Reliable Approximate Bayesian computation (ABC) model choice via random forests

Christian P. Robert Université Paris-Dauphine, Paris & University of Warwick, Coventry Max-Plank-Institut für Physik, October 16, 2015 bayesianstatistics@gmail.com

Joint with J.-M. Cornuet, A. Estoup, J.-M. Marin, & P. Pudlo

## The next MCMSkv meeting:

- Computational Bayes section of ISBA major meeting:
- MCMSki V in Lenzerheide, Switzerland, Jan. 5-7, 2016



- MCMC, pMCMC, SMC<sup>2</sup>, HMC, ABC, (ultra-) high-dimensional computation, BNP, QMC, deep learning, &tc
- Plenary speakers: S. Scott, S. Fienberg, D. Dunson, K. Latuszynski, T. Lelièvre
- Call for contributed 9 sessions and tutorials opened
- "Switzerland in January, where else...?!"

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Outline

Intractable likelihoods

ABC methods

ABC for model choice

ABC model choice via random forests



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

#### intractable likelihood

Case of a well-defined statistical model where the likelihood function

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = f(y_1, \dots, y_n|\boldsymbol{\theta})$$

- is (really!) not available in closed form
- cannot (easily!) be either completed or demarginalised
- cannot be (at all!) estimated by an unbiased estimator
- ► examples of latent variable models of high dimension, including combinatorial structures (trees, graphs), missing constant f(x|θ) = g(y, θ)/Z(θ) (eg. Markov random fields, exponential graphs,...)

© Prohibits direct implementation of a generic MCMC algorithm like Metropolis–Hastings which gets stuck exploring missing structures

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = f(y_1, \dots, y_n|\boldsymbol{\theta})$$

- is (really!) not available in closed form
- cannot (easily!) be either completed or demarginalised
- cannot be (at all!) estimated by an unbiased estimator

C Prohibits direct implementation of a generic MCMC algorithm like Metropolis–Hastings which gets stuck exploring missing structures

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = f(y_1, \dots, y_n|\boldsymbol{\theta})$$

is out of reach

- Empirical A to the original B problem
  - $\blacktriangleright$  Degrading the data precision down to tolerance level  $\epsilon$
  - Replacing the likelihood with a non-parametric approximation based on simulations
  - Summarising/replacing the data with insufficient statistics

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = f(y_1, \dots, y_n|\boldsymbol{\theta})$$

is out of reach

- Empirical A to the original B problem
  - $\blacktriangleright$  Degrading the data precision down to tolerance level  $\epsilon$
  - Replacing the likelihood with a non-parametric approximation based on simulations
  - Summarising/replacing the data with insufficient statistics

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = f(y_1, \dots, y_n|\boldsymbol{\theta})$$

is out of reach

- Empirical A to the original B problem
  - $\blacktriangleright$  Degrading the data precision down to tolerance level  $\epsilon$
  - Replacing the likelihood with a non-parametric approximation based on simulations
  - Summarising/replacing the data with insufficient statistics

### Approximate Bayesian computation

Intractable likelihoods

ABC methods Genesis of ABC abc of ABC Advances and interpretations Summary statistic

#### ABC for model choice

ABC model choice via random forests



#### skip genetics

ABC is a recent computational technique that only requires being able to sample from the likelihood  $f(\cdot|\theta)$ 

This technique stemmed from population genetics models, about 15 years ago, and population geneticists still significantly contribute to methodological developments of ABC.

[Griffith & al., 1997; Tavaré & al., 1999]

Each model is characterized by a set of parameters  $\theta$  that cover historical (time divergence, admixture time ...), demographics (population sizes, admixture rates, migration rates, ...) and genetic (mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of polymorphism (DNA sample)  $\boldsymbol{y}$  observed at the present time

#### Problem:

most of the time, we cannot calculate the likelihood of the polymorphism data  $f(y|\theta)...$ 

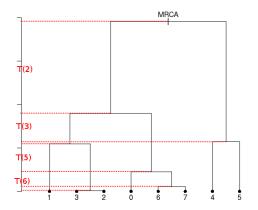
Each model is characterized by a set of parameters  $\theta$  that cover historical (time divergence, admixture time ...), demographics (population sizes, admixture rates, migration rates, ...) and genetic (mutation rate, ...) factors

The goal is to estimate these parameters from a dataset of polymorphism (DNA sample)  $\boldsymbol{y}$  observed at the present time

#### Problem:

most of the time, we cannot calculate the likelihood of the polymorphism data  $f(\mathbf{y}|\mathbf{\theta})...$ 

## Kingman's colaescent



Kingman's genealogy When time axis is normalized,  $T(k) \sim \text{Exp}(k(k-1)/2)$ 

Mutations according to the Simple stepwise Mutation Model (SMM)

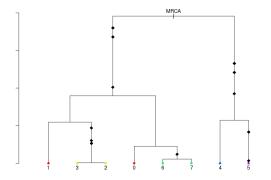
• date of the mutations ~ Poisson process with intensity  $\theta/2$  over the branches

- MRCA = 100
- independent mutations:

▲白 → ▲圖 → ▲ 画 → ▲ 画 → 二 画

 $\pm 1$  with pr. 1/2

## Kingman's colaescent



Kingman's genealogy When time axis is normalized,  $T(k) \sim \text{Exp}(k(k-1)/2)$ 

Mutations according to the Simple stepwise Mutation Model (SMM)

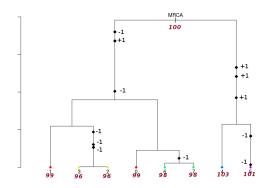
• date of the mutations  $\sim$  Poisson process with intensity  $\theta/2$  over the branches

• MRCA = 100

• independent mutations:

 $\pm 1$  with pr. 1/2

## Kingman's colaescent



Observations: leafs of the tree  $\hat{\theta} = ?$ 

Kingman's genealogy When time axis is normalized,  $T(k) \sim \text{Exp}(k(k-1)/2)$ 

Mutations according to the Simple stepwise Mutation Model (SMM)

• date of the mutations  $\sim$  Poisson process with intensity  $\theta/2$  over the branches

- MRCA = 100
- independent mutations:
- $\pm 1$  with pr. 1/2

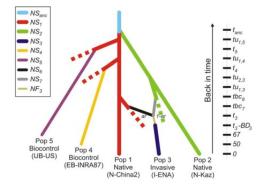
## Instance of ecological questions [message in a beetle]

- How did the Asian Ladybird beetle arrive in Europe?
- Why do they swarm right now?
- What are the routes of invasion?
- How to get rid of them?



#### [Lombaert & al., 2010, PLoS ONE]

#### Worldwide invasion routes of Harmonia Axyridis



[Estoup et al., 2012, Molecular Ecology Res.]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Missing (too much missing!) data structure:

$$f(\mathbf{y}|\mathbf{\theta}) = \int_{\mathcal{G}} f(\mathbf{y}|G,\mathbf{\theta}) f(G|\mathbf{\theta}) \mathrm{d}G$$

cannot be computed in a manageable way... [Stephens & Donnelly, 2000]

The genealogies are considered as nuisance parameters

This modelling clearly differs from the phylogenetic perspective where the tree is the parameter of interest.

Missing (too much missing!) data structure:

$$f(\mathbf{y}|\mathbf{\theta}) = \int_{\mathcal{G}} f(\mathbf{y}|G, \mathbf{\theta}) f(G|\mathbf{\theta}) dG$$

cannot be computed in a manageable way... [Stephens & Donnelly, 2000]

The genealogies are considered as nuisance parameters

This modelling clearly differs from the phylogenetic perspective where the tree is the parameter of interest.

## A?B?C?

- A stands for approximate [wrong likelihood / picture]
- ► B stands for Bayesian
- C stands for computation [producing a parameter sample]



## ABC methodology

#### Bayesian setting: target is $\pi(\theta)f(x|\theta)$

When likelihood  $f(x|\theta)$  not in closed form, likelihood-free rejection technique:

#### Foundation

For an observation  $\mathbf{y} \sim f(\mathbf{y}|\mathbf{\theta})$ , under the prior  $\pi(\mathbf{\theta})$ , if one keeps *jointly* simulating

$$eta' \sim \pi(m{ heta}) \ , m{z} \sim m{f}(m{z}|m{ heta}') \ ,$$

until the auxiliary variable z is equal to the observed value, z = y, then the selected

$$\theta' \sim \pi(\theta|\mathbf{y})$$

[Rubin, 1984; Diggle & Gratton, 1984; Tavaré et al., 1997]

## ABC methodology

Bayesian setting: target is  $\pi(\theta) f(x|\theta)$ When likelihood  $f(x|\theta)$  not in closed form, likelihood-free rejection technique:

#### Foundation

For an observation  $\mathbf{y} \sim f(\mathbf{y}|\mathbf{\theta})$ , under the prior  $\pi(\mathbf{\theta})$ , if one keeps *jointly* simulating

$$\theta' \sim \pi(\theta), \boldsymbol{z} \sim f(\boldsymbol{z}|\theta'),$$

until the auxiliary variable z is equal to the observed value, z = y, then the selected

$$\theta' \sim \pi(\theta|\mathbf{y})$$

[Rubin, 1984; Diggle & Gratton, 1984; Tavaré et al., 1997]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

When y is a continuous random variable, strict equality z = y is replaced with a tolerance zone

 $\rho(\mathbf{y}, \mathbf{z}) \leqslant \epsilon$ 

where  $\rho$  is a distance

Output distributed from

 $\pi(\theta) \, P_{\theta}\{\rho(\mathbf{y}, z) < \epsilon\} \stackrel{\mathsf{def}}{\propto} \pi(\theta|\rho(\mathbf{y}, z) < \epsilon)$ 

[Pritchard et al., 1999]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

When y is a continuous random variable, strict equality z = y is replaced with a tolerance zone

 $\rho(\mathbf{y}, \mathbf{z}) \leqslant \epsilon$ 

where  $\rho$  is a distance Output distributed from

 $\pi(\theta) P_{\theta}\{\rho(\mathbf{y}, \mathbf{z}) < \epsilon\} \stackrel{\text{def}}{\propto} \pi(\theta|\rho(\mathbf{y}, \mathbf{z}) < \epsilon)$ [Pritchard et al., 1999]

In most implementations, further degree of A...pproximation:

```
Algorithm 1 Likelihood-free rejection samplerfor i = 1 to N dorepeatgenerate \theta' from the prior distribution \pi(\cdot)generate z from the likelihood f(\cdot|\theta')until \rho\{\eta(z), \eta(y)\} \leq \epsilonset \theta_i = \theta'end for
```

where  $\eta(\boldsymbol{y})$  defines a (not necessarily sufficient) statistic

ション ふゆ く 山 マ チャット しょうくしゃ

## ABC recap

# Likelihood free rejection sampling

Tavaré et al. (1997) Genetics

1) Set i = 1,

- 2) Generate  $\theta'$  from the prior distribution  $\pi(\cdot)$ ,
- 3) Generate z' from the likelihood  $f(\cdot|\theta')$ ,

4) If 
$$\rho(\eta(z'), \eta(y)) \leq \epsilon$$
,  
set  $(\theta_i, z_i) = (\theta', z')$  and  
 $i = i + 1$ ,

5) If 
$$i \leq N$$
, return to 2).

Only keep  $\theta$ 's such that the distance between the corresponding simulated dataset and the observed dataset is small enough.

#### Tuning parameters

- $\epsilon > 0$ : tolerance level,
- η(z): function that summarizes datasets,
- ρ(η, η'): distance
   between vectors of
   summary statistics
- N: size of the output

ション ふゆ く 山 マ チャット しょうくしゃ

## ABC recap

## Likelihood free rejection sampling

Tavaré et al. (1997) Genetics

- 1) Set i = 1,
- 2) Generate  $\theta'$  from the prior distribution  $\pi(\cdot)$ ,
- 3) Generate z' from the likelihood  $f(\cdot|\theta')$ ,
- 4) If  $\rho(\eta(z'), \eta(y)) \leq \epsilon$ , set  $(\theta_i, z_i) = (\theta', z')$  and i = i + 1,

5) If 
$$i \leq N$$
, return to 2).

Only keep  $\theta$ 's such that the distance between the corresponding simulated dataset and the observed dataset is small enough.

#### Tuning parameters

- ε > 0: tolerance level,
- η(z): function that summarizes datasets,
- ρ(η, η'): distance between vectors of summary statistics
- N: size of the output

ション ふゆ く 山 マ チャット しょうくしゃ

#### Output

The likelihood-free algorithm samples from the marginal in z of:

$$\pi_{\epsilon}( heta, oldsymbol{z}|oldsymbol{y}) = rac{\pi( heta) f(oldsymbol{z}| heta) \mathbb{I}_{oldsymbol{A}_{\epsilon, oldsymbol{y}}}(oldsymbol{z})}{\int_{oldsymbol{A}_{\epsilon, oldsymbol{y}} imes \Theta} \pi( heta) f(oldsymbol{z}| heta) \mathrm{d}oldsymbol{z} \mathrm{d} heta}}\,,$$

#### where $A_{\varepsilon, \mathbf{y}} = \{ z \in \mathcal{D} | \rho(\eta(z), \eta(\mathbf{y})) < \varepsilon \}.$

The idea behind ABC is that the summary statistics coupled with a small tolerance should provide a good approximation of the posterior distribution:

$$\pi_{\epsilon}(\mathbf{ heta}|\mathbf{y}) = \int \pi_{\epsilon}(\mathbf{ heta}, z|\mathbf{y}) \mathsf{d} z pprox \pi(\mathbf{ heta}|\mathbf{y}) \,.$$

#### Output

The likelihood-free algorithm samples from the marginal in z of:

$$\pi_{\epsilon}(\theta, z | \mathbf{y}) = rac{\pi(\theta) f(z|\theta) \mathbb{I}_{\mathcal{A}_{\epsilon, \mathbf{y}}}(z)}{\int_{\mathcal{A}_{\epsilon, \mathbf{y}} imes \Theta} \pi(\theta) f(z|\theta) \mathrm{d}z \mathrm{d} heta},$$

where  $A_{\varepsilon, \mathbf{y}} = \{ z \in \mathcal{D} | \rho(\eta(z), \eta(\mathbf{y})) < \varepsilon \}.$ 

The idea behind ABC is that the summary statistics coupled with a small tolerance should provide a good approximation of the posterior distribution:

$$\pi_{\epsilon}(\theta|\mathbf{y}) = \int \pi_{\epsilon}(\theta, z|\mathbf{y}) dz pprox \pi(\theta|\mathbf{y}) \,.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

#### Output

The likelihood-free algorithm samples from the marginal in z of:

$$\pi_{\epsilon}( heta, oldsymbol{z}|oldsymbol{y}) = rac{\pi( heta) f(oldsymbol{z}| heta) \mathbb{I}_{oldsymbol{A}_{\epsilon, oldsymbol{y}}}(oldsymbol{z})}{\int_{oldsymbol{A}_{\epsilon, oldsymbol{y}} imes \Theta} \pi( heta) f(oldsymbol{z}| heta) \mathrm{d}oldsymbol{z} \mathrm{d} heta} \,,$$

where  $A_{\varepsilon, \mathbf{y}} = \{ z \in \mathcal{D} | \rho(\eta(z), \eta(\mathbf{y})) < \epsilon \}.$ 

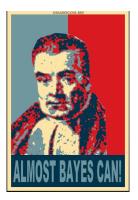
The idea behind ABC is that the summary statistics coupled with a small tolerance should provide a good approximation of the restricted posterior distribution:

$$\pi_{\varepsilon}(\boldsymbol{\theta}|\boldsymbol{y}) = \int \pi_{\varepsilon}(\boldsymbol{\theta}, \boldsymbol{z}|\boldsymbol{y}) d\boldsymbol{z} \approx \pi(\boldsymbol{\theta}|\boldsymbol{\eta}(\boldsymbol{y})) \,.$$

Not so good ..!

### Comments

- ► Role of distance paramount (because  $\epsilon \neq 0$ )
- Scaling of components of η(y) is also determinant
- representative of "curse of dimensionality"
- small is beautiful!
- the data as a whole may be paradoxically weakly informative for ABC



◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

#### Simulating from the prior is often poor in efficiency

Either modify the proposal distribution on  $\theta$  to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger  $\varepsilon$ 

[Beaumont et al., 2002]

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on  $\theta$  to increase the density of *x*'s within the vicinity of *y*...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger  $\epsilon$ 

[Beaumont et al., 2002]

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on  $\theta$  to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger  $\varepsilon$ 

[Beaumont et al., 2002]

Simulating from the prior is often poor in efficiency Either modify the proposal distribution on  $\theta$  to increase the density of x's within the vicinity of y...

[Marjoram et al, 2003; Bortot et al., 2007, Sisson et al., 2007]

...or by viewing the problem as a conditional density estimation and by developing techniques to allow for larger  $\epsilon$ 

[Beaumont et al., 2002]

#### [Biau et al., 2013, Annales de l'IHP]

Practice of ABC: determine tolerance  $\epsilon$  as a quantile on observed distances, say 10% or 1% quantile,

$$\epsilon = \epsilon_N = q_{\alpha}(d_1, \ldots, d_N)$$

 Interpretation of ε as nonparametric bandwidth only approximation of the actual practice
 [Blum & François, 2]

► ABC is a k-nearest neighbour (knn) method with  $k_N = N \epsilon_N$ [Loftsgaarden & Quesenberry, 1965]

#### [Biau et al., 2013, Annales de l'IHP]

Practice of ABC: determine tolerance  $\epsilon$  as a quantile on observed distances, say 10% or 1% quantile,

$$\epsilon = \epsilon_N = q_{\alpha}(d_1, \ldots, d_N)$$

 Interpretation of ε as nonparametric bandwidth only approximation of the actual practice
 [Blum & François, 2010]

► ABC is a k-nearest neighbour (knn) method with  $k_N = N \epsilon_N$ [Loftsgaarden & Quesenberry, 1965]

#### [Biau et al., 2013, Annales de l'IHP]

Practice of ABC: determine tolerance  $\epsilon$  as a quantile on observed distances, say 10% or 1% quantile,

$$\epsilon = \epsilon_N = q_{\alpha}(d_1, \ldots, d_N)$$

• Interpretation of  $\varepsilon$  as nonparametric bandwidth only approximation of the actual practice

[Blum & François, 2010]

► ABC is a k-nearest neighbour (knn) method with  $k_N = N\epsilon_N$ [Loftsgaarden & Quesenberry, 1965]

# Which summary?

Fundamental difficulty of the choice of the summary statistic when there is no non-trivial sufficient statistics [except when done by the experimenters in the field]

- Loss of statistical information balanced against gain in data roughening
- Approximation error and information loss remain unknown
- Choice of statistics induces choice of distance function towards standardisation
- ▶ may be imposed for external/practical reasons (e.g., DIYABC)
- may gather several non-B point estimates [the more the merrier]
- can [machine-]learn about efficient combination

# Which summary?

Fundamental difficulty of the choice of the summary statistic when there is no non-trivial sufficient statistics [except when done by the experimenters in the field]

- Loss of statistical information balanced against gain in data roughening
- Approximation error and information loss remain unknown
- Choice of statistics induces choice of distance function towards standardisation
- ▶ may be imposed for external/practical reasons (e.g., DIYABC)
- may gather several non-B point estimates [the more the merrier]
- can [machine-]learn about efficient combination

# Which summary?

Fundamental difficulty of the choice of the summary statistic when there is no non-trivial sufficient statistics [except when done by the experimenters in the field]

- Loss of statistical information balanced against gain in data roughening
- Approximation error and information loss remain unknown
- Choice of statistics induces choice of distance function towards standardisation
- may be imposed for external/practical reasons (e.g., DIYABC)
- may gather several non-B point estimates [the more the merrier]
- can [machine-]learn about efficient combination

How to choose the set of summary statistics?

- Joyce and Marjoram (2008, SAGMB)
- ► Fearnhead and Prangle (2012, JRSS B)
- Ratmann et al. (2012, PLOS Comput. Biol)
- Blum et al. (2013, Statistical Science)
- ▶ LDA selection of Estoup & al. (2012, Mol. Ecol. Res.)

ション ふゆ メ リン ト キャット しょうくしゃ

Fearnhead and Prangle (2012) [FP] study ABC and selection of summary statistics for parameter estimation

- ► ABC considered as inferential method and calibrated as such
- randomised (or 'noisy') version of the summary statistics

 $\tilde{\eta}(\boldsymbol{y}) = \eta(\boldsymbol{y}) + \tau \varepsilon$ 

optimality of the posterior expectation

#### $\mathbb{E}[\theta|y]$

of the parameter of interest as summary statistics  $\eta(\boldsymbol{y})!$ 

Intractable likelihoods

ABC methods

ABC for model choice Formalised framework

ABC model choice via random forests



(□) (@) (E) (E) (E)

Algorithm 2 Likelihood-free model choice sampler (ABC-MC)

for t = 1 to T do

repeat

Generate *m* from the prior  $\pi(\mathcal{M} = m)$ Generate  $\theta_m$  from the prior  $\pi_m(\theta_m)$ Generate *z* from the model  $f_m(z|\theta_m)$ **until**  $\rho\{\eta(z), \eta(y)\} < \epsilon$ Set  $m^{(t)} = m$  and  $\theta^{(t)} = \theta_m$ end for

[Grelaud & al., 2009; Toni & al., 2009]

ション ふゆ メ リン ト キャット しょうくしゃ

# ABC model choice

#### ABC model choice

- A) Generate large set of  $(m, \theta, z)$  from the Bayesian predictive,  $\pi(m)\pi_m(\theta)f_m(z|\theta)$
- B) Keep particles  $(m, \theta, z)$ such that  $\rho(\eta(\mathbf{y}), \eta(z)) \leqslant \epsilon$

C) For each 
$$m$$
, return  
 $\widehat{p_m} =$  proportion of  $m$   
among remaining  
particles

If  $\varepsilon$  tuned towards k resulting particles, then  $\widehat{p_m}$  k-nearest neighbor estimate of

$$\mathbb{P}\Big(\{\mathcal{M}=m\Big\}\Big|\eta(\mathbf{y})\Big)$$

Approximating posterior prob's of models = regression problem where

- response is  $1\{\mathcal{M} = m\}$ ,
- covariates are summary statistics η(z),

▶ loss is, e.g.,  $L^2$ 

Method of choice in DIYABC is local polytomous logistic regression

# Machine learning perspective [paradigm shift]

#### ABC model choice

- A) Generate a large set of  $(m, \theta, z)$ 's from Bayesian predictive,  $\pi(m)\pi_m(\theta)f_m(z|\theta)$
- B) Use machine learning tech. to infer on  $\arg \max_m \pi(m|\eta(\mathbf{y}))$

In this perspective:

- (iid) "data set" reference table simulated during stage A)
- observed y becomes a new data point

Note that:

- predicting m is a classification problem
   select the best model based on a maximal a posteriori rule
- computing π(m|η(y)) is a regression problem ⇐⇒ confidence in each model

© classification is much simpler than regression (e.g., dim. of objects we try to learn)

# Warning

the lost of information induced by using non sufficient summary statistics is a genuine problem

Fundamental discrepancy between the genuine Bayes factors/posterior probabilities and the Bayes factors based on summary statistics. See, e.g.,

- Didelot et al. (2011, Bayesian analysis)
- X et al. (2011, PNAS)
- Marin et al. (2014, JRSS B)

▶ ...

Call instead for machine learning approach able to handle with a large number of correlated summary statistics:

random forests well suited for that task

#### Central question to the validation of ABC for model choice:

# When is a Bayes factor based on an insufficient statistic T(y) consistent?

Note/warnin:  $\bigcirc$  drawn on  $\mathcal{T}(\mathbf{y})$  through  $B_{12}^{\mathcal{T}}(\mathbf{y})$  necessarily differs from  $\bigcirc$  drawn on  $\mathbf{y}$  through  $B_{12}(\mathbf{y})$ [Marin, Pillai, X, & Rousseau, JRSS B, 2013]

Central question to the validation of ABC for model choice:

# When is a Bayes factor based on an insufficient statistic T(y) consistent?

Note/warnin:  $\bigcirc$  drawn on  $\mathcal{T}(\mathbf{y})$  through  $B_{12}^{\mathcal{T}}(\mathbf{y})$  necessarily differs from  $\bigcirc$  drawn on  $\mathbf{y}$  through  $B_{12}(\mathbf{y})$ [Marin, Pillai, X, & Rousseau, JRSS B, 2013]

# $\begin{array}{ll} \mbox{Comparison suggested by referee of PNAS paper [thanks!]:} & [X, \mbox{ Cornuet, Marin, \& Pillai, Aug. 2011]} \\ \mbox{Model } \mathfrak{M}_1: \ \mbox{y} \sim \mathcal{N}(\theta_1, 1) \mbox{ opposed} \\ \mbox{to model } \mathfrak{M}_2: \ \mbox{y} \sim \mathcal{L}(\theta_2, 1/\sqrt{2}), \mbox{ Laplace distribution with mean } \theta_2 \\ \mbox{and scale parameter } 1/\sqrt{2} \mbox{ (variance one)}. \end{array}$

Four possible statistics

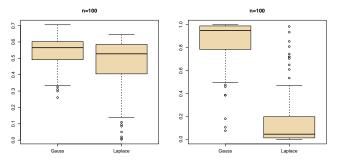
- 1. sample mean  $\overline{\mathbf{y}}$  (sufficient for  $\mathfrak{M}_1$  if not  $\mathfrak{M}_2$ );
- 2. sample median med(**y**) (insufficient);
- sample variance var(y) (ancillary);
- 4. median absolute deviation mad(y) = med(|y med(y)|);

ション ふゆ メ リン ト キャット しょうくしゃ

# A benchmark if toy example

Comparison suggested by referee of PNAS paper [thanks!]:

 $\label{eq:main_states} \begin{array}{ll} \mbox{[X, Cornuet, Marin, \& Pillai, Aug. 2011]} \\ \mbox{Model } \mathfrak{M}_1: \ y \sim \mathcal{N}(\theta_1, 1) \mbox{ opposed} \\ \mbox{to model } \mathfrak{M}_2: \ y \sim \mathcal{L}(\theta_2, 1/\sqrt{2}), \mbox{ Laplace distribution with mean } \theta_2 \\ \mbox{and scale parameter } 1/\sqrt{2} \mbox{ (variance one)}. \end{array}$ 



move to random forests

Starting from sample

$$\mathbf{y}=(y_1,\ldots,y_n)$$

the observed sample, not necessarily iid with true distribution

 $\mathbf{y} \sim \mathfrak{P}^n$ 

Summary statistics

$$T(\mathbf{y}) = T^n = (T_1(\mathbf{y}), T_2(\mathbf{y}), \cdots, T_d(\mathbf{y})) \in \mathbb{R}^d$$

with *true* distribution  $T^n \sim G_n$ .

move to random forests

© Comparison of

- under  $\mathfrak{M}_1$ ,  $\mathbf{y} \sim \mathcal{F}_{1,n}(\cdot|\theta_1)$  where  $\theta_1 \in \Theta_1 \subset \mathbb{R}^{p_1}$
- under  $\mathfrak{M}_2$ ,  $\mathbf{y} \sim F_{2,n}(\cdot|\theta_2)$  where  $\theta_2 \in \Theta_2 \subset \mathbb{R}^{p_2}$

turned into

- under  $\mathfrak{M}_1$ ,  $\boldsymbol{T}(\boldsymbol{y}) \sim \mathcal{G}_{1,n}(\cdot|\boldsymbol{\theta}_1)$ , and  $\boldsymbol{\theta}_1|\boldsymbol{T}(\boldsymbol{y}) \sim \pi_1(\cdot|\boldsymbol{T}^n)$
- under  $\mathfrak{M}_2$ ,  $\boldsymbol{T}(\mathbf{y}) \sim \mathcal{G}_{2,n}(\cdot|\boldsymbol{\theta}_2)$ , and  $\boldsymbol{\theta}_2|\boldsymbol{T}(\mathbf{y}) \sim \pi_2(\cdot|\boldsymbol{T}^n)$

Run a practical check of the relevance (or non-relevance) of  $T^n$ null hypothesis that both models are compatible with the statistic  $T^n$ 

$$H_0:\inf\{|\mu_2(\theta_2)-\mu_0|;\theta_2\in\Theta_2\}=0$$

against

$$H_1:\inf\{|\mu_2(\theta_2)-\mu_0|;\theta_2\in\Theta_2\}>0$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

testing procedure provides estimates of mean of  $T^n$  under each model and checks for equality

# Checking in practice

- ▶ Under each model  $\mathfrak{M}_i$ , generate ABC sample  $\theta_{i,l}$ ,  $l = 1, \cdots, L$
- ► For each  $\theta_{i,l}$ , generate  $\mathbf{y}_{i,l} \sim F_{i,n}(\cdot | \psi_{i,l})$ , derive  $\mathbf{T}^n(\mathbf{y}_{i,l})$  and compute

$$\hat{\mu}_i = \frac{1}{L} \sum_{l=1}^{L} T^n(\mathbf{y}_{i,l}), \quad i = 1, 2.$$

• Conditionally on  $T^n(y)$ ,

$$\sqrt{L}\{\hat{\mu}_i - \mathbb{E}^{\pi}[\mu_i(\boldsymbol{\theta}_i)|\boldsymbol{T}^n(\mathbf{y})]\} \rightsquigarrow \mathcal{N}(\mathbf{0}, V_i),$$

Test for a common mean

$$H_0: \widehat{\mu_1} \sim \mathcal{N}(\mu_0, V_1), \widehat{\mu_2} \sim \mathcal{N}(\mu_0, V_2)$$

against the alternative of different means

 $H_1: \hat{\mu_i} \sim \mathcal{N}(\mu_i, V_i), \quad \text{ with } \mu_1 \neq \mu_2.$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

# ABC model choice via random forests

Intractable likelihoods

ABC methods

ABC for model choice

ABC model choice via random forests Random forests ABC with random forests Illustrations



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

# Leaning towards machine learning

#### Main notions:

- ABC-MC seen as learning about which model is most appropriate from a huge (reference) table
- exploiting a large number of summary statistics not an issue for machine learning methods intended to estimate efficient combinations
- abandoning (temporarily?) the idea of estimating posterior probabilities of the models, poorly approximated by machine learning methods, and replacing those by posterior predictive expected loss
- estimating posterior probabilities of the selected model by machine learning methods

Technique that stemmed from Leo Breiman's bagging (or *bootstrap aggregating*) machine learning algorithm for both classification and regression

[Breiman, 1996]

Improved classification performances by averaging over classification schemes of randomly generated training sets, creating a "forest" of (CART) decision trees, inspired by Amit and Geman (1997) ensemble learning

[Breiman, 2001]

ション ふゆ メ リン ト キャット しょうくしゃ

# CART construction

Basic classification tree:

#### Algorithm 3 CART start the tree with a single root repeat pick a non-homogeneous tip v such that $Q(v) \neq 1$ attach to v two daughter nodes $v_1$ and $v_2$ for all covariates $X_j$ do find the threshold $t_j$ in the rule $X_j < t_j$ that minimizes $N(v_1)Q(v_1) + N(v_2)Q(v_2)$ end for find the rule $X_j < t_j$ that minimizes $N(v_1)Q(v_1) + N(v_2)Q(v_2)$ in j and set this best rule to node v

until all tips v are homogeneous (Q(v) = 0) set the labels of all tips

where Q is Gini's index

$$Q(\mathbf{v}_i) = \sum_{y=1}^M \hat{p}(\mathbf{v}_i, y) \{1 - \hat{p}(\mathbf{v}_i, y)\}.$$

Breiman's solution for inducing random features in the trees of the forest:

- boostrap resampling of the dataset and
- $\blacktriangleright$  random subset-ing [of size  $\sqrt{t}$ ] of the covariates driving the classification at every node of each tree

Covariate  $x_{\tau}$  that drives the node separation

$$x_{\tau} \gtrless c_{\tau}$$

and the separation bound  $c_{\tau}$  chosen by minimising entropy or Gini index

#### Algorithm 4 Random forests

for t = 1 to T do //\*T is the number of trees\*// Draw a bootstrap sample of size  $n_{boot} \neq n$ Grow an unpruned decision tree for b = 1 to B do //\*B is the number of nodes\*// Select  $n_{try}$  of the predictors at random Determine the best split from among those predictors end for end for

Predict new data by aggregating the predictions of the T trees

ション ふゆ メ リン ト キャット しょうくしゃ

#### Idea: Starting with

- possibly large collection of summary statistics (s<sub>1i</sub>,..., s<sub>pi</sub>) (from scientific theory input to available statistical softwares, to machine-learning alternatives, to pure noise)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data

run R randomforest to infer  $\mathfrak{M}$  from  $(s_{1i}, \ldots, s_{pi})$ 

# ABC with random forests

#### Idea: Starting with

- possibly large collection of summary statistics (s<sub>1i</sub>,..., s<sub>pi</sub>) (from scientific theory input to available statistical softwares, to machine-learning alternatives, to pure noise)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data

run R randomforest to infer  $\mathfrak{M}$  from  $(s_{1i}, \ldots, s_{pi})$ 

at each step  $O(\sqrt{p})$  indices sampled at random and most discriminating statistic selected, by minimising entropy Gini loss

# ABC with random forests

#### Idea: Starting with

- possibly large collection of summary statistics (s<sub>1i</sub>,..., s<sub>pi</sub>) (from scientific theory input to available statistical softwares, to machine-learning alternatives, to pure noise)
- ABC reference table involving model index, parameter values and summary statistics for the associated simulated pseudo-data

run R randomforest to infer  $\mathfrak{M}$  from  $(s_{1i}, \ldots, s_{pi})$ 

Average of the trees is resulting summary statistics, highly non-linear predictor of the model index

# Outcome of ABC-RF

Random forest predicts a (MAP) model index, from the observed dataset: The predictor provided by the forest is "sufficient" to select the most likely model but not to derive associated posterior probability

- exploit entire forest by computing how many trees lead to picking each of the models under comparison but variability too high to be trusted
- frequency of trees associated with majority model is no proper substitute to the true posterior probability
- usual ABC-MC approximation equally highly variable and hard to assess
- random forests define a natural distance for ABC sample via agreement frequency

Random forest predicts a (MAP) model index, from the observed dataset: The predictor provided by the forest is "sufficient" to select the most likely model but not to derive associated posterior probability

- exploit entire forest by computing how many trees lead to picking each of the models under comparison but variability too high to be trusted
- frequency of trees associated with majority model is no proper substitute to the true posterior probability
- usual ABC-MC approximation equally highly variable and hard to assess
- random forests define a natural distance for ABC sample via agreement frequency

# Posterior predictive expected losses

We suggest replacing unstable approximation of

 $\mathbb{P}(\mathfrak{M}=m|x_o)$ 

with  $x_o$  observed sample and m model index, by average of the selection errors across all models given the data  $x_o$ ,

 $\mathbb{P}(\hat{\mathfrak{M}}(X) \neq \mathfrak{M}|x_o)$ 

where pair  $(\mathfrak{M}, X)$  generated from the predictive

 $\int f(x|\theta)\pi(\theta,\mathfrak{M}|x_o)\mathsf{d}\theta$ 

ション ふゆ メ リン ト キャット しょうくしゃ

and  $\hat{\mathfrak{M}}(x)$  denotes the random forest model (MAP) predictor

# Posterior predictive expected losses

#### **Arguments:**

- Bayesian estimate of the posterior error
- integrates error over most likely part of the parameter space
- gives an averaged error rather than the posterior probability of the null hypothesis
- easily computed: Given ABC subsample of parameters from reference table, simulate pseudo-samples associated with those and derive error frequency

## Posterior probability of the selected model

Given the MAP estimate provided by the random forest,  $\hat{\mathfrak{M}}(s(X))$ , consider the posterior estimation error

$$\begin{split} \mathbb{E}[\mathbb{I}(\hat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq \mathfrak{M}) | \mathbf{s}_{obs}] &= \sum_{i=1}^{k} \mathbb{E}[\mathbb{I}(\hat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq \mathfrak{M} = i) | \mathbf{s}_{obs}] \\ &= \sum_{i=1}^{k} \mathbb{P}[\mathfrak{M} = i) | \mathbf{s}_{obs}] \times \mathbb{I}(\hat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq i) \\ &= \mathbb{P}[\mathfrak{M} \neq \hat{\mathfrak{M}}(\mathbf{s}_{obs}) | \mathbf{s}_{obs}] \\ &= 1 - \mathbb{P}[\mathfrak{M} = \hat{\mathfrak{M}}(\mathbf{s}_{obs}) | \mathbf{s}_{obs}], \end{split}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

© posterior probability that the true model is not the MAP

## Posterior probability of the selected model

Given the MAP estimate provided by the random forest,  $\hat{\mathfrak{M}}(s(X))$ , consider the posterior estimation error

$$\begin{split} \mathbb{E}[\mathbb{I}(\widehat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq \mathfrak{M}) | \mathbf{s}_{obs}] &= \sum_{i=1}^{k} \mathbb{E}[\mathbb{I}(\widehat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq \mathfrak{M} = i) | \mathbf{s}_{obs}] \\ &= \sum_{i=1}^{k} \mathbb{P}[\mathfrak{M} = i) | \mathbf{s}_{obs}] \times \mathbb{I}(\widehat{\mathfrak{M}}(\mathbf{s}_{obs}) \neq i) \\ &= \mathbb{P}[\mathfrak{M} \neq \widehat{\mathfrak{M}}(\mathbf{s}_{obs}) | \mathbf{s}_{obs}] \\ &= 1 - \mathbb{P}[\mathfrak{M} = \widehat{\mathfrak{M}}(\mathbf{s}_{obs}) | \mathbf{s}_{obs}], \end{split}$$

© posterior probability that the true model is not the MAP

# Posterior probability estimated by another forest

since

 $\mathbb{P}[\mathfrak{M} \neq \hat{\mathfrak{M}}(s_{\mathsf{obs}}) | s_{\mathsf{obs}}] = \mathbb{E}[\mathbb{I}(\hat{\mathfrak{M}}(s_{\mathsf{obs}}) \neq \mathfrak{M}) | s_{\mathsf{obs}}]$ 

function of  $s_{obs}$ ,  $\Psi(s_{obs})$ , ...

 ...estimation based on the reference table simulated from prior predictive, using all simulated pairs (M, s)

ション ふゆ メ リン ト キャット しょうくしゃ

- ► construction of a random forest  $\widehat{\Psi}(s)$  predicting the error  $\mathbb{E}[\mathbb{I}(\widehat{\mathfrak{M}}(s) \neq \mathfrak{M})|s]$
- association of  $\widehat{\Psi}(\mathbf{s}_{\mathsf{obs}})$  with  $\widehat{\mathfrak{M}}(\mathbf{s}_{\mathsf{obs}})$

#### Algorithm 5 Approximation of the posterior probability

- (a) Use the trained RF to predict model by  $\widehat{\mathfrak{M}}(S(\mathbf{x}))$  for each  $(m, S(\mathbf{x}))$  in the reference table and deduce  $\iota = \mathbb{I}(\widehat{\mathfrak{M}}(s) \neq \mathfrak{M})$
- (b) Train a new RF  $\widehat{\Psi}(s)$  on this reference table  $(\iota, s)$  predicting success  $\Psi(s)$

ション ふゆ く 山 マ チャット しょうくしゃ

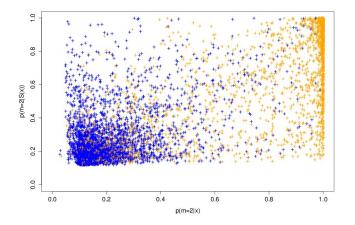
(c) Apply to  $s = s_{obs}$  and deduce  $\widehat{\Psi}(s_{obs})$  as estimate of  $\mathbb{P}[\mathfrak{M} = \mathfrak{M}(s_{obs})|s_{obs}]$ 

Comparing an MA(1) and an MA(2) models:

$$x_t = \epsilon_t - \vartheta_1 \epsilon_{t-1} [-\vartheta_2 \epsilon_{t-2}]$$

Earlier illustration using first two autocorrelations as S(x)[Marin et al., Stat. & Comp., 2011] Result #1: values of p(m|x) [obtained by numerical integration] and p(m|S(x)) [obtained by mixing ABC outcome and density estimation] highly differ!

toy: MA(1) vs. MA(2)



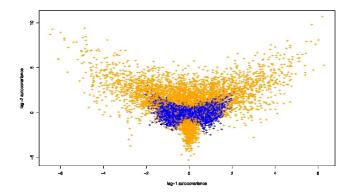
Difference between the posterior probability of MA(2) given either x or S(x). Blue stands for data from MA(1), orange for data from MA(2)

Comparing an MA(1) and an MA(2) models:

$$x_t = \epsilon_t - \vartheta_1 \epsilon_{t-1} [-\vartheta_2 \epsilon_{t-2}]$$

Earlier illustration using two autocorrelations as S(x)[Marin et al., Stat. & Comp., 2011] Result #2: Embedded models, with simulations from MA(1) within those from MA(2), hence linear classification poor

# toy: MA(1) vs. MA(2)



Simulations of S(x) under MA(1) (blue) and MA(2) (orange)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Comparing an MA(1) and an MA(2) models:

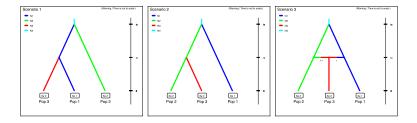
$$x_t = \epsilon_t - \vartheta_1 \epsilon_{t-1} [-\vartheta_2 \epsilon_{t-2}]$$

Earlier illustration using two autocorrelations as S(x)[Marin et al., Stat. & Comp., 2011] Result #3: On such a small dimension problem, random forests should come second to *k*-nn ou kernel discriminant analyses

# toy: MA(1) vs. MA(2)

| classification                | prior             |
|-------------------------------|-------------------|
| method                        | error rate (in %) |
| LDA                           | 27.43             |
| Logist. reg.                  | 28.34             |
| SVM (library e1071)           | 17.17             |
| "naïve" Bayes (with G marg.)  | 19.52             |
| "naïve" Bayes (with NP marg.) | 18.25             |
| ABC $k$ -nn ( $k = 100$ )     | 17.23             |
| ABC $k$ -nn ( $k = 50$ )      | 16.97             |
| Local log. reg. $(k = 1000)$  | 16.82             |
| Random Forest                 | 17.04             |
| Kernel disc. ana. (KDA)       | 16.95             |
| True MAP                      | 12.36             |

# Evolution scenarios based on SNPs



Three scenarios for the evolution of three populations from their most common ancestor

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

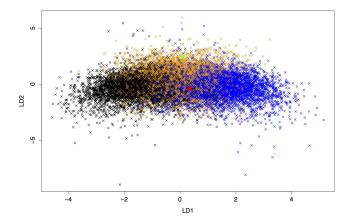
# Evolution scenarios based on microsatellites

| classification                         | prior error*    |
|----------------------------------------|-----------------|
| method                                 | rate (in $\%$ ) |
| raw LDA                                | 35.64           |
| "naïve" Bayes (with G marginals)       | 40.02           |
| <i>k</i> -nn (MAD normalised sum stat) | 37.47           |
| k-nn (unormalised LDA)                 | 35.14           |
| RF without LDA components              | 35.14           |
| RF with LDA components                 | 33.62           |
| RF with only LDA components            | 37.25           |

<sup>\*</sup>estimated on pseudo-samples of 10<sup>4</sup> items drawn from the prior < = > =  $\circ \circ \circ \circ$ 

## Evolution scenarios based on microsatellites

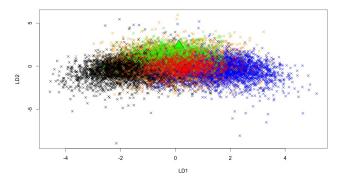
#### Posterior predictive error rates



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = ∽ へ ⊙

### Evolution scenarios based on microsatellites

Posterior predictive error rates

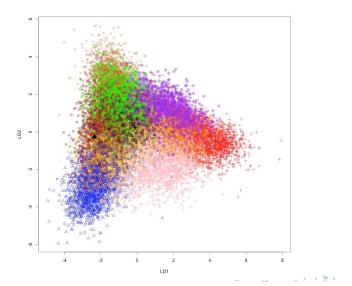


favourable: 0.183 error - unfavourable: 0.435 error

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

# Back to Asian Ladybirds [message in a beetle]

Comparing 10 scenarios of Asian beetle invasion ( beetle moves)



| Comparing 10 scenarios of Asian beetle invasion ( beetle moves |                          |  |  |
|----------------------------------------------------------------|--------------------------|--|--|
| classification                                                 | prior error <sup>†</sup> |  |  |
| method                                                         | rate (in $\%$ )          |  |  |
| raw LDA                                                        | 38.94                    |  |  |
| "naïve" Bayes (with G margins)                                 | 54.02                    |  |  |
| <i>k</i> -nn (MAD normalised sum stat)                         | 58.47                    |  |  |
| RF without LDA components                                      | 38.84                    |  |  |
| RF with LDA components                                         | 35.32                    |  |  |

<sup>&</sup>lt;sup>†</sup>estimated on pseudo-samples of 10<sup>4</sup> items drawn from the prior < > > > > <

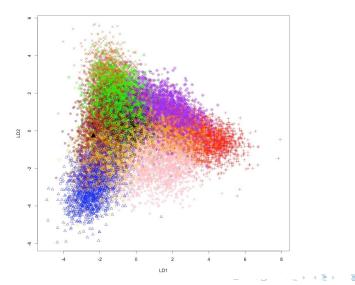
1 2 3 4 5 6 7 8 9 10 0.168 0.1 0.008 0.066 0.296 0.016 0.092 0.04 0.014 0.2

Posterior predictive error based on 20,000 prior simulations and keeping 500 neighbours (or 100 neighbours and 10 pseudo-datasets per parameter)

0.3682

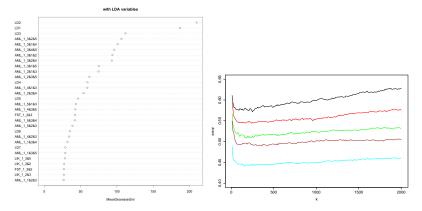
# Back to Asian Ladybirds [message in a beetle]

#### Comparing 10 scenarios of Asian beetle invasion



## Back to Asian Ladybirds [message in a beetle]

#### Comparing 10 scenarios of Asian beetle invasion



posterior predictive error 0.368

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Harlequin ladybird data: estimated prior error rates for various classification methods and sizes of reference table.

| Classification method                  | Prior error rates (%) |                    |                    |
|----------------------------------------|-----------------------|--------------------|--------------------|
| trained on                             | $N_{ref} = 10,000$    | $N_{ref} = 20,000$ | $N_{ref} = 50,000$ |
| linear discriminant analysis (LDA)     | 39.91                 | 39.30              | 39.04              |
| standard ABC (knn) on DIYABC summaries | 57.46                 | 53.76              | 51.03              |
| standard ABC (knn) on LDA axes         | 39.18                 | 38.46              | 37.91              |
| local logistic regression on LDA axes  | 41.04                 | 37.08              | 36.05              |
| random forest (RF) on DIYABC summaries | 40.18                 | 38.94              | 37.63              |
| RF on DIYABC summaries and LDA axes    | 36.86                 | 35.62              | 34.44              |

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

# Conclusion

## Key ideas

- $\blacktriangleright \pi(m|\eta(\mathbf{y})) \neq \pi(m|\mathbf{y})$
- Rather than approximating π(m|η(y)), focus on selecting the best model (classif. vs regression)
- Assess confidence in the selection via posterior probability of MAP model

# Consequences on ABC-PopGen

- Often, RF >> k-NN (less sensible to high correlation in summaries)
- RF requires many less prior simulations
- RF selects automatically relevant summaries
- Hence can handle much more complex models

ション ふゆ く 山 マ チャット しょうくしゃ

# Conclusion

### Key ideas

- $\blacktriangleright \pi(m|\eta(\mathbf{y})) \neq \pi(m|\mathbf{y})$
- Use a seasoned machine learning technique selecting from ABC simulations: minimise 0-1 loss mimics MAP
- Assess confidence in the selection via RF estimate of posterior probability of MAP model

# Consequences on ABC-PopGen

- Often, RF >> k-NN (less sensible to high correlation in summaries)
- RF requires many less prior simulations
- RF incorporates all available summaries
- Hence can handle much more complex models

ション ふゆ く 山 マ チャット しょうくしゃ

- unlimited aggregation of arbitrary summary statistics
- recovery of discriminant statistics when available
- automated implementation with reduced calibration
- self-evaluation by posterior predictive error probability

soon to appear in DIYABC