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The next MCMSkv meeting:

I Computational Bayes section of
ISBA major meeting:

I MCMSki V in Lenzerheide,
Switzerland, Jan. 5-7, 2016

I MCMC, pMCMC, SMC2, HMC,
ABC, (ultra-) high-dimensional
computation, BNP, QMC, deep
learning, &tc

I Plenary speakers: S. Scott, S.
Fienberg, D. Dunson, K.
Latuszynski, T. Lelièvre

I Call for contributed 9 sessions
and tutorials opened

I “Switzerland in January, where
else...?!"
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intractable likelihood

Case of a well-defined statistical model where the likelihood
function

`(θ|y) = f (y1, . . . , yn|θ)

I is (really!) not available in closed form
I cannot (easily!) be either completed or demarginalised
I cannot be (at all!) estimated by an unbiased estimator
I examples of latent variable models of high dimension, including

combinatorial structures (trees, graphs), missing constant
f (x |θ) = g(y , θ)

/
Z (θ) (eg. Markov random fields, exponential

graphs,. . . )
c© Prohibits direct implementation of a generic MCMC algorithm
like Metropolis–Hastings which gets stuck exploring missing
structures
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Necessity is the mother of invention

Case of a well-defined statistical model where the likelihood
function

`(θ|y) = f (y1, . . . , yn|θ)

is out of reach

Empirical A to the original B problem
I Degrading the data precision down to tolerance level ε
I Replacing the likelihood with a non-parametric approximation

based on simulations
I Summarising/replacing the data with insufficient statistics
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Genetic background of ABC

skip genetics

ABC is a recent computational technique that only requires being
able to sample from the likelihood f (·|θ)

This technique stemmed from population genetics models, about
15 years ago, and population geneticists still significantly contribute
to methodological developments of ABC.

[Griffith & al., 1997; Tavaré & al., 1999]



Demo-genetic inference

Each model is characterized by a set of parameters θ that cover
historical (time divergence, admixture time ...), demographics
(population sizes, admixture rates, migration rates, ...) and genetic
(mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of
polymorphism (DNA sample) y observed at the present time

Problem:
most of the time, we cannot calculate the likelihood of the
polymorphism data f (y|θ)...
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Kingman’s colaescent

Kingman’s genealogy
When time axis is
normalized,
T (k) ∼ Exp(k(k − 1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼
Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2
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Kingman’s colaescent

Observations: leafs of the tree
θ̂ = ?

Kingman’s genealogy
When time axis is
normalized,
T (k) ∼ Exp(k(k − 1)/2)

Mutations according to
the Simple stepwise
Mutation Model
(SMM)
• date of the mutations ∼
Poisson process with
intensity θ/2 over the
branches
• MRCA = 100
• independent mutations:
±1 with pr. 1/2



Instance of ecological questions [message in a beetle]

I How did the Asian Ladybird
beetle arrive in Europe?

I Why do they swarm right
now?

I What are the routes of
invasion?

I How to get rid of them?

[Lombaert & al., 2010, PLoS ONE]
beetles in forests



Worldwide invasion routes of Harmonia Axyridis

[Estoup et al., 2012, Molecular Ecology Res.]



c© Intractable likelihood

Missing (too much missing!) data structure:

f (y|θ) =
∫
G

f (y|G ,θ)f (G |θ)dG

cannot be computed in a manageable way...
[Stephens & Donnelly, 2000]

The genealogies are considered as nuisance parameters

This modelling clearly differs from the phylogenetic perspective
where the tree is the parameter of interest.
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A?B?C?

I A stands for approximate
[wrong likelihood /
picture]

I B stands for Bayesian
I C stands for computation

[producing a parameter
sample]



ABC methodology

Bayesian setting: target is π(θ)f (x |θ)
When likelihood f (x |θ) not in closed form, likelihood-free rejection
technique:

Foundation
For an observation y ∼ f (y|θ), under the prior π(θ), if one keeps
jointly simulating

θ′ ∼ π(θ) , z ∼ f (z|θ′) ,

until the auxiliary variable z is equal to the observed value, z = y,
then the selected

θ′ ∼ π(θ|y)

[Rubin, 1984; Diggle & Gratton, 1984; Tavaré et al., 1997]
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A as A...pproximative

When y is a continuous random variable, strict equality z = y is
replaced with a tolerance zone

ρ(y, z) 6 ε

where ρ is a distance
Output distributed from

π(θ)Pθ{ρ(y, z) < ε}
def∝ π(θ|ρ(y, z) < ε)

[Pritchard et al., 1999]
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ABC algorithm

In most implementations, further degree of A...pproximation:

Algorithm 1 Likelihood-free rejection sampler
for i = 1 to N do
repeat

generate θ ′ from the prior distribution π(·)
generate z from the likelihood f (·|θ ′)

until ρ{η(z),η(y)} 6 ε
set θi = θ

′

end for

where η(y) defines a (not necessarily sufficient) statistic



ABC recap

Likelihood free rejection
sampling
Tavaré et al. (1997) Genetics

1) Set i = 1,

2) Generate θ ′ from the
prior distribution
π(·),

3) Generate z ′ from the
likelihood f (·|θ ′),

4) If ρ(η(z ′),η(y)) 6 ε,
set (θi , zi ) = (θ ′, z ′) and
i = i + 1,

5) If i 6 N, return to
2).

Only keep θ’s such that the
distance between the
corresponding simulated
dataset and the observed
dataset is small enough.

Tuning parameters

I ε > 0: tolerance level,
I η(z): function that

summarizes datasets,
I ρ(η,η ′): distance

between vectors of
summary statistics

I N: size of the output
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Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z),η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|y) .
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Output

The likelihood-free algorithm samples from the marginal in z of:

πε(θ, z|y) =
π(θ)f (z|θ)IAε,y(z)∫

Aε,y×Θ π(θ)f (z|θ)dzdθ
,

where Aε,y = {z ∈ D|ρ(η(z),η(y)) < ε}.

The idea behind ABC is that the summary statistics coupled with a
small tolerance should provide a good approximation of the
restricted posterior distribution:

πε(θ|y) =

∫
πε(θ, z|y)dz ≈ π(θ|η(y)) .

Not so good..!



Comments

I Role of distance paramount
(because ε 6= 0)

I Scaling of components of
η(y) is also determinant

I ε matters little if “small
enough"

I representative of “curse of
dimensionality"

I small is beautiful!
I the data as a whole may be

paradoxically weakly
informative for ABC



ABC (simul’) advances

how approximative is ABC?

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and
by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]



ABC (simul’) advances

how approximative is ABC?

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and
by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]



ABC (simul’) advances

how approximative is ABC?

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and
by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]



ABC (simul’) advances

how approximative is ABC?

Simulating from the prior is often poor in efficiency
Either modify the proposal distribution on θ to increase the density
of x ’s within the vicinity of y ...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and
by developing techniques to allow for larger ε

[Beaumont et al., 2002]

.....or even by including ε in the inferential framework [ABCµ]
[Ratmann et al., 2009]



ABC as knn

[Biau et al., 2013, Annales de l’IHP]

Practice of ABC: determine tolerance ε as a quantile on observed
distances, say 10% or 1% quantile,

ε = εN = qα(d1, . . . , dN)

I Interpretation of ε as nonparametric bandwidth only
approximation of the actual practice

[Blum & François, 2010]

I ABC is a k-nearest neighbour (knn) method with kN = NεN
[Loftsgaarden & Quesenberry, 1965]
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Which summary?

Fundamental difficulty of the choice of the summary statistic when
there is no non-trivial sufficient statistics [except when done by the
experimenters in the field]

I Loss of statistical information balanced against gain in data
roughening

I Approximation error and information loss remain unknown
I Choice of statistics induces choice of distance function towards

standardisation

I may be imposed for external/practical reasons (e.g., DIYABC)
I may gather several non-B point estimates [the more the

merrier]
I can [machine-]learn about efficient combination
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attempts at summaries

How to choose the set of summary statistics?

I Joyce and Marjoram (2008, SAGMB)
I Fearnhead and Prangle (2012, JRSS B)
I Ratmann et al. (2012, PLOS Comput. Biol)
I Blum et al. (2013, Statistical Science)
I LDA selection of Estoup & al. (2012, Mol. Ecol. Res.)



Semi-automatic ABC

Fearnhead and Prangle (2012) [FP] study ABC and selection of
summary statistics for parameter estimation

I ABC considered as inferential method and calibrated as such
I randomised (or ‘noisy’) version of the summary statistics

η̃(y) = η(y) + τε

I optimality of the posterior expectation

E[θ|y]

of the parameter of interest as summary statistics η(y)!



ABC for model choice

Intractable likelihoods

ABC methods

ABC for model choice
Formalised framework

ABC model choice via random forests



Generic ABC for model choice

Algorithm 2 Likelihood-free model choice sampler (ABC-MC)
for t = 1 to T do
repeat

Generate m from the prior π(M = m)
Generate θm from the prior πm(θm)
Generate z from the model fm(z|θm)

until ρ{η(z),η(y)} < ε
Set m(t) = m and θ(t) = θm

end for

[Grelaud & al., 2009; Toni & al., 2009]



ABC model choice

ABC model choice
A) Generate large set of

(m,θ, z) from the
Bayesian predictive,
π(m)πm(θ)fm(z|θ)

B) Keep particles (m,θ, z)
such that
ρ(η(y),η(z)) 6 ε

C) For each m, return
p̂m = proportion of m
among remaining
particles

If ε tuned towards k resulting
particles, then p̂m k-nearest
neighbor estimate of

P
(
{M = m

}∣∣∣η(y))
Approximating posterior
prob’s of models = regression
problem where

I response is 1
{
M = m

}
,

I covariates are summary
statistics η(z),

I loss is, e.g., L2

Method of choice in DIYABC
is local polytomous logistic
regression



Machine learning perspective [paradigm shift]

ABC model choice
A) Generate a large set

of (m,θ, z)’s from
Bayesian predictive,
π(m)πm(θ)fm(z|θ)

B) Use machine learning
tech. to infer on
argmaxm π(m

∣∣η(y))
In this perspective:

I (iid) “data set” reference
table simulated during
stage A)

I observed y becomes a
new data point

Note that:
I predicting m is a

classification problem⇐⇒ select the best
model based on a
maximal a posteriori rule

I computing π(m|η(y)) is
a regression problem⇐⇒ confidence in each
model

c© classification is much
simpler than regression (e.g.,
dim. of objects we try to
learn)



Warning

the lost of information induced by using non sufficient
summary statistics is a genuine problem

Fundamental discrepancy between the genuine Bayes
factors/posterior probabilities and the Bayes factors based on
summary statistics. See, e.g.,

I Didelot et al. (2011, Bayesian analysis)
I X et al. (2011, PNAS)
I Marin et al. (2014, JRSS B)
I . . .

Call instead for machine learning approach able to handle with a
large number of correlated summary statistics:

random forests well suited for that task



A stylised problem

Central question to the validation of ABC for model choice:

When is a Bayes factor based on an insufficient statistic
T (y) consistent?

Note/warnin: c© drawn on T (y) through BT
12(y) necessarily differs

from c© drawn on y through B12(y)
[Marin, Pillai, X, & Rousseau, JRSS B, 2013]
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A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:
[X, Cornuet, Marin, & Pillai, Aug. 2011]

Model M1: y ∼ N(θ1, 1) opposed
to model M2: y ∼ L(θ2, 1/

√
2), Laplace distribution with mean θ2

and scale parameter 1/
√
2 (variance one).

Four possible statistics
1. sample mean y (sufficient for M1 if not M2);
2. sample median med(y) (insufficient);
3. sample variance var(y) (ancillary);
4. median absolute deviation mad(y) = med(|y−med(y)|);
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Framework

move to random forests

Starting from sample

y = (y1, . . . , yn)

the observed sample, not necessarily iid with true distribution

y ∼ Pn

Summary statistics

T (y) = T n = (T1(y),T2(y), · · · ,Td (y)) ∈ Rd

with true distribution T n ∼ Gn.



Framework

move to random forests

c© Comparison of
– under M1, y ∼ F1,n(·|θ1) where θ1 ∈ Θ1 ⊂ Rp1

– under M2, y ∼ F2,n(·|θ2) where θ2 ∈ Θ2 ⊂ Rp2

turned into
– under M1, T (y) ∼ G1,n(·|θ1), and θ1|T (y) ∼ π1(·|T n)

– under M2, T (y) ∼ G2,n(·|θ2), and θ2|T (y) ∼ π2(·|T n)



Checking for adequate statistics

Run a practical check of the relevance (or non-relevance) of T n

null hypothesis that both models are compatible with the statistic
T n

H0 : inf{|µ2(θ2) − µ0|; θ2 ∈ Θ2} = 0

against
H1 : inf{|µ2(θ2) − µ0|; θ2 ∈ Θ2} > 0

testing procedure provides estimates of mean of T n under each
model and checks for equality



Checking in practice

I Under each model Mi , generate ABC sample θi ,l , l = 1, · · · , L
I For each θi ,l , generate yi ,l ∼ Fi ,n(·|ψi ,l ), derive T n(yi ,l ) and

compute

µ̂i =
1
L

L∑
l=1

T n(yi ,l ), i = 1, 2 .

I Conditionally on T n(y),
√

L {µ̂i − Eπ [µi (θi )|T n(y)]} N(0,Vi ),

I Test for a common mean

H0 : µ̂1 ∼ N(µ0,V1) , µ̂2 ∼ N(µ0,V2)

against the alternative of different means

H1 : µ̂i ∼ N(µi ,Vi ), with µ1 6= µ2 .



ABC model choice via random forests

Intractable likelihoods

ABC methods

ABC for model choice

ABC model choice via random forests
Random forests
ABC with random forests
Illustrations



Leaning towards machine learning

Main notions:
I ABC-MC seen as learning about which model is most

appropriate from a huge (reference) table
I exploiting a large number of summary statistics not an issue

for machine learning methods intended to estimate efficient
combinations

I abandoning (temporarily?) the idea of estimating posterior
probabilities of the models, poorly approximated by machine
learning methods, and replacing those by posterior predictive
expected loss

I estimating posterior probabilities of the selected model by
machine learning methods



Random forests

Technique that stemmed from Leo Breiman’s bagging (or bootstrap
aggregating) machine learning algorithm for both classification and
regression

[Breiman, 1996]

Improved classification performances by averaging over
classification schemes of randomly generated training sets, creating
a “forest" of (CART) decision trees, inspired by Amit and Geman
(1997) ensemble learning

[Breiman, 2001]



CART construction

Basic classification tree:

Algorithm 3 CART
start the tree with a single root
repeat

pick a non-homogeneous tip v such that Q(v) 6= 1
attach to v two daughter nodes v1 and v2

for all covariates Xj do
find the threshold tj in the rule Xj < tj that minimizes N(v1)Q(v1) +
N(v2)Q(v2)

end for
find the rule Xj < tj that minimizes N(v1)Q(v1)+N(v2)Q(v2) in j and set
this best rule to node v

until all tips v are homogeneous (Q(v) = 0)
set the labels of all tips

where Q is Gini’s index

Q(vi ) =

M∑
y=1

p̂(vi , y) {1− p̂(v,y)} .



Growing the forest

Breiman’s solution for inducing random features in the trees of the
forest:

I boostrap resampling of the dataset and
I random subset-ing [of size

√
t] of the covariates driving the

classification at every node of each tree
Covariate xτ that drives the node separation

xτ ≷ cτ

and the separation bound cτ chosen by minimising entropy or Gini
index



Breiman and Cutler’s algorithm

Algorithm 4 Random forests
for t = 1 to T do

//*T is the number of trees*//
Draw a bootstrap sample of size nboot 6= n
Grow an unpruned decision tree
for b = 1 to B do

//*B is the number of nodes*//
Select ntry of the predictors at random
Determine the best split from among those predictors

end for
end for
Predict new data by aggregating the predictions of the T trees



ABC with random forests

Idea: Starting with
I possibly large collection of summary statistics (s1i , . . . , spi )

(from scientific theory input to available statistical softwares,
to machine-learning alternatives, to pure noise)

I ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (s1i , . . . , spi )
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p) indices sampled at random and most
discriminating statistic selected, by minimising entropy Gini loss



ABC with random forests

Idea: Starting with
I possibly large collection of summary statistics (s1i , . . . , spi )

(from scientific theory input to available statistical softwares,
to machine-learning alternatives, to pure noise)

I ABC reference table involving model index, parameter values
and summary statistics for the associated simulated
pseudo-data

run R randomforest to infer M from (s1i , . . . , spi )

Average of the trees is resulting summary statistics, highly
non-linear predictor of the model index



Outcome of ABC-RF

Random forest predicts a (MAP) model index, from the observed
dataset: The predictor provided by the forest is “sufficient" to
select the most likely model but not to derive associated posterior
probability

I exploit entire forest by computing how many trees lead to
picking each of the models under comparison but variability
too high to be trusted

I frequency of trees associated with majority model is no proper
substitute to the true posterior probability

I usual ABC-MC approximation equally highly variable and hard
to assess

I random forests define a natural distance for ABC sample via
agreement frequency
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Posterior predictive expected losses

We suggest replacing unstable approximation of

P(M = m|xo)

with xo observed sample and m model index, by average of the
selection errors across all models given the data xo ,

P(M̂(X ) 6= M|xo)

where pair (M,X ) generated from the predictive∫
f (x |θ)π(θ,M|xo)dθ

and M̂(x) denotes the random forest model (MAP) predictor
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Posterior predictive expected losses

Arguments:
I Bayesian estimate of the posterior error
I integrates error over most likely part of the parameter space
I gives an averaged error rather than the posterior probability of

the null hypothesis
I easily computed: Given ABC subsample of parameters from

reference table, simulate pseudo-samples associated with those
and derive error frequency
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Posterior probability of the selected model

Given the MAP estimate provided by the random forest, M̂(s(X )),
consider the posterior estimation error

E[I(M̂(sobs) 6= M)|sobs] =

k∑
i=1

E[I(M̂(sobs) 6= M = i)|sobs]

=

k∑
i=1

P[M = i)|sobs]× I(M̂(sobs) 6= i)

= P[M 6= M̂(sobs)|sobs]

= 1− P[M = M̂(sobs)|sobs] ,

c© posterior probability that the true model is not the MAP
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Posterior probability estimated by another forest

I since

P[M 6= M̂(sobs)|sobs] = E[I(M̂(sobs) 6= M)|sobs]

function of sobs, Ψ(sobs), ...
I ...estimation based on the reference table simulated from prior

predictive, using all simulated pairs (M, s)
I construction of a random forest Ψ̂(s) predicting the error

E[I(M̂(s) 6= M)|s]
I association of Ψ̂(sobs) with M̂(sobs)
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Algorithmic implementation

Algorithm 5 Approximation of the posterior probability

(a) Use the trained RF to predict model by M̂(S(x)) for each
(m, S(x)) in the reference table and deduce ι = I(M̂(s) 6= M)

(b) Train a new RF Ψ̂(s) on this reference table (ι, s) predicting
success Ψ(s)

(c) Apply to s = sobs and deduce Ψ̂(sobs) as estimate of
P[M = M̂(sobs)|sobs]



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using first two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #1: values of p(m|x) [obtained by numerical integration]
and p(m|S(x)) [obtained by mixing ABC outcome and density
estimation] highly differ!



toy: MA(1) vs. MA(2)

Difference between the posterior probability of MA(2) given either
x or S(x). Blue stands for data from MA(1), orange for data from
MA(2)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #2: Embedded models, with simulations from MA(1)
within those from MA(2), hence linear classification poor



toy: MA(1) vs. MA(2)

Simulations of S(x) under MA(1) (blue) and MA(2) (orange)



toy: MA(1) vs. MA(2)

Comparing an MA(1) and an MA(2) models:

xt = εt − ϑ1εt−1[−ϑ2εt−2]

Earlier illustration using two autocorrelations as S(x)
[Marin et al., Stat. & Comp., 2011]

Result #3: On such a small dimension problem, random forests
should come second to k-nn ou kernel discriminant analyses



toy: MA(1) vs. MA(2)

classification prior
method error rate (in %)
LDA 27.43
Logist. reg. 28.34
SVM (library e1071) 17.17
“naïve” Bayes (with G marg.) 19.52
“naïve” Bayes (with NP marg.) 18.25
ABC k-nn (k = 100) 17.23
ABC k-nn (k = 50) 16.97
Local log. reg. (k = 1000) 16.82
Random Forest 17.04
Kernel disc. ana. (KDA) 16.95
True MAP 12.36



Evolution scenarios based on SNPs

Three scenarios for the evolution of three populations from their
most common ancestor



Evolution scenarios based on microsatellites

classification prior error∗

method rate (in %)
raw LDA 35.64
“naïve” Bayes (with G marginals) 40.02
k-nn (MAD normalised sum stat) 37.47
k-nn (unormalised LDA) 35.14
RF without LDA components 35.14
RF with LDA components 33.62
RF with only LDA components 37.25

∗estimated on pseudo-samples of 104 items drawn from the prior



Evolution scenarios based on microsatellites

Posterior predictive error rates



Evolution scenarios based on microsatellites

Posterior predictive error rates

favourable: 0.183 error – unfavourable: 0.435 error



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves

classification prior error†

method rate (in %)
raw LDA 38.94

“naïve” Bayes (with G margins) 54.02
k-nn (MAD normalised sum stat) 58.47
RF without LDA components 38.84
RF with LDA components 35.32

†estimated on pseudo-samples of 104 items drawn from the prior



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion beetle moves

Random forest allocation frequencies

1 2 3 4 5 6 7 8 9 10
0.168 0.1 0.008 0.066 0.296 0.016 0.092 0.04 0.014 0.2

Posterior predictive error based on 20,000 prior simulations and
keeping 500 neighbours (or 100 neighbours and 10 pseudo-datasets
per parameter)

0.3682



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion



Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion
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Back to Asian Ladybirds [message in a beetle]

Harlequin ladybird data: estimated prior error rates for various classification
methods and sizes of reference table.

Classification method Prior error rates (%)
trained on Nref = 10,000 Nref = 20,000 Nref = 50,000

linear discriminant analysis (LDA) 39.91 39.30 39.04
standard ABC (knn) on DIYABC summaries 57.46 53.76 51.03

standard ABC (knn) on LDA axes 39.18 38.46 37.91
local logistic regression on LDA axes 41.04 37.08 36.05

random forest (RF) on DIYABC summaries 40.18 38.94 37.63
RF on DIYABC summaries and LDA axes 36.86 35.62 34.44



Conclusion

Key ideas
I π

(
m
∣∣η(y)) 6= π

(
m
∣∣y)

I Rather than approximating
π
(
m
∣∣η(y)), focus on

selecting the best model
(classif. vs regression)

I Assess confidence in the
selection via posterior
probability of MAP model

Consequences on
ABC-PopGen

I Often, RF � k-NN (less
sensible to high correlation
in summaries)

I RF requires many less prior
simulations

I RF selects automatically
relevant summaries

I Hence can handle much
more complex models



Conclusion

Key ideas
I π

(
m
∣∣η(y)) 6= π

(
m
∣∣y)

I Use a seasoned machine
learning technique
selecting from ABC
simulations: minimise 0-1
loss mimics MAP

I Assess confidence in the
selection via RF estimate
of posterior probability of
MAP model

Consequences on
ABC-PopGen

I Often, RF � k-NN (less
sensible to high correlation
in summaries)

I RF requires many less prior
simulations

I RF incorporates all
available summaries

I Hence can handle much
more complex models



Further features

I unlimited aggregation of arbitrary summary statistics
I recovery of discriminant statistics when available
I automated implementation with reduced calibration
I self-evaluation by posterior predictive error probability
I soon to appear in DIYABC
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