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Quadratic Hedging

» H € L?(Z71) contingent claim to be hedged

» S € ./? price evolution of a tradable asset with local variance
» Follmer and Sondermann: Minimize quadratic hedging error
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What if market frictions force us to follow an alternative strategy
X instead of €H?



Quadratic Hedging with frictions

Minimize quadratic hedging error
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Minimize quadratic hedging error
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~+ We should try to track £ £ ¢H as close as possible. . .
.. .subject to constraint by expected transaction costs:
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where u; = X; measures trading speed and

t
position at time t = X; = x + / Us ds
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Quadratic tracking problem
Mathematical optimization problem
For a given predictable ¢ € L?(P @ dt) and given x € R, find an

absolutely continuous, adapted process X; = x + fot usds with
u € L?(P @ ds), which minimizes
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for given progressively measurable, strictly positive processes o, .



Quadratic tracking problem

Mathematical optimization problem

For a given predictable ¢ € L?(P @ dt) and given x € R, find an
absolutely continuous, adapted process X; = x + fot usds with
u € L?(P @ ds), which minimizes
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for given progressively measurable, strictly positive processes o, .
Possible additional constraint on terminal position:

X7 = =7 for some given =1 € L2,

Closely related references from Mathematical Finance
Rogers & Singh (2010) , Naujokat & Westray (2011), Frei &
Westray (2013), Schied (2013), Horst & Naujokat (2014),
Almgren & Li (2014), Cartea & Jaimungal (2015), Cai et al.
(2015, 2016), ...



Constant coefficients in the unconstrained case

Theorem
If o and k are constant and there is no constraint on the terminal
position, it is optimal to always trade towards

R sech
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where \ = /02

Rather than towards the current target &;, one should trade
towards its expected future &;; cf. Garleanu & Pedersen (2014).



Constant coefficients in the constrained case

Theorem
If o and k are constant and the terminal position has to be =, it
is optimal to always trade towards
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cosh(TT)
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cos T cos W)— )
according to
coth(L=h)
x _ VA
dX = (gt )t

where \ £ k/o?.

As t T T we have to trade towards £ (and thus towards =7) with
higher and higher urgency.



Illustration: Frictionless hedge with jump midway
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lllustration: Discretely monitored Asian option
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(blue), unconstrained (orange, dashed) and constrained (green, dashed)
target, corresponding unconstrained (orange) and constrained (green)
frictional hedge, and directly targeting strategy (red)
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Lemma
A terminal position =1 can be attained at finite expected costs if
and only if

/T E[(Z7 - =¢)’]
0

(T =12 dt < oo where =; = E[=1 | Z¢].



General case with stochastic coefficients

For a given predictable ¢ € L?(P @ dt) and given x € R, find an
absolutely continuous, adapted process X = x + jo updt with
u € L?(P ® dt), which minimizes

T T
E |:/ (Et - Xt)zU? dt + / :‘ﬂ?tU% dt + T](ET — XT)2
0 0

with o, k progressively measurable, strictly positive, bounded
processes, nonnegative 7 and =1 € % 7.



General case with stochastic coefficients

For a given predictable ¢ € L?(P @ dt) and given x € R, find an
absolutely continuous, adapted process X = x + jo updt with
u € L?(P ® dt), which minimizes

T T
E [/ (& — X )02 dt +/ reu? dt + (=1 — X7)?
0 0

with o, k progressively measurable, strictly positive, bounded
processes, nonnegative 7 and =1 € % 7.

Also allow for 7 = 400 with positive probability:
~» imposes implicitly the terminal state constraint X+ = =1 on
{n = 400} (constrained problem)

~~ we have to be careful with n(Z7 — X7)? if n = 0o and
=1 = X7 "truncation in space” vs. “truncation in time”.



Bounded penalization
Kohlmann and Tang (2002) : for n > 0 bounded, consider
2
(BSRDE) dc; = “tdt — o2dt —dM, (0<t<T), cr=n.
Rt

Theorem
The optimal tracking strategy X* is given by

dx; = < (ét - X:) dt
Kt
where

=i Shdu e
/ ér dr gg\t
1 - Wt
t cy
with the supermartingale L; = cie” Jo iy d > 0 yielding

d L
and the probability d% - WT]'
T
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E[L7| 7]
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weights w; =



Solution to optimal liquidation problem

In case where IP[) = +o0] > 0, but targeting £ =0, =+ = 0:
Theorem (Kruse & Popier (2015))

Let & =0 and =1 = 0 P-a.s. Consider solution (¢;)o<¢<T of
2
(BSRDE) dc; = tdt —o?dt —dM, (0<t<T), cr=n.
Rt
Then the optimal liquidation strategy X° is given by
dX0 = — & X0t
Rt

and satisfies limy 7 X2 =0 on {n = +o0}.
The minimal costs are given by

J(XO) = C0X2.



General result

Suppose:
» integrable coefficients: fOT(O'? + k) dt < 00 as.

» There is a unique semimartingale ¢ = (¢t)o<¢<7 > 0 with

2

(BSRDE) dc; = tdt—o2dt—dM, (0<t<T), limec =n
Kt T
such that
Esup(c? + M?) < oo forany t < T
s<t
and

d
/ [2C]t < oo on {n=+4o0}.
[0.7) C—

> integrable targets: & € LY(P®o?dt), =1Lt € LY(P)



General result (ctd)

Then:
> The signal process

A 1 T ra
&2 [ E [ETLT+/ gre do s g2 gy
t t

z%} (0<t<T)

is well defined and satisfies lim; 7 ét ==7 on {n>0}.

» The target functional

T T
J(u) = limsupE [/ (X! — &)202dt +/ keuldt + (XY — 57)2]
T 0 0

has nonempty domain dom J = {u | J(u) < oo} iff

/ Ctd[é]t
[0.7)

-
E {/ ﬁafdt} < +oo and E < +oo.
0




General result (ctd)

» If dom J # (), the optimal control u* is given in feedback form
with X* £ XY via

u::%(éﬁx:), 0<t<T.

» The minimal costs decompose as

~ T ~
J(u*) = co(x — &)* + E [/o (& — ft)Qafdt] +E

/[0’ ():fd[é]t]

into costs due to suboptimal starting position, to the (lack of)
regularity and compatibility of the targets £, =+, and to the
signal's variability given new information on problem data.



Key insights for proof

A lengthy calculation reveals that

~

/ (X — €202 + / Cwedt e (X — )

0 0

- —&)? t*At2§d tdAt
co(x — &) +/0<5 &Yoo r+/0c ]

+/OT/-ft <ut — f% (ét—Xt“>>2dt

+ local martingale- .
Carefully taking expectations and letting 7 T T reveals optimality

of given (i along with necessary and sufficient conditions for
dom J # (.



Conclusions

» quadratic hedging with quadratic transaction costs from
temporary price impact

» explicit solution for constant coefficients: trade towards
expected average future position of suitable frictionless
optimum

> ...possibly combined with weighted expectation of ultimate
target position

» characterization of ultimate positions which are attainable
with finite expected costs

> closed-form hedging recipes also for frictionless reference
hedges which have singularities

» very general optimal control with stochastic coefficients solved
in terms of (singular) backward stochastic Riccati equation

» construction of signal process and interpretation of problem
value
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Thank you very much!



