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Motivation 1: measurement error in epidemiology

I MacMahon et al (1990): collaborative re-analysis of 9 cohort
studies of blood pressure, stroke and coronary heart disease

I Participants categorized by baseline diastolic blood pressure
(DBP) in 5 categories

I ≤ 79; 80-89; 90-99; 100-108; ≥ 110 mm Hg

I What is the relationship between average DBP and stroke
risk?



Stroke risk by baseline DBP
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Regression to the mean in follow-up DBP measurement
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Stroke risk by mean DBP
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Regression Calibration

Theory of regression calibration is now well-developed (See, for
example, Carroll et al 2006)

I Calculate plug-in predictor values:
I Expected value of true predictor given

surrogate
I Using data from validation/calibration

sub-study

I Regress outcome on plug-in predictors

I Correct standard errors for uncertainty in
plug-in predictors



Useful features of regression calibration

I Uses only data from calibration study for imputation of true
predictors

I Does not depend on any assumptions about dose response

I In practice, efficient compared to full likelihood analysis

Is there a Bayesian equivalent to regression calibration?



Notation for linear model example

Calibration data: true exposure (X ∗) and surrogate(Z ∗)

X ∗
i ∼ N(µx , τ

−1
x ) i = 1 . . .m

Z ∗
i | X ∗

i ∼ N(αz + βzX
∗
i , τ

−1
z ) i = 1 . . .m

Regression data : surrogate(Z ) and outcome (Y )

Xj ∼ N(µx , τ
−1
x ) j = 1 . . .N

Zj | Xj ∼ N(αz + βzXj , τ
−1
z ) j = 1 . . .N

Yj | Xj ∼ N(αy + βyXj , τ
−1
y ) j = 1 . . .N

True exposure (X ) is unobserved in regression data



Simulation: egregiously mis-specified dose-response
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What happens if we fit a linear
regression model to data generated
by a threshold effect (or
step-function)



mis-specified dose-response by surrogate
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The step-function is less obvious
when using surrogate predictors. You
could fit a linear regression but it
diagnostic checks would show the
mis-specification.



Feedback in a Bayesian full probability model

Quality of surrogate measurement determined by correlation
between true and surrogate predictors (ρ).
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Full data
Validation data only

Including outcome data and using
the mis-specified linear regression
model forces ρ to appear worse.
Lunn et al (2009) call this
phenomenon “feedback”. Liu et al
(2009) call it “contamination”



Feedback and MCMC mixing

5e+04 6e+04 7e+04 8e+04 9e+04 1e+05
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Iterations

ρ2

Feedback is often
accompanied by poor
mixing of MCMC.
Here we have extremely
high autocorrelation,
and jumping between
two local modes of the
posterior for ρ2.
Poor mixing is a strong
motivation to seek
alternate solutions.



Modularization

I A large model combining different data sources can be
conceptually divided into “modules”

I Clayton (1992) described three sub-models of measurement
error models in epidemiology:

Exposure model Distribution of exposure in population
Measurement model Relationship between true exposure and

surrogate
Disease model Relationship of disease outcome to true

exposure

I Liu et al (2009) describe modified MCMC algorithms that
weaken relationships between modules as “modularization”.



Motivation 2: Population PK/PD

Population pharmacokinetic/pharmacodynamic (PD/PD) models
aim to elicit the effects of drugs at a population level

I Variation within and between individuals

I Compartmental models

I Highly non-linear

Dose
Drug

Concentration

Efficacy
Toxicity

PK PD

NB Time dimension is missing in this graphical representation.



Measurement error in Population PK/PD

True concentration is not known exactly

Dose
True drug

concentration

Measured
concentration

Efficacy
Toxicity

PK PD

Use PK model to get estimates of true drug concentration for PD
model.



Sequential analysis of PK/PD models

Bennett & Wakefield (2001): Bayesian PK/PD model

I Insufficient PK data → under-fitted PK model

I Worse predictions than using observed concentration for PD
model

Zhang et al (2003a, 2003b): Frequentist sequential analysis

I Various strategies for plug-in concentration estimates based
on PK only data

I Compared to simultaneous estimation: efficient; fast; robust
to PD model mis-specification

Lunn et al (2009): Bayesian “sequential” PK/PD with MCMC

I Bayesian analogues of Zhang et al via “cuts”



A cut model

G1 G2

ϕ

Z

θ

Y

In a cut model, the graph G is
divided into two sub-graphs
G1,G2.

I Nodes in G1 are updated
ignoring nodes in G2.

I Nodes in G2 are updated
as normal

Call this the naive cut
algorithm



Implementation of cut models in OpenBUGS

OpenBUGS provides a cut function:

for (i in 1:N) {

x.cut[i] <- cut(x[i]])

}

When calculating full conditional distribution of x[i], likelihood
contributions from stochastic children of x.cut[i] are ignored.

The ”cut” function forms a kind of ’valve’ in the
graph: prior information is allowed to flow ’downwards’
through the cut, but likelihood information is prevented
from flowing upwards.

– OpenBUGS Manual

Represented using diode notation in a graph.



Other examples of modified MCMC algorithms

I Liu, Bayarri and Berger (2009) deal with contamination
problem in computer models

I van Dyk and Jiao (2015) – “Partially Collapsed Gibbs
Samplers”

I Modify MCMC updates to ignore some information
I But keep full posterior as target distribution

I Multiple Imputation with Chained Equations (MICE) for
missing data.

I Doubts often expressed about foundations when imputation
models are incoherent



Toy epidemiological example

There is an ecological association between HPV prevalence and
cervical cancer incidence1

HPV is a necessary cause of cancer, but risk is modulated by other
cofactors: smoking, childbirth, hormonal contraceptives, . . ..

1Maucort-Boulch et al (2008)



A measurement error model for the ecological data

We experimented with a functional measurement error model for
these data, with a Poisson regression model for incidence and a
binomial model for (age-specific) prevalence:

Yi ∼ Poisson(Ni exp(λi )) Cancer incidence data
λi = θ1 + θ2ϕi Incidence rates
Zi ∼ Bin(ni , ϕi ) HPV prevalence data



Results of naive cut algorithm for θ2 by sampling method 2
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different limiting
distributions.
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What is the target density of a cut model?

The target density of a cut model is the mixture:

p∗(θ) =

∫
p(ϕ | Z)p(θ | ϕ,Y)dϕ

This is the sampling density if we sample directly ϕ then θ at each
iteration.

Need to maintain this target distribution with other sampling
schemes, e.g.

I Element-wise updating of ϕ,θ

I Block-updating with reversible transitions

For convenience, consider block updating here.



Why the naive cut algorithm does not work

In general, MCMC methods do not sample directly from the target
density but supply a reversible transition θt−1 → θt at iteration t.
The transition is in detailed balance with the full conditional
distribution:

p(θt−1 | Y,ϕt)p(θt−1 → θt | ϕt) =

p(θt | Y,ϕt)p(θt → θt−1 | ϕt)

But for p∗(θ) to be the stationary distribution we need:

p(θt−1 | Y,ϕt−1)p(θt−1 → θt | ϕt−1,ϕt) =

p(θt | Y,ϕt)p(θt → θt−1 | ϕt ,ϕt−1)

The balance relation uses the current and previous values of ϕ.
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Can we modify a standard MCMC update? (1/2)

Maybe we can add a Metropolis-Hastings acceptance step, treating
the move θt−1 → θt as a proposal to be accepted with probability
min(1,R) where

R =
p(θt | Y,ϕt)p(θt → θt−1 | ϕt−1)

p(θt−1 | Y,ϕt−1)p(θt−1 → θt | ϕt)

Note that R = 1 in the case of direct sampling:

p(θt−1 → θt | ϕ) = p(θt | Y,ϕ)



Can we modify a standard MCMC update? (2/2)

For a standard MCMC update (in detailed balance with the full
conditional distribution) the acceptance ratio can be rewritten in
terms of forward transitions:

R =
p(θt | Y,ϕt)

p(θt | Y,ϕt−1)

p(θt−1 → θt | ϕt−1)

p(θt−1 → θt | ϕt)

But this requires

I Explicit expressions for the transition probabilities (not
available for slice sampling, Hamiltonian Monte Monte Carlo).

I Evaluation of the ratio of two normalized densities

I Unsuitable for most applications of MCMC where we have only
unnormalized densities.
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Numerical issues

I Use of cuts often motivated by numerical issues
I Liu et al (2009) – not sufficient reason to modularize inference

I van Dyk and Jiao (2015) – sensitivity of Partially Collapsed
Gibbs Samplers to update order and use of
Metropolis-Hastings

I MICE?



Statistical issues

I Cuts represent a refusal to learn about certain parameters in
the model

I Lunn et al (2009) call these “distributional constants”

I Even if multiple imputation is a target for cut models, it leads
to inconsistent inference

I Meng (1994) Multiple imputation inferences with uncongenial
sources of input

I Nielsen (2003) Proper and improper multiple imputation



“Sequential” Bayesian analysis

I In practice “sequential” Bayesian analysis is used whenever we
include prior distributions based on summary statistics from
previous studies.

I Perhaps the “feedback” problem is due to trying to carry over
the full posterior from stage 1 (calibration data only) to stage
2 (including surrogate and outcome regression data) instead
of a simplified summary.



“Sequential Bayesian analysis

I In our Bayesian measurement error model, the predictive
distribution of true predictor variables X1 . . .XN from stage 1
becomes the prior of X1 . . .XN in stage 2

I Hypothesis: We can reduce feedback by

1. Keeping correct marginal predictive distribution of Xi from
stage 1

2. But treating Xi and Xj as a priori independent for i 6= j in
stage 2

and otherwise respecting normal rules for Bayesian inference
and MCMC



Stage 1

Replicate calibration data N times,

X ∗
ij ∼ N(µxj , τ

−1
xj ) i = 1 . . .m j = 1 . . .N

Z ∗
ij | X ∗

ij ∼ N(αzj + βzjX
∗
ij , τ

−1
zj ) i = 1 . . .m j = 1 . . .N

Each copy has its own private parameters for

1. exposure model: µxj , τxj

2. measurement model: αzj , βzj , τzj

Hence, e.g. αzj is independent of αzk for j 6= k , also a posteriori.



Stage 2

Each observation in the regression data uses its own copy of the
parameters from stage 1.

Xj ∼ N(µxj , τ
−1
xj ) j = 1 . . .N

Zj | Xj ∼ N(αzj + βzjXj , τ
−1
zj ) j = 1 . . .N

Regression parameters are common

Yj | Xj ∼ N(αy + βyXj , τ
−1
y ) j = 1 . . .N



How does this affect feedback?

I Marginal posterior of Xi given only validation data X∗,Z∗ is
the same as in full probability model

I Parameters of exposure model and measurement model are
estimated from m validation measurements but only 1
outcome measurement

I Informally, influence of outcome data on distribution of Xi is
O(m−1) not O(Nm−1)

I Data replication is computationally expensive, but there is
scope for parallelization



What do I hope to see?

Some kind of efficiency/robustness trade-off, e.g.

I Minimal loss of efficiency when model is true (q.v. regression
calibration)

I Robustness to outliers

I Increased ability to detect mis-specified outcome model by
posterior predictive simulation



Perspectives

I Cuts take an algorithmic view of the feedback problem

I Statistical properties not well defined

I Promoted by software implementation
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