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Outline

I Overview on portfolio selection under uncertainty aversion.

I Goal: maximize uncertainty averse utility from consumption
and terminal wealth. Avoid technicalities as much as possible,
and provide explicit solutions.

I Our setup
I diffusion context, uncertainty about µ and σ estimates.
I (Ellipsoidal) uncertainty sets for the drift, along a volatility

realization.

I A max-min HJB-Isaacs PDE arises. Quite tractable.

I For CRRA utilities: explicit solution, shaped by a rescaled
market Sharpe Ratio.

I Examples.



Model uncertainty

I Traditionally, financial modelling heavily relies on the choice of
an underlying P, expressing the stochastic nature of future
market price evolutions.

I Complexity of the global economic and financial dynamics
renders precise identification of P impossible.

I Financial Modelling is inherently subject to model uncertainty,
aka Knightian uncertainty or ambiguity (or model risk).

I Incorporating model uncertainty: the single P is replaced by a
set of probabilities P, consisting of plausible models.



Philosophy of robust portfolio selection

I The investor has a pessimistic view of the odds, and takes a
max-min (or worst-case, or robust) approach to the problem.

I First she minimizes an expected utility functional from wealth
X over the plausible models P:

inf
P∈P

EP [U(X )]

I Then maximizes wealth X (θ) over portfolio strategies θ:

sup
θ

(
inf
P

EP [U(X (θ))]

)
I The problem can be seen as a zero-sum, two players game:

the representative agent vs the malevolent nature (market).

I Find a saddle point, and thus the value of the game.



Worst-case preferences axiomatized: uncertainty aversion

I The decision rule of an economic agent is specified via a
preference order � on the space of payoffs.

I If the preference order � satisfies:

X ∼ Y ⇒ tX + (1− t)Y � Y for all t ∈ [0, 1]

it is called uncertainty averse.
I Gilboa and Schmeidler J. Math. Econ. 1989; Maccheroni,

Marinacci and Rustichini, Econ. 2006 show that an ambiguity
averse preference order, verifying the Archimedean axiom and
a weak certainty independence axiom, admits a numerical
representation of worst-case type. To wit,

X � Y iff inf
P
{EP [U(X )] + γ(P)} ≥ inf

P
{EP [U(Y )] + γ(P)}

I When the penalty function γ is either 0 or ∞ (coherent case):
the above boils down to an infimization over a subset P of
probabilities, exactly the inner problem we face.



Technical difficulties...

I A main distinction to be drawn in the literature on robust
portfolio selection.

I Case P is a dominated family. All P ∈ P are absolutely
continuous wrt a reference probability P0,

P � P0

This happens e.g. when:
0) Ω is discrete, P0 =

∑
n≥1

1
2n δ{ωn}

1) P is finite or countable; dominating P0 =
∑

n cnPn

2) in a diffusion context, when there is uncertainty only in the
drift.

I Case P is nondominated. This happens whenever one has to
estimate the volatility coefficient! Estimation comes with error
intervals.



Literature overview in the dominated case

I Dominated case is easier to treat and has been widely
investigated over the last fifteen years.

I In a diffusion context, stochastic control methods
Chen and Epstein (Econ., 2002);
Maenhout (Rev. Fin. St. 2004);

I Combination of stochastic control and duality techniques:
Quenez (Ascona 2004)

I Duality methods:
Föllmer et alii, Schied various papers 2005-2009.
Owari (Adv. Math. Econ. 2011) for a thorough analysis of
the problem and the ‘good’ class of strategies.



Nondominated case, I

I Talay and Zheng, FinaSto 2002: diffusion model, uncertainty
on drift and sigma. Application to risk management problem,
viscosity solution.

I Hernandez-Hernandez and Schied (Stat&Dec. 2006):
diffusion model with a non-tradable factor and miss-specified
drift and volatility coefficients for the traded asset. DPM
applied to the dual problem.

I Matoussi, Possamai and Zhou (MathFin, 2015) - U CRRA,
volatility in an interval and known drift – via 2BSDE

I Denis and Kervarec (SIAM J. Con.Opt. 2013) - Ut-max from
terminal wealth. Stocks: continuous semimartingale.
Uncertainty on the semimartingale characteristics, diagonal
quadratic variation. By duality methods (U bounded), there
exists a worst case P.



Nondominated case, II

I Nutz (MathFin, 2016)- general model in discrete time.

I Lin and Riedel, (MathFin 2016) – diffusion with several
uncorrelated stocks; box-type uncertainty on the parameters.
Treated via robust control, namely with a G -Brownian motion
technique.

I Neufeld and Nutz: CRRA utility maximization from terminal
wealth for general Levy models (compact-valued strategies) –
forthcoming on MathFin.



Market & uncertainty modelling, I

I Canonical space of continuous paths and natural filtration.
I Market model: riskless, constant r ; n traded risky assets

evolving as
dSt = Diag(St)(µdt + σdWt)

with dimW = n.
I Estimate quadratic variation 〈W 〉t = Σ̂t, and drift µ̂,

constants.
I The agent is diffident about these estimates.
I The instantaneous VarCov Σ is no more constant, but

Σt(ω) ∈ K

where K is some compact s.t.

Σ̂ ∈ K ⊂ Sym++(n)

satisfying a uniform ellipticity condition

min
Σ∈K

y ′Σy ≥ h2‖y‖2, h > 0



Market & uncertainty modelling, II

I What about the drift?

I Fix Σ ∈ K , and consider the ellipsoid centered at µ̂, shaped
by Σ, with radius ε:

Uε(Σ) = {u ∈ Rn | (u − µ̂)′Σ−1(u − µ̂) ≤ ε2}

I For a given path of σ, let Σt(ω) = σt(ω)σt(ω)′. Then

µt(ω) ∈ Uε(Σt(ω)) ∀t, ω

I Set of plausible drifts and volatilities is thus

Υ := {(µ, σ) progr. meas. | Σt(ω) ∈ K , µt(ω) ∈ Uε(Σt(ω))}



On the choice of the uncertainty sets, I

I The volatility uncertainty set specification is inline with
empirical practice, as Σ is the estimated object, and not σ.
By Cholesky factorization however there is a one-to-one
correspondence

σ Lower Triangular , σii > 0←→ Σ > 0

I Does it make sense to model the drift along a specific
realization of volatility?
Yes. Mean returns estimates are much more subject to
imprecision than volatilities.



On the choice of the uncertainty sets, II

I In the dominated setup (σ known), there is a vast literature
under different representations of drift ambiguity.

I The k-ignorance assumption in Chen and Epstein amounts to
a box representation for the drift, [µ, µ]-valued (the same in
Lin and Riedel).

I Ellipsoidal representation for the ambiguous drifts appears in
Goldfarb and G. Iyengar (2003, MOR) and in Garlappi, Uppal
and Wang (2007, Rev. Fin. St.) for single period
mean-variance optimization.

I Fabozzi et al (Ann. Op. Res. 2010): The coefficient

realizations are assumed to be close to the forecasts... They are

more likely to deviate from their (instantaneous) means if their

variability (measured by their standard deviation) is higher, so

deviations from the mean are scaled by the inverse of the covariance

matrix. The parameter ε corresponds to the overall amount of

scaled deviations of the realized returns from the forecasts against

which the investor would like to be protected.



From uncertain drifts and volatilities to probabilities

I Our set of plausible drifts and volatilities is

Υ := {(µ, σ) progr. meas. | Σ(t, ω) ∈ K , µt(ω) ∈ Uε(Σt(ω))}

and Υσ is the σ-section.

I A choice of (µ, σ) corresponds to the selection of a P on the
canonical space.

I The plausible set P of probabilities is the set of Ps such that
S satisfies the SDE

dSt = Diag(St)(µtdt + σtdW
P
t )

in which W P denotes an n dimensional P-Brownian motion,
for some (µ, σ) ∈ Υ.



More on the family P

I When K = {Σ̂}, then P is a dominated family.
Results on SDEs and the Girsanov theorem ensure that there
is a one-to-one correspondences between drifts valued in
Uε(Σ̂) and probabilities on the canonical space, all equivalent
to P µ̂,σ̂.

I When ambiguity on the volatility is considered however, the
situation abruptly changes. If P1,P2 ∈ P correspond to
different volatility coefficients σ1 and σ2, in the sense that the
predictable set

A = {(ω, t) | Σ1
t (ω) 6= Σ2

t (ω)}

has positive measure wrt dP1dt and dP2dt, then P1 and P2

are no longer equivalent. When A = Ω× [0,T ], P1,P2 are
orthogonal to each other, as their supports have reciprocal
measure 0.
In general, P is nondominated.



Strategies

I Initial wealth x > 0.

I Fix P ∈ P. Then, S under P evolves as

dSt = Diag(St)(µtdt + σtdW
P
t )

for some (µ, σ) ∈ Υ.

I θ n−dimensional progr. meas. vector of cash allocation in
each risky asset;

I c consumption: progr meas, nonnegative, scalar process with∫ t
0 csds <∞ - P-a.s.

I wealth X from strategy (θ, c) evolves under P according to

dXt = (rXt + θ′t(µt − r1)− ct)dt + θ′tσtdW
P
t

classically, (θ, c) is admissibile if X remains nonnegative P-a.s.



Robust admissible strategies

I Definition.
A property holds P-quasi surely (q.s.) if it holds almost surely
for all P ∈ P.

I The strategy (θ, c) is robust admissible if:

1. c is nonnegative and integrable P-q.s.,
2. the wealth X is nonnegative P-q.s.

I Namely,

Arob(x) = ∩P∈P {(θ, c) | c ≥ 0, int., andX ≥ 0P − a.s.}

I Remark. When P is dominated, and there is a P ∼ P0 in P,
the robust strategies are simply the P-admissible strategies.



Example of robust strategies: bounded proportion

I Let γ > 0 and π be two progr meas and bounded processes.

I Any plan of the following type is robust admissible:

θt = Xtπt , ct = Xtγt ,

I For a given P, the wealth X satisfies the SDE:

dXt = Xt(r + π′t(µt − r1)− γt)dt + Xtπ
′
tσtdW

P
t

I Then, X is a Doléans exponential, P-a.s. nonnegative.

I Same holds for all P.



Expected utility from integrated consumption and terminal
wealth

I Let u be a continuous function on R+ × R+ such that: for
fixed t, u(t, ·) is a utility function on R+, concave increasing
in the second argument and verifying the Inada condition:

lim
x→∞

u′(t, x) = 0

I For a given probability P, consider the expected utility
functional

EP

[∫ T

0
u(t, ct)dt + U(XT )

]
in which U is the utility from terminal wealth.

I This formulation covers both finite & infinite horizon planning
(set U = 0 when T =∞)



The robust utility maximization

I The investor is uncertainty averse, and faces the following
robust Merton problem:

V (0, x) : = sup
(θ,c)∈Arob(x)

inf
P∈P

EP

[∫ T

0
u(t, ct)dt + U(XT )

]
I More conservative portfolio choices are made when the

uncertainty set Υ, and thus the family P, is larger.

I An ambiguity-neutral investor sets ε equal to zero and Σ = Σ̂
⇒ classical Merton problem.

I Lemma: the value V (0, x) is increasing and concave in x .



Martingale Principle of Optimal Control

I Robust verification theorem. Suppose that:

1. there exists a function v : [0,T ]× R+ → R, continuous on
[0,T ]× R+ and C 1,2 on [0,T )× R+, verifying v(T , ·) = U(·);

2. for any (θ, c) ∈ Arob(x) there exists an optimal P(θ,c) ∈ P of
the inner minimization, such that

Yt = Y
(θ,c)
t ≡ v(t,Xt) +

∫ t

0

u(s, cs)ds

is a P(θ,c)-supermartingale;
3. there exist some (θ̄, c̄) ∈ Arob(x) such that the corresponding

Y is a P(θ̄,c̄)- martingale.

I Then (θ̄, c̄ ,P(θ̄,c̄)) is an optimizer for the robust Merton
problem and v(0, x) = V (0, x).



HJB-Isaacs equation for the candidate value function

I Under P ∈ P,

dYt =

(
u(t, ct) + vt + vx(rx + θ′t(µt − r1)− ct) +

1

2
θ′tΣtθtvxx

)
dt+vxθ

′
tσtdW

P
t

I By Ito’s Lemma, we derive a drift condition:

the sup over the agent’s controls
of the inf over Nature’s controls

of Y ’s drift must be zero.

I PDE of HJBI type:

sup
(θ,c)

inf
(Σ,µ)
{u(t, c)+vt +vx(rx+θ′(µ−r1)−c)+

1

2
θ′Σθvxx} = 0

where (θ, c) ∈ Rn × R+, and Σ ∈ K , µ ∈ Uε(Σ).

I HJBI equations arise naturally in game theory. For more on
these equations, see Evans & Souganidis (1984, Indiana Univ.
Math. J.)



The HJBI PDE

I Proposition. Under the assumptions on u and K , the
supremum and the infimum in the HJBI equation

sup
(θ,c)∈Rn×R+

inf
Σ∈K ,µ∈Uε(Σ)

{u(t, c)+vt+vx(rx+θ′(µ−r1)−c)+
1

2
θ′Σθvxx} = 0

are attained for any v ∈ C 1,2 on (0,T )× R+ with vx > 0, vxx < 0.



Inner minimization, I

I Minimize first over µ ∈ Uε(Σ) for Σ fixed.

I This amounts to the minimization of the linear function

vxθ
′µ

over the ellipsoid, and is just an exercise in constrained
optimization.

I The optimizer is unique when θ 6= 0

µ(θ) := µ̂− ε Σθ√
θ′Σθ



Inner minimization, II

I Minimize then over K :

inf
Σ∈K

[
−εvx

√
θ′Σθ +

1

2
vxxθ

′Σθ

]
I Set t =

√
θ′Σθ. The RHS is the restriction of the concave

parabola

y(t) = −εvx t +
1

2
vxx t

2

to a compact subset of the positive axis. Since the vertex has
negative abscissa, the minimum is reached for the maximum t.

I Therefore, the optimizers are those Σ ∈ K for which θ′Σθ is
maximal.

I Call M(θ) := maxK θ
′Σθ — continuous function of θ.



Outer maximization

I The last step is the maximization in the HJBI equation:

sup
(θ,c)

u(t, c)+vt +vx(rx +θ′(µ̂− r1)−ε
√

M(θ)−c)+
1

2
M(θ)vxx = 0

(1)
I The maximization can be split into the sum of:

1. supc∈R+ (u(t, c) + vt − cvx)
Concavity of u - vx > 0 and the Inada on u imply
limc→+∞[u(t, c) + vt − cvx ] = −∞. By continuity, sup is a
max.

2. supθ∈Rn

(
vx(θ′(µ̂− r1)− ε

√
M(θ)) + 1

2M(θ)vxx
)

vx(θ′(µ̂− r1)− ε
√
M(θ)) +

1

2
M(θ)vxx ≤

≤ vx(θ′(µ̂− r1)− εh‖θ‖) +
1

2
h2‖θ‖2vxx

Coercivity when ‖θ‖ → ∞. The sup is then attained by some
θ̄, since the objective function is continuous.



Specifying to the CRRA utility case

I Assume u(t, x) is either a power utility, or a log utility, in x .

I Make educated guess on the form of the value function

I Solve the above HJBI, find the optimal controls and verify.

I Infinite horizon T here (in the paper also T <∞).

I Fix the time impatience constant ρ > 0. Either take:

1. u(t, x) = e−ρt x
1−R

1−R , with R > 0,R 6= 1, or

2. u(t, x) = e−ρt ln x

I Structural properties give as candidates:

1. v(t, x) = (γε)
−Re−ρt x

1−R

1−R , or

2. v(t, x) = e−ρt( ln x
ρ + kε)

in which γε and kε are suitable constants.



Some relevant constants

I Let
K := argminΣ∈K

(
(µ̂− r1)′Σ−1(µ̂− r1)

)
and H denote the square root of the minimum above, namely
the Sharpe Ratio

H :=

√
(µ̂− r1)′Σ

−1
(µ̂− r1), for any Σ ∈ K

I Let also H
+
ε = max(H − ε, 0).

I A simple calculation shows that H
+
ε is the minimum Sharpe

Ratio in the uncertainty set:

H
+
ε = min

Σ∈K ,µ∈Uε(Σ)

√
(µ− r1)′Σ−1(µ− r1)



Theorem (power case)

I The infinite-horizon robust Merton problem, with power utility
and initial endowment x > 0:

V (0, x) = sup
(θ,c)∈Arob(x)

inf
P∈P

EP

[∫ ∞
0

e−ρt
c1−R
t

1− R
dt

]
,

is finite valued if and only if

γε =
ρ+ (R − 1)(r + 1

2
(H

+
ε )2

R )

R
> 0.



Theorem (continued)

In case γε > 0:
I The optimal value is

V (0, x) = γ−Rε
x1−R

1− R

I Optimal adverse control is any P under which S evolves with
constant instantaneous covariance Σ ∈ K and drift

µ̄ :=

{
µ̂− ε Σ√

π′
εΣπε

πε if r1 /∈ Uε(Σ)

r1 otherwise

I Optimal agent controls are:

θ̄t = πεX̄t , c̄t = γεX̄t ,

with optimal portfolio proportions vector given by

πε :=
H

+
ε

RH
Σ
−1

(µ̂− r1)



Theorem (continued)

I The optimal wealth process has P dynamics given by

X̄t = x exp

(
πεσW

P̄
t + (r +

(H
+
ε )2(2R − 1)

2R2
− γε)t

)
when πε 6= 0, and otherwise is X̄t = x exp ((r − γε)t).

I the equalities

V (0, x) = inf
P∈P

sup
(θ,c)∈Arob(x)

EP

[∫ ∞
0

u(t, ct)dt

]
hold and ((θ̄, c̄), P̄) is a saddle point of the agent-adverse
market game;

I any optimal (Σ, µ̄) pointwisely realizes the worst SR among
the models P:

min
P∈P

√
(µt − r1)′Σ−1

t (ω)(µt − r1) = const = H
+
ε



Theorem (Log case)

The infinite-horizon robust Merton problem, with logarithmic
utility and initial endowment x > 0:

V (0, x) = sup
(θ,c)∈Arob(x)

inf
P∈P

EP

[∫ ∞
0

e−ρt ln ct dt

]
has value

V (0, x) =
ln x

ρ
+ kε,

in which

kε =
1

ρ2

[
ρ ln ρ+ r − ρ+

(Hε
+

)2

2

]
.

I The optimal controls are

θ̄t = πεX̄t , c̄t = ρX̄t ,

with optimal portfolio proportions vector given by

πε :=
H

+
ε

H
Σ
−1

(µ̂− r1).

The optimal portfolio πε is therefore null if and only if Hε ≤ 0
or, equivalently, r1 is a plausible drift under Σ.



Theorem (Log case, continued)

I Any optimal adverse control is given by a probability P̄ under
which S evolves with any constant instantaneous covariance
Σ and drift

µ̄ :=

{
µ̂− ε Σ√

π′
εΣπε

πε if r1 /∈ Uε(Σ)

r1 otherwise

I The optimal wealth process has P dynamics given by

X̄t = x exp
(
πεσW

P
t + (r + (H+

ε )2 − ρ)t
)
. (2)

when πε 6= 0, and is the deterministic X̄t = x exp ((r − ρ)t)
otherwise.

I The minimax equality holds:

V (0, x) = inf
P∈P

sup
(θ,c)∈Arob(x)

EP

[∫ ∞
0

e−ρt ln ctdt

]
and ((θ̄, c̄),P) is a saddle point for the agent-market game.



Some comments

I When ε = 0 and no uncertainty on Σ we obtain exactly the
Merton’s controls.

I The agent does not participate to the stock market (πε = 0, )
if and only if ambiguity is too high, in the sense that r1 is a
plausible drift under a worst case Σ.

I The verification is by comparison with the reduced ambiguity
problem with Σ fixed and constant, and varying drift. Then,
minimizing over Σ ∈ K .



Equity premium puzzle and effect of robustness on
decisions

I Mehra and Prescott (JMonEcon, 1985) the high levels of
historical equity premium and the simultaneous moderate
equity demand seem to be implied by unreasonable levels of
risk aversion.

I Cecchetti, Lam and Mark (AER 2000) relax hp of perfect
knowledge of P. In a discrete economy, robustness in the
decisions lowers the optimal demand on equity.

I Theoretical basis for a possible explanation of the equity
premium puzzle.

I The optimal relative allocation of wealth depends on risk and
ambiguity aversion:

1

R

max{H − ε, 0}
H

.

I In the extreme case ε ≥ H, ambiguity aversion leads to
non-participation in the risky assets.



Mutual Fund Theorem for the CRRA class

I Mutual Fund Theorem: independently of the agent’s utility,
the optimal portfolio consists of an allocation between two
fixed mutual funds, namely the riskless asset and a fund of
risky assets.
Tobin (RES 1958); Merton JET 1971 & Econom. 1973;
Cass& Stiglitz (JET 1970); Chamberlain (Econom. 1988);
Schachermayer, Sirbu and Taflin (FinaSto 2009)

I Our result proves that the MFT holds in the robust case for
CRRA utilities, the risky mutual fund being the constant

Σ
−1

(µ̂− r1)



Final Remarks

I Robust problem observationally equivalent to CRRA utility
maximization with P under which S evolves with the worst
SR.

I Results in accordance with the existing literature. Our
contribution differs in that we do not require any specific
condition on the volatility structure as Lin-Riedel, nor
convexity of K or compactness of the strategies as in
Neufeld-Nutz.

I From a computational point of view, one only needs to find
the worst cases matrices set K̄ . Easy when K is convex, but
convexity is not required for our theoretical results to hold.

I Simple case: K has a maximal element ΣM with respect to
the positive ordering of symmetric matrices:

x ′ΣMx ≥ x ′Σx for all x ∈ Rn,Σ ∈ K

then ΣM will be a worst case matrix, as it happens in the two
examples below.



Example I

I Estimated Σ̂ constant (n stocks, uncorrelated).

I Constraints on all eigenvalues of Σ. Compact set K given by

K = {Σ | Σ ∈ Diag , and 0 < σ2
i ≤ σii ≤ σ2

i , i = 1 . . . n}

I The worst case Σs for given θ are the maximizers of

θ′Σθ

I Independently of θ, Σ = Diag(σ2
1, . . . , σ

2
n), optimal strategy

θ =
x

R

H
+
ε

H


1
σ2

1
. . . 0

. . .

0 . . . 1
σ2
n

 (µ̂− r1)

I Analog of the case in Lin & Riedel.



Example II

I Variation of the previous example: constraints on the VarCov
formulated via the quadratic form θ′Σθ.

I Example:

K = {Σ | 0 < h2 ≤ x ′Σx ≤ λ2 on the unit sphere}

e.g. maximum eigenvalue smaller than λ2 > 0, minimum
bigger than h2.

I The worst case Σs for given θ are obtained as the maximizers
of

θ′Σθ

I So, the optimal constant Σ = λ2In and the optimal strategy is

θ =
x

R

H
+
ε

H

1

λ2
(µ̂− r1) =

x

Rλ2

max{‖µ̂− r1‖ − ελ, 0}
‖µ̂− r1‖

(µ̂− r1)



Thank you!


