the hyperparameters fixed as in the sparse block setting.
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The whole graph G is the disjoint union of three copies of GI , so that q = 150, and ΩG

is a block diagonal matrix having on its diagonal ΩGI , 5ΩGI and 10ΩGI . This results

in a precision matrix ΩG with sequentially magnified signals. The active predictors

are randomly chosen, each with probability 0.05, among p? = 100 potential predictors

producing a true γ. Once Bγ is generated as in the previous setting, we simulate 60

replicates of Xγ and Y for a sample size n = 50 as described above.

We compare our method, which we name OBFBF (Objective Bayes Fractional

Bayes Factor) for easier reference in the sequel, with five alternative procedures: the

two-step ANTAC (Asymptotically Normal with Thresholding after Adjusting Co-

variates) estimator of Chen et al. (2016), the GLASSO (graphical lasso) of Friedman

et al. (2008), the HYPERT (hyper-matrix t) method of Bhadra & Mallick (2013),

the CONDIT (Sparse Gaussian Conditional) method of Wytock & Kolter (2013),

and the LOWRANK (Low Rank plus Sparse) methodology of Chandrasekaran et al.

(2012). For GLASSO, the precision matrix is estimated without taking into account

the effects of Xγ ; its tuning parameter is selected with five-fold cross-validation by

maximizing the log-likelihood function. For ANTAC, the penalty parameters are set

to their theoretically optimal values, and so is the theoretical bound of edge inclu-

sion. The hyperparameters in HYPERT are fixed to be the same as the ones used by

Bhadra & Mallick (2013) in their simulation study. Finally, for the comparison with

Wytock & Kolter (2013) and Chandrasekaran et al. (2012), we adopt the optimization

routines of Nesterov (2005), as implemented in Frot et al. (2016).

For each procedure we evaluate its performance in learning the graphical structure

(graph selection) in terms of misspecification rate, specificity, sensitivity, precision and

Matthews correlation coefficient, defined as

MISR = FN+FP
q(q−1)

, SPE = TN
TN+FP

, SEN = TP
TP+FN

,

PRE = TP
TP+FP

, MCC = TP ·TN−FP ·FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

,

where TP , TN , FP , FN are the numbers of true positives, true negatives, false

positives and false negatives (respectively).

The results in the different simulated settings are summarized in Table 1: save

for MISR, better performances correspond to higher indicators. It appears that our

method OBFBF performs equally or better than the competitors for all measures and

scenarios. The exception is ANTAC, which provides better results for scenarios with

low number of vertices, but the difference with our method significantly reduces in

settings with high q, corresponding to big networks. It should be emphasized, how-
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ever, that ANTAC is finely tuned to graph selection, with variable selection being of

lesser concern; see further comments below. On the other hand, OBFBF takes care

of both variable and graph selection. Furthermore OBFBF, which like HYPERT is

Bayesian, returns a richer output, namely a posterior distribution on γ (indexing the

space of regression models) and G (indexing the space of graphs) thus fully accounting

for model uncertainty. The above considerations should be borne in mind also when

evaluating the computational time for a given task, which is admittedly lower for

ANTAC. GLASSO, CONDIT and LOWRANK also have lower computational costs

than the MCMC-based Bayesian methods. However, their performances are hardly

impressive; in particular, the bad behaviour of GLASSO, which disregards the re-

gression structure, highlights the relevance of including covariates in the problem of

learning a graphical structure.

[Table 1 ABOUT HERE]

Moving from lower to higher q, that is, increasing the number of vertices in the

graph, does not necessarily increase the computational times of MCMC-based algo-

rithms (OBFBF and HYPERT). As q increases, the space of decomposable graphs

spans a decreasing portion of the whole space which can be explored more efficiently

provided one uses, as we do, an efficient method to screen out MCMC proposals which

fall outside the admissible subspace of graphs. The comparison of the two Bayesian

competitors in terms of computational time shows an advantage of HYPERT over

OBFBF only for the low-dimensional settings with q = 30. In the remaining cases

OBFB prevails, because HYPERT needs to go through a rather elaborate deriva-

tion of the marginal likelihood using the hyper-Inverse Wishart distribution on the

constrained covariance matrix, leading to an hyper-matrix t density; see their for-

mula (10). On the other hand, we only require standard Wishart distributions on the

unconstrained precision matrix which results in faster computations.

We report in Figure 1 run time sensitivity to different sample sizes and different

numbers of potential regressors. The results summarize the computational times of

10 000 accepted MCMC moves in stationary regime, for samples of size from 50 to 250,

and for a number of potential regressors between 50 and 250, assuming as reference

equal to 1 the time of the algorithm for 5 nodes, sample size 50 and 50 potential

regressors. There is a clear increase in time as the two dimensions increase, but such

an increase does not seem problematic, because there is a difference of roughly 7%

between the scenarios of smallest and highest dimensions.

[Figure 1 ABOUT HERE]
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Figure 2 reports a plot showing the ability of the methodologies under comparison

in recovering the structure of the graph. For the sparse block simulation setting and

(n, p?, q) = (200, 100, 30), it is apparent that ANTAC and OBFBF perform similarly

and better than the alternatives in recovering the true graph structure; both identify

the same edges in the bottom-right corner of the adjacency matrix, but ANTAC

incorrectly finds one more edge outside the true set of edges. GLASSO, HYPERT and

CONDIT are not able, for the given number of MCMC/optimization iterations used

with OBFBF, to identify the correct graphical structure, with GLASSO performing

worst, because it neglects covariates, followed by CONDIT. LOWRANK recognizes

the high sparsity of the graph, but it does not recover the bulk of connected edges.

[Figure 2 ABOUT HERE]

Table 1 and Figure 2 together show that OBFBF and ANTAC outperform their

competitors; moreover OBFBF can improve on ANTAC in sparse settings with size-

able sample sizes, and importantly it is a valid alternative to ANTAC in scenarios

featuring a high number of vertices together with a modest sample size, corresponding

to highly relevant scientific benchmarks.

Both OBFBF and HYPERT provide as output a posterior probability of edge

inclusion. In our summary results we decided to report the presence of an edge in

the adjacency matrix whenever this probability is higher than the fixed threshold 0.5.

This threshold is a natural default choice, and could be changed in applications where

context may suggest a different value. However, it turns out that our results are

quite robust with respect to this choice: for instance, with reference to Figure 2, the

matrix of estimated edge posterior probabilities is virtually indistinguishable from the

reported 0/1 adjacency matrix; among all edges identified as missing, the maximum

posterior probability is estimated as 0.0094, whilst among those identified as present,

the minimum estimated posterior probability is 0.9152.

In order to highlight that our simulation results are not dependent on the chosen

threshold, we compare in Figure 3(b) the two Bayesian methods on the basis of their

receiver operating characteristic (ROC) curve, which plots 1−SPE versus SEN as the

threshold for the edge inclusion probability is varied. Figure 3(b) confirms that, using

the same number of iterations, OBFBF is able to estimate the graphical structure

better than HYPERT.

[Figure 3 ABOUT HERE]
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The performance of OBFBF on the variable selection part of the problem is com-

pared only with HYPERT: the GLASSO procedure does not address the issue of

variable selection, and in ANTAC the selection of variables is performed in the first

step only, as an intermediate result deliberately meant to be good enough to con-

tribute to the primary goal of precision matrix estimation, which is pursued in the

second step; finally in CONDIT and LOWRANK regressors enter into the analysis

through the conditioning of the graphical structure, but these methods do not report

estimates of significant regression coefficients.

Our method and HYPERT provide a posterior probability of inclusion for each

variable, so that a varying inclusion threshold creates a ROC curve for each method;

this is shown in Figure 3(a). With reference to the sparse block simulation setting with

(n, p?, q) = (200, 100, 30), the curves show that OBFBF performs extremely well in

selecting the correct variables. This is also clear from Figure 3(c) and Figure 3(d): in

Figure 3(c) we represent graphically the situation in which, out of p? = 100 potential

regressors, only two predictors (plus intercept) are actually used to generate the data,

and in Figure 3(d) the posterior probability of inclusion for each potential regressor

is reported under the OBFBF procedure; they are correctly equal to 1 (0) for each

predictor actually included in (excluded from) the model. The corresponding results

for HYPERT (not reported) exhibit lower accuracy.

7 Discussion

Motivated by covariate-adjusted graphical model selection under sparsity, this paper

proposes an objective Bayes method for computing the marginal likelihood of a graph-

ical Gaussian multivariate regression model whose covariance matrix is constrained

by a DAG. This calculation represents an essential ingredient to obtain a posterior

probability over the space of DAG models, after having adjusted for the effect of

relevant predictors. Since the proposed method is invariant with respect to Markov

equivalence of DAGs, it can also be used to select covariate-adjusted decomposable

undirected graphical models. Furthermore, by adding an extra standard layer to our

modeling setup, it can successfully address joint variable and graphical selection.

The simulation studies we report in section 6 show that our method is quite

effective even when the sample size is small to moderate, and both the regression

and covariance structure exhibit sparsity. More specifically, with regard to graph

selection, our procedure is highly competitive with the best method for covariance

selection available in our comparative exercise.
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A natural alternative to our method is represented by Bhadra & Mallick (2013)

who derive their results for regression models whose error term is Markov with respect

to a decomposable graph. They employ weakly informative priors that need be spec-

ified by the user; in particular they assign a hyper-inverse Wishart distribution on

the graph-constrained covariance matrix depending on a global shrinkage parameter

which can highly influence the results. In the experiments we carried out our results

are significantly better both with regard to variable and graphical selection.

Although we implemented our methodology in an objective Bayes setup, our ap-

proach can be seamlessly applied also with a subjectively specified matrix normal

Wishart prior under any complete DAG model, and then applying the general results

of section 3.2 in the context of DAG models as described in section 5.1, or with regard

to decomposable models as illustrated in 5.2. In either case, the sparsity conditions

relating the sample size n, the number of predictors p and the maximal size of the

cliques, which we had to impose to make our objective Bayes analysis feasible, could

be relaxed.

Our method does not deal with covariate adjusted selection of general undirected

graphical models, where the main challenge is finding an efficient method for com-

puting the marginal likelihood; see Carvalho et al. (2007), Wang & Carvalho (2010),

Lenkoski (2013). However, working within the class of decomposable graphs can still

be very effective, even when the true graph is not decomposable; see Fitch et al.

(2014) for asymptotic results on the posterior model probabilities, and for a high

performing stochastic search of the model space.

Finally, it would be useful to consider an extension of our methodology to regres-

sion models having latent variables; a recent contribution in this direction has been

given by Frot et al. (2016) from a penalized optimization point of view.
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Table 1: Graph selection results. In the different simulation settings described in
section 6, for different sample size n, potential number of regressors p∗ and number
of responses q, our method OBFBF is compared with ANTAC (Chen et al. 2016),
GLASSO (Friedman et al. 2008), HYPERT (Bhadra & Mallick 2013), CONDIT
(Wytock & Kolter 2013) and LOWRANK (Chandrasekaran et al. 2012). Perfor-
mances are measured in terms of misspecification rate (MISR), specificity (SPE),
sensitivity (SEN), precision (PRE) and Matthews correlation coefficient (MCC). We
report, for each method and setting, the average performance (in percentage points,
for each indicator) over 60 simulated datasets, with corresponding standard deviation
in brackets. The last column reports the average computational time (in seconds) for
each method and setting.

Setting (n, p∗, q) Method MISR SPE SEN PRE MCC Time
Sparse (50, 100, 30) OBFBF 9(1) 92(1) 74(3) 32(9) 47(5) 4769

HYPERT 10(1) 91(1) 74(4) 29(2) 46(2) 4270
ANTAC 1(0) 100(0) 72(1) 100(1) 84(1) 34

GLASSO 83(5) 17(5) 86(4) 5(0) 15(2) 8
CONDIT 52(11) 48(11) 90(7) 8(2) 21(4) 99

LOWRANK 49(14) 50(14) 91(7) 9(2) 22(5) 75
Sparse (50, 100, 60) OBFBF 3(2) 97(2) 84(1) 49(31) 60(19) 5550

HYPERT 5(0) 95(0) 84(2) 28(1) 47(1) 5990
ANTAC 0(0) 100(0) 83(1) 100(1) 91(0) 109

GLASSO 59(5) 41(5) 93(2) 3(0) 12(1) 57
CONDIT 27(19) 73(20) 89(4) 8(3) 24(6) 268

LOWRANK 81(3) 18(3) 97(3) 2(0) 7(1) 236
Sparse (50, 100, 120) OBFBF 0(0) 100(0) 100(0) 99(9) 95(5) 3745

HYPERT 2(0) 98(0) 91(1) 32(2) 54(1) 5941
ANTAC 0(0) 100(0) 91(0) 100(0) 95(0) 676

GLASSO 36(4) 64(4) 95(1) 2(0) 12(1) 547
CONDIT 48(25) 52(25) 96(2) 2(1) 11(5) 861

LOWRANK 94(1) 6(1) 99(1) 1(0) 3(0) 1002
Magnified (50, 100, 150) OBFBF 0(0) 100(0) 93(0) 94(20) 92(12) 5498

HYPERT 2(0) 99(0) 93(0) 32(2) 54(1) 6770
ANTAC 0(0) 100(0) 93(0) 99(1) 96(0) 1971

GLASSO 78(5) 22(5) 97(1) 1(0) 5(1) 4570
CONDIT 96(3) 4(3) 100(1) 1(0) 2(1) 3517

LOWRANK 98(0) 2(0) 100(0) 1(0) 1(0) 5452
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Figure 1: Run times of OBFBF for different sample sizes and potential number of
regressors, for q = 5. The run time of the algorithm at n = p∗ = 50 is fixed to 1 and
taken as reference for the other scenarios.
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Figure 2: Graph selection results. In the sparse simulation setting described in
section 6, for sample size n = 200, potential number of regressors p∗ = 100 and
number of responses q = 30, we report the true adjacency matrix used to generate
the data, and we compare it with adjacency matrices estimated by OBFBF, ANTAC,
GLASSO, HYPERT, CONDIT and LOWRANK. Red and yellow cells correspond,
respectively, to present or absent edges.
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Figure 3: Graph and variable selection results. (a) ROC curve for variable selection,
as we vary the threshold of variable inclusion in the model; the black continuous line
represents our method OBFBF, the red dashed line is HYPERT. (b) ROC curve for
graph selection, as we vary the threshold of edge inclusion in the model; the black
continuous line represents OBFBF, the red dashed line is HYPERT. (c) Regressors
included in and excluded from the model are depicted as vertical lines of height 1
and 0, respectively, out of p∗ = 100 potential regressors. (d) Posterior probability of
variable inclusion in the model under OBFBF.
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