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Overview

• Bayesian nonparametrics and random probability measures
• Mixture models and clustering

• Hierarchies of Dirichlet processes
• Modelling document collections with topic models
• Modelling genetic admixtures in human populations

• Hierarchies of Pitman-Yor processes
• Language modelling with high-order Markov models and power law statistics
• Non-Markov language models with the sequence memoizer



Bayesian Nonparametrics

• Data x1,...,xn assume iid from an underlying distribution μ:

• Inference on μ nonparametrically, within a Bayesian framework:

• “There are two desirable properties of a prior distribution for nonparametric 
problems:

• (I) The support of the prior distribution should be large—with respect to some 
suitable topology on the space of probability distributions on the sample space.

• (II) Posterior distributions given a sample of observations from the true 
probability distribution should be manageable analytically.” 

• — Ferguson (1973)

µ ⇠ P

xi|µ
iid⇠ µ

[Hjort et al (eds)  2010]



Dirichlet Process

• Random probability measure

• For each partition (A1,...Am),

• Cannot use Kolmogorov Consistency Theorem to construct the DP:
• Space of probability measures not in the product σ-field on [0,1]B.
• Use a countable generator F for B and view μ ∈ [0,1]F.

• Easier constructions:
• Define an infinitely exchangeable sequence with directing random measure μ.
• Define a gamma process and normalizing it.
• Explicit construction using the stick-breaking process.

(µ(A1), . . . , µ(Am)) ⇠ Dir(↵H(A1), . . . ,↵H(Am))

µ ⇠ DP(↵, H)

[Ferguson 1973, Blackwell-McQueen 1973, Sethuraman 1994, Pitman 2006]



Dirichlet Process

• Analytically tractable posterior distribution.

• Well-studied process:
• ranked-ordered masses have Poisson-Dirichlet distribution.
• Size-bias permuted masses have simple iid Beta structure.
• Corresponding exchangeable random partition described by the Chinese 

restaurant process.

• Large support over space of probability measures in weak topology.
• Variety of convergence (and non-convergence) results.

• Draws from DP are discrete w.p. 1.



Dirichlet Process Mixture Models

• Draws from DPs are discrete probability measures:

where wk, θk are random.
• Typically use within a hierarchical model,

leading to nonparametric mixture models.
• Discrete nature of μ induces repeated values among ϕ1:n.

• Induces a partition Π of [n] = {1,…,n}.
• Leads to a clustering model with an unbounded/infinite number of clusters.

• Properties of model for cluster analysis depends on the properties of the induced 
random partition Π (a Chinese restaurant process (CRP)).

• Generalisations of DPs allow for more flexible prior specifications.

[Antoniak 1974, Lo 1984]

µ =
1X

k=1

wk�✓k

�i|µ
iid⇠ µ xi|�i ⇠ F (�i)



• Defines an exchangeable stochastic process over sequences

• The de Finetti measure [Kingman 1978] is the Dirichlet process,

Chinese Restaurant Processes
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p(sit at table k) =
ck

↵+
PK

j=1 cj
p(table serves dish y) =H(y)

p(sit at new table) =
↵

↵+
PK

j=1 cj
i sits at table j: �i =✓j

�1,�2, . . .

µ ⇠ DP(↵, H)

�i|µ ⇠ µ i = 1, 2, . . .

[Blackwell & McQueen 1973, Pitman 2006]



Density Estimation and Clustering

Predictive Density Co−clustering
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[Favaro & Teh 2013]



Spike Sorting



Spike Sorting
1: size = 319

2: size = 62

3: size = 40

4: size = 270

5: size = 44

6: size = 306

7: size = 826

7a: size = 267

7b: size = 525

8: size = 123

[Favaro & Teh 2013]



Families of Random Probability Measures
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Gibbs Type Partitions 
• An exchangeable random partition Π is of Gibbs type if

where π has K clusters with sizes n1,…,nK.
• Exchangeability and Gibbs form implies that wlog:

where -∞ ≤ σ ≤ 1.
• The number of clusters K grows with n, with asymptotic distribution

for some random variable Sσ, where f(n) = 1, log n, nσ for σ < 0, = 0, > 0.
• Choice of Sσ and σ arbitrary and part of prior specification.

• σ < 0: Bayesian finite mixture model
• σ = 0: DP mixture model with hyper prior on α
• σ > 0: σ-stable Poisson-Kingman process mixture model

[Gnedin & Pitman 2006, De Blasi et al 2015, Lomeli et al 2015]

p(⇧n = ⇡n) = Vn,K

KY

k=1

Wnk

Wm = (1� �)(2� �) · · · (m� 1� �)

Kn

f(n)
! S�



Other Uses of Random Probability Measures

• Species sampling [Lijoi, Pruenster, Favaro, Mena]
• Nonparametric regression [MacEachern, Dunson, Griffin etc]
• Flexibly modelling heterogeneity in data

• More general random measures:
• Survival analysis [Hjort 1990]
• Feature models [Griffiths & Ghahramani 2011, Broderick et al 2012]

• Building more complex models via different motifs:
• hierarchical Bayes
• measure-valued stochastic processes
• spatial and temporal processes
• relational models

[Hjort et al (eds)  2010]
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Hierarchical Bayesian Models

• Hierarchical modelling an important overarching theme in modern statistics 
[Gelman et al, 1995, James & Stein 1961].

• In machine learning, have been used for multitask learning, transfer learning, 
learning-to-learn and domain adaptation.

µ0

µ1 µ2 µ3

x1i x2i x3i



Clustering of Related Groups of Data

• Multiple groups of data.
• Wish to cluster each group, using DP mixture models.
• Clusters are shared across multiple groups.



Clustering of Related Groups of Data

• Multiple groups of data.
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• Model each document as a bag of words coming from an underlying set of 
topics [Hofmann 2001, Blei et al 2003].

CARSON, Calif., April 3 - Nissan 
Motor Corp said it is raising the 
suggested retail price for its cars 

and trucks sold in the United 
States by 1.9 pct, or an average 

212 dollars per vehicle, effective 
April 6....

Document Topic Modeling

Auto industry
Market economy

Plain old English
US geography

DETROIT, April 3 - Sales of U.S.-
built new cars surged during the 

last 10 days of March to the 
second highest levels of 1987. 

Sales of imports, meanwhile, fell 
for the first time in years, 

succumbing to price hikes by 
foreign carmakers.....

• Summarize documents.
• Document/query comparisons.

• Topics are shared across documents.
• Don’t know #topics beforehand.



Multi-Population Genetics

European Asian African

• Individuals can be clustered into a number of genotypes, with each 
population having a different proportion of genotypes [Xing et al 2006].

• Sharing genotypes among individuals in a population, and across different 
populations.

• Indeterminate number of genotypes.



Genetic Admixtures
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• Introduce dependencies between groups by 
making parameters random?

• If H is smooth, then clusters will not be shared 
between groups.

• But if the base distribution were discrete….

Dirichlet Process Mixture for Grouped Data?

atoms do not 
match up

G2G1



• Making base distribution discrete forces 
groups to share clusters.

• Hierarchical Dirichlet process:

• Extension to deeper hierarchies is 
straightforward.
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�

Hierarchical Dirichlet Process Mixture Models

[Teh et al 2006]

G0 ⇠ DP(�, H)

G1|G0 ⇠ DP(↵, G0)

G2|G0 ⇠ DP(↵, G0)



Hierarchical Dirichlet Process Mixture Models
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Document Topic Modeling

• Comparison of HDP and latent Dirichlet allocation (LDA).
• LDA is a parametric model, for which model selection is needed.
• HDP bypasses this step in the analysis.



Shared Topics

Cognitive Science Neuroscience Algorithms & Architecture Signal Processing
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• Used a 3-level HDP to model shared topics in a collection of machine 
learning conference papers.

• Shown are the two largest topics shared between Visual Sciences section and 
four other sections.

• Topics are summarized by the 10 most frequent words in it.



[de Iorio et al 2015]

Genetic Admixtures

G0 ⇠ DP(�, H)

Gi|G0 ⇠ DP(↵, G0)

si,l+1 ⇠ Bernoulli(e�rdl
)

zi,l+1|si,l+1, zil ⇠
(
�zil if si,l+1 = 1,

Gi if si,l+1 = 0.

xil|zil = ✓k ⇠ Discrete(✓kl)
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Sequence Models for Language and Text

• Probabilistic models for sequences of words and characters, e.g.

• Uses:
• Natural language processing: speech recognition, OCR, machine 

translation.
• Compression.
• Cognitive models of language acquisition.
• Sequence data arises in many other domains.

south, parks, road 

s, o, u, t, h, _, p, a, r, k, s, _, r, o, a, d



Markov Models for Language and Text

• Probabilistic models for sequences of words and characters.

• Usually makes a Markov assumption:

• Order of Markov model typically ranges from ~3 to > 10.

P(south parks road) =  
P(south)* 

P(parks | south)* 
P(road | south parks)

P(south parks road) ~  
P(south)* 

P(parks | south)* 
P(road | parks)

Andrey Markov

George E. P. Box



• Consider a high order Markov models:

• Large vocabulary size means naïvely estimating parameters of this model 
from data counts is problematic for N>2.

• Naïve regularization fail as well: most parameters have no associated data.
• Smoothing.
• Hierarchical Bayesian models.

High Dimensional Estimation

PML(wordi|wordi�N+1 . . .wordi�1) =
C(wordi�N+1 . . .wordi)

C(wordi�N+1 . . .wordi�1)

P (sentence) =
�

i

P (wordi|wordi�N+1 . . .wordi�1)



Smoothing in Language Models

• Smoothing is a way of dealing with data sparsity by combining large and 
small models together.

• Combines expressive power of large models with better estimation of small 
models (cf bias-variance trade-off and hierarchical modelling).

P smooth(wordi|wordi�1
i�N+1) =

N�

n=1

�(n)Qn(wordi|wordi�1
i�n+1)

P smooth

(road|south parks)

= �(3)Q
3

(road|south parks) +

�(2)Q
2

(road|parks) +
�(1)Q

1

(road|�)



Smoothing in Language Models

[Chen and Goodman 1998]



• Context of conditional probabilities naturally                                             
organized using a tree.

• Smoothing makes conditional probabilities                                                          
of neighbouring contexts more similar.

• Later words in context more important                                                                 
in predicting next word.

�

Context Tree

along south parks

south parks

parks

to parks university parks

at south parks

P smooth
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3
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• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Obvious choice: hierarchical Dirichlet                                    distributions.
G�

Hierarchical Bayesian Models on Context Tree

P (wordi = w|wordi�1
i�N+1 = u) = Gu(w)

Gu = [Gu(w)]w�vocabulary

Gparks

G
south parks

G
to parks

Guniversity parks

G
along south parks

G
at south parks

[MacKay and Peto 1994]



Hierarchical Dirichlet Language Models

• What is                         ? [MacKay and Peto 1994] proposed using the standard 
Dirichlet distribution over probability vectors.

• We will use Pitman-Yor processes instead [Pitman and Yor 1997], [Ishwaran 
and James 2001].

P (Gu|Gpa(u))

T N-1 IKN MKN HDLM

2� 106 2 148.8 144.1 191.2
4� 106 2 137.1 132.7 172.7
6� 106 2 130.6 126.7 162.3
8� 106 2 125.9 122.3 154.7

10� 106 2 122.0 118.6 148.7
12� 106 2 119.0 115.8 144.0
14� 106 2 116.7 113.6 140.5
14� 106 1 169.9 169.2 180.6
14� 106 3 106.1 102.4 136.6



• Easiest to understand them using Chinese restaurant processes.

• Defines an exchangeable stochastic process over sequences

• The de Finetti measure [Kingman 1978] is the Pitman-Yor process,

• [Pitman & Yor 1997]

x1, x2, . . .

Exchangeable Random Partition

y1

x1 x2
x3
x4

x5

x6

x7
x8

x9
y2 y3 y4

G � PY(�, d, H)
xi � G i = 1, 2, . . .

p(sit at table k) =
ck � d

� +
PK

j=1 cj
p(table serves dish y) =H(y)

p(sit at new table) =
� + dK

� +
PK

j=1 cj
i sits at table c: xi =yc



Power Law Properties of Pitman-Yor Processes

• Chinese restaurant process:

• Pitman-Yor processes produce distributions over words given by a power-law 
distribution with index 1 + d.
• Customers = word instances, tables = dictionary look-up;
• Small number of common word types;
• Large number of rare word types.

• This is more suitable for languages than Dirichlet distributions.

• [Goldwater, Griffiths and Johnson 2005] investigated the Pitman-Yor process 
from this perspective. 

p(sit at table k) ⇥ ck � d

p(sit at new table) ⇥ � + dK



Pitman-Yor Processes
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Power Law Properties of Pitman-Yor Processes
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Power Law Properties of Pitman-Yor Processes



Hierarchical Pitman-Yor Language Models

• Parametrize the conditional probabilities of Markov model:

• Gu is a probability vector associated with context u.

• Place Pitman-Yor process                                                                                       
prior on each Gu.

P (wordi = w|wordi�1
i�N+1 = u) = Gu(w)

Gu = [Gu(w)]w�vocabulary

G�

Gparks

G
south parks

G
to parks

Guniversity parks

G
along south parks

G
at south parks



Hierarchical Pitman-Yor Language Models

• Significantly improved on the hierarchical Dirichlet language model.
• Results better Kneser-Ney smoothing, state-of-the-art language models.

• Similarity of perplexities not a surprise---Kneser-Ney can be derived as a 
particular approximate inference method.

T N-1 IKN MKN HDLM HPYLM

2� 106 2 148.8 144.1 191.2 144.3
4� 106 2 137.1 132.7 172.7 132.7
6� 106 2 130.6 126.7 162.3 126.4
8� 106 2 125.9 122.3 154.7 121.9

10� 106 2 122.0 118.6 148.7 118.2
12� 106 2 119.0 115.8 144.0 115.4
14� 106 2 116.7 113.6 140.5 113.2
14� 106 1 169.9 169.2 180.6 169.3
14� 106 3 106.1 102.4 136.6 101.9

[Teh 2006]



Markov Models for Language and Text

• Usually makes a Markov assumption to simplify model:

• Language models: usually Markov models of order 2-4 (3-5-grams).
• How do we determine the order of our Markov models?
• Is the Markov assumption a reasonable assumption?

• Be nonparametric about Markov order...

P(south parks road) ~ 
P(south)*

P(parks | south)*
P(road | south parks)



Non-Markov Models for Language and Text

• Model the conditional probabilities of each possible word occurring after 
each possible context (of unbounded length).

• Use hierarchical Pitman-Yor process prior to share                          
information across all contexts. 

• Hierarchy is infinitely deep.

• Sequence memoizer.

...
.

...
.

...
.

...
.

G�

Gparks

G
south parks

G
to parks

Guniversity parks

G
along south parks

G
at south parks

G
meet at south parks

[Wood et al 2009]



• The sequence memoizer model is very large (actually, infinite).

• Given a training sequence (e.g.: o,a,c,a,c), most of the model can be ignored 
(integrated out), leaving a finite number of                                                        
nodes in context tree.

• But there are still O(T2) number of                                                                             
nodes in the context tree...     

Model Size: Infinite -> O(T2) 
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Model Size: Infinite -> O(T2) -> 2T

• Idea: integrate out non-branching, non-leaf nodes of the context tree.

• Resulting tree is related to a suffix tree data structure,                                         
and has at most 2T nodes.

• There are linear time construction                                                                      
algorithms [Ukkonen 1995].
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Closure under Marginalization

• In marginalizing out non-branching interior nodes, need to ensure that 
resulting conditional distributions are still tractable.

• E.g.: If each conditional is Dirichlet, resulting conditional is not of known 
analytic form.

G[a]

G[ca]

G[aca]

PY(�2, d2, G[a])

PY(�3, d3, G[ca])

G[a]

G[aca]

?



Closure under Marginalization

G[a]

G[ca]

G[aca]

PY(�2, d2, G[a])

G[a]

G[aca]

PY(�2d3, d3, G[ca])

PY(�2d3, d2d3, G[a])

• In marginalizing out non-branching interior nodes, need to ensure that resulting 
conditional distributions are still tractable.

• Hierarchical construction is equivalent to coagulation, so the marginal process is 
Pitman-Yor distributed as well.



Comparison to Finite Order HPYLM



Compression Results

Calgary corpus 
SM inference: particle filter 
PPM: Prediction by Partial Matching 
CTW: Context Tree Weigting 
Online inference, entropic coding.

Model Average bits/byte

gzip 2.61

bzip2 2.11

CTW 1.99

PPM 1.93

Sequence Memoizer 1.89



Summary

• Random probability measures are building blocks of many Bayesian 
nonparametric models.

• Motivated by problems in text and language processing, we discussed methods of 
constructing hierarchies of random measures.

• We used Pitman-Yor processes to capture the power law behaviour of language 
data.

• We used the equivalence between hierarchies and coagulations, and a duality 
between fragmentations and coagulations, to construct an efficient non-Markov 
language model.
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