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Compound decision problem

• Estimate (predict) a vector µ = (µ1, · · · ,µn)
Many quantities here, and not that much of sample for those
• Observing one Yi for every µi, with (conditionally) known

distribution
Example: Yi ∼ Binomial(ni,µi), ni known
Another example: Yi ∼ N(µi, 1)
Yet another example: Yi ∼ Poisson(µi)
• µi’s assumed to be sampled (→ random) iid-ly from P

Thus, when the conditional density (...) of the Yi’s is ϕ(y,µ),
then the marginal density of the Yi’s is

g(y) =

∫
ϕ(y,µ)dP(µ)
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A sporty example
Data: known performance of individual players, typically
summarized as of successes, ki, in a number, ni, of some
repeated trials (bats, penalties) - typically, data not very
extensive (start of the season, say); the objective is to predict
“true” capabilities of individual players

One possibility: Yi = ki ∼ Binomial(ni,µi)

Another possibility: take Yi = arcsin
ki + 1/4
ni + 1/2

∼̇ N

(
µi,

1
4ni

)
Solutions via maximum likelihood

µ̂i = ki/ni or µ̂i = µi
The overall mean (or marginal MLE) is often better than this

Efron and Morris (1975), Brown (2008),
Koenker and Mizera (2014): bayesball
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NBA data (Agresti, 2002)

player n k prop

1 Yao 13 10 0.7692

2 Frye 10 9 0.9000

3 Camby 15 10 0.6667

4 Okur 14 9 0.6429

5 Blount 6 4 0.6667

6 Mihm 10 9 0.9000 it may be better to take

7 Ilgauskas 10 6 0.6000 the overall mean!

8 Brown 4 4 1.0000

9 Curry 11 6 0.5455

10 Miller 10 9 0.9000

11 Haywood 8 4 0.5000

12 Olowokandi 9 8 0.8889

13 Mourning 9 7 0.7778

14 Wallace 8 5 0.6250

15 Ostertag 6 1 0.1667
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An insurance example

Yi - known number of accidents of individual insured motorists

Predict their expected number - rate, µi (in next year, say)

Yi ∼ Poisson(µi)

Maximum likelihood: µ̂i = Yi

Nothing better?
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The data of Simar (1976)
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So, what is better?

First, what is better?

We express it via some (expected) loss function

Most often it is averaged or aggregated squared error loss
∑

i

(µ̂i − µi)
2

But it could be also some other loss...

And then?

Well, it is sooo simple...
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... if P is known!
µi’s are sampled iid-ly from P - prior distribution

Conditionally on µi, the distribution of Yi is, say, N(µi, 1)

The optimal prediction is the posterior mean, the mean of the
posterior distribution: conditional distribution of µi given Yi
(given that the loss function is quadratic!)

For instance, if P is N(0,σ2), then (homework)

the best predictor is µ̂i = Yi −
1

σ2 + 1
Yi

Borrowing strength via shrinkage
“neither will be the good that good, nor the bad that bad”
More generally, µi can be N(µ,σ2) and Yi then N(µi,σ2

0),

And then µ̂i = Yi −
σ2

0

σ2 + σ2
0
(Yi − µ) (if σ2 = σ2

0, halfway to µ)
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“If only all of them published posthumously...”

Thomas Bayes (1701–1761)
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But do we know P (or σ2)?

“Hierarchical model”
“Random effects”
“Smoothing”
“Empirical Bayes”

“no less Bayes than empirical Bayes”

“we know it is frequentist, but frequentists think it is Bayesian,
so this is why we discuss it here”

Many inventors ...
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What is mathematics?

Herbert Ellis Robbins (1915–2001)
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On experience in statistical decision theory (1954)

Antonı́n Špaček (1911–1961)
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I. J. Good (2000)

Alann Mathison Turing (1912–1954)
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So, how

A. we may try to estimate the prior - “f-modeling”, Efron (2014)
B. or more directly, the prediction rule - “g-modeling”

A’. Estimated normal prior (parametric)
(Nonparametric ouverture)

A. Empirical prior (nonparametric)
B. Empirical prediction rule (nonparametric)
Simulation contests
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A’. Estimated normal prior

James-Stein (JS): if P is N(0,σ2)

then the unknown part,
1

σ2 + 1
, of the prediction rule

can be estimated by
n− 2
S

, where S =
∑

i

Y2
i

For general µ in place of 0, the rule is

µ̂i = Yi −
n− 3
S

(Yi − Ȳ), with Ȳ =
1
n

∑

i

Yi and S =
∑

i

(Yi − Ȳ)
2
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JS as empirical Bayes: Efron and Morris (1975)

Charles Stein (1920– )
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Nonparametric ouverture: MLE of density

Density estimation: given the datapoints X1,X2, . . . ,Xn, solve

n∏

i=1

g(Xi)# max
g

!

or equivalently

−

n∑

i=1

logg(Xi)# min
g

!

under the side conditions

g > 0,
∫
g = 1
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Doesn’t work
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How to prevent Dirac catastrophe?

19



Reference

Koenker and Mizera (2014)
... and those that cite it (Google Scholar)

“... the chance meeting on a dissecting-table of a
sewing-machine and an umbrella”

See also REBayes package on CRAN

For simplicity:
ϕ(y,µ) = ϕ(y− µ), and the latter is standard normal density
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A. Empirical prior

MLE of P: Kiefer and Wolfowitz (1956)

−
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)
# min

P
!

The regularizer is the fact that it is a mixture
No tuning parameter needed (but “known” form of ϕ!)
The resulting P̂ is atomic (“empirical prior”)
However, it is an infinite-dimensional problem...
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EM nonsense

Laird (1978), Jiang and Zhang (2009):
Use a grid {u1, ...um} (m = 1000)
containing the support of the observed sample
and estimate the “prior density” via EM iterations

p̂
(k+1)
j =

1
n

n∑

i=1

p̂
(k)
j ϕ(Yi − uj)

∑m
`=1 p̂

(k)
` ϕ(Yi − u`)

,

Sloooooow... (original versions: 55 hours for 1000 replications)
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Convex optimization!

Koenker and Mizera (2014): it is a convex problem!

−
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)
# min

P
!

When discretized

−
∑

i

log

(∑
m

ϕ(Yi − uj)pj

)
# min

p
!

or in a more technical form

−
∑

i

logyi # min
y

! Az = y and z ∈ S

where A = (ϕ(Yi − uj)) and S = {s ∈ Rm : 1>s = 1, s > 0}.
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With a dual
The solution is an atomic probability measure, with not more
than n atoms. The locations, µ̂j, and the masses, p̂j, at these
locations can be found via the following dual characterization:
the solution, ν̂, of

n∑

i=1

logνi # max
µ

!
n∑

i=1

νiϕ(Yi − µ) 6 n for all µ

satisfies the extremal equations
∑

j

ϕ(Yi − µ̂j)p̂j =
1
ν̂i

,

and µ̂j are exactly those µ where the dual constraint is active.

And one can use modern convex optimization methods again...

(And note: everything goes through for general ϕ(y,µ))
(And one can also handle - numerically - alternative loss
functions!)
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A typical result: µi drawn from U(5, 15)Koenker and Mizera 11

0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

y

g(
y)

4 6 8 10 12 14 16

6
8

10
12

14

y
δ(

y)

Figure 2. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem. The
target Bayes rule and its mixture density are again plotted
in dashed blue. In contrast to the shape constrained estima-
tor shown in Figure 1, the Kiefer-Wolfowitz MLE employed
for this figure yields a much smoother and somewhat more
accurate Bayes rule.

experiment. Each entry in the table is a sum of squared errors over the 1000
observations, averaged over the number of replications. Johnstone and
Silverman (2004) evaluated 18 different procedures; the last row of the table
reports the best performance, from the 18, achieved in their experiment
for each column setting. The performance of the Brown and Greenshtein
(2009) kernel based rule is given in the fourth row of the table, taken from
their Table 1. Two variants of the GMLEB procedure of Jiang and Zhang
(2009) appear in the second and third rows of the table. GMLEBEM is
the original proposal as implemented by Jiang and Zhang (2009) using
100 iterations of the EM fixed point algorithm, GMLEBIP is the interior
point version iterated to convergence as determined by the Mosek defaults.
The shape constrained estimator described above, denoted δ̂ in the table,
is reported in the first row. The δ̂ and GMLEBIP results are based on
1000 replications. The GMLEB results on 100 replications, the Brown and
Greenshtein results on 50 replications, and the Johnstone and Silverman
results on 100 replications, as reported in the respective original sources.

It seems fair to say that the shape constrained estimator performs com-
petitively in all cases, but is particularly attractive relative to the kernel
rule and the Johnstone and Silverman procedures in the moderate k and

Left: mixture density (blue: target)
Right: decision rule (blue: target)
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B. Empirical prediction rule

Lawrence Brown, personal communication
Also, looks like in Maritz and Lwin (1989)
Do not estimate P, but rather the prediction rule
Tweedie formula: for known (general) P, and hence known g,
the Bayes rule is

δ(y) = y+ σ2g
′(y)
g(y)

One may try to estimate g and plug it in - when knowing σ2

(=1, for instance)
Brown and Greenshtein (2009)

by an exponential family argument, δ(y) is nondecreasing in y
(van Houwelingen & Stijnen, 1983)
(that came automatic when the prior is estimated)
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Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = logg)
- but with some shape-constraint regularization,
- like log-concavity: (logg) ′′ 6 0

- but we rather want y+
g ′(y)
g(y)

= y+ (logg(y)) ′ nondecreasing

- that is, 1
2y

2 + logg(y) = 1
2y

2 + h(y) convex

−

n∑

i=1

logg(Xi)# min
g

! g > 0,
∫
g = 1

The regularizer is the monotonicity constraint
No tuning parameter, or knowledge of ϕ

- but knowing all the time that σ2 = 1
A convex problem again
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Some remarks

After reparametrization, omitting constants, etc. one can write
it as a solution of an equivalent problem

−
1
n

n∑

i=1

K(Yi) +

∫
eK(y)dΦc(y)# min

K
! K ∈ K

Compare:

−
1
n

n∑

i=1

h(Xi) +

∫
ehdx# min

h
! − h ∈ K

28



Dual formulation

Analogous to Koenker and Mizera (2010):
The solution, K̂, exists and is piecewise linear. It admits a dual
characterization: eK̂(y) = f̂, where f̂ is the solution of

−

∫
f(y) log f(y)dΦ(y)# min

f
! f =

d(Pn −G)

dΦ
,G ∈ K−

The estimated decision rule, δ̂, is piecewise constant and has no
jumps at min Yi and max Yi.
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A typical result: µi drawn from U(5, 15)

Koenker and Mizera 9

the monotonicity requirement and perform quite well as we shall see in
Section 5.
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Figure 1. Estimated mixture density, ĝ, and corresponding
Bayes rule, δ̂, for a simple compound decision problem.
The target Bayes rule and its mixture density are plotted
as smooth (blue) lines. The local maxima give y for which
δ̂(y) = y.

4.2. Nonparametric maximum likelihood. Let {u1, ...,um} be a fixed grid
as above. Let A be the n by m matrix, with the elements ϕ(Yi − uj) in the
i-th row and j-th column. Consider the (primal) problem,

min{−

n∑

i=1

log(gi) | Af = g, f ∈ S},

where S denotes the unit simplex in Rm, i.e. S = {s ∈ Rm|1>s = 1, s > 0}.
So fj denotes the estimated mixing density estimate f̂ evaluated at the
grid point uj, and gi denotes the estimated mixture density estimate, ĝ,
evaluated at Yi. In this case it is again somewhat more efficient to solve the
corresponding dual problem,

max{

n∑

i=1

log νi | A
>ν 6 n1m, ν > 0},

and subsequently recover the primal solutions. For the present purpose of
estimating an effective Bayes rule, a relatively fine fixed grid like that used
for the EM iterations seems entirely satisfactory.

Left: mixture density (blue: target)
Right: piecewise constant, “empirical decision rule”
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Doable also for some other exponential families

However: a version of the Tweedie formula may be obtainable
only for the canonical parameter (binomial!) and depends on
the loss function
For the Poisson case:
- the optimal prediction with respect to the quadratic loss
function is, for x = 0, 1, 2, . . . ,

µ̂(x) =
(x+ 1)g(x+ 1)

g(x)
,

where g is the marginal density of the Yi’s
- for the loss function (µ− µ̂)2/µ, the optimal prediction is, for
x = 1, 2, . . .

µ̂(x) =
xg(x)

g(x− 1)
.
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What can be done with that?

One can estimate g(x) by the relative frequency, as Robbins
(1956):

µ̂(x) =
(x+ 1)#{Yi = x+ 1}

n

#{Yi = x}
n

=
(x+ 1)#{Yi = x+ 1}

#{Yi = x}

however, the predictions obtained this way are not monotone,
and also erratic, especially when some denominator is 0 - the
latter can be rectified by the adjustment of Maritz and Lwin
(1989):

µ̂(x) =
(x+ 1)#{Yi = x+ 1}

1 + #{Yi = x}
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Better: monotonizations

The suggestion of van Houwelingen & Stijnen (1983): pool
adjacent violators - also requires a grid
Or one can estimate the marginal density under the
shape-restriction that the resulting prediction is monotone:

(x+ 1)ĝ(x+ 1)
ĝ(x)

6
(x+ 2)ĝ(x+ 2)
ĝ(x+ 1)

After reparametrization in terms of logarithms, the problem is
almost linear: linear constraint resulting from the one above,
and linear objective function - with a nonlinear Lagrange term
ensuring that the result is a probability mass function. At any
rate, again a convex problem - and the number of variables is
the number of the x’s
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Why all this is feasible: interior point methods

(Leave optimization to experts)
Andersen, Christiansen, Conn, and Overton (2000)
We acknowledge using Mosek, a Danish optimization software
Mosek: E. D. Andersen (2010)
PDCO: Saunders (2003)
Nesterov and Nemirovskii (1994)
Boyd, Grant and Ye: Disciplined Convex Programming

Folk wisdom: “If it is convex, it will fly.”
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Simulations - or how to be highly cited

Johnstone and Silverman (2004): empirical Bayes for sparsity

n = 1000 observations
k of which have µ all equal to one of the 4 values, 3, 4, 5, 7
the remaining n− k have µ = 0
there are three choices of k: 5, 50, 500

Criterion: sum of squared errors, averaged over replications,
and rounded

Seems like this scenario (or similar ones) became popular
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The first race
Koenker and Mizera 7

Estimator k = 5 k = 50 k = 500
µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7 µ =3 µ =4 µ =5 µ =7

δ̂ 37 34 21 11 173 121 63 16 488 310 145 22

δ̂GMLEBIP 33 30 16 8 153 107 51 11 454 276 127 18

δ̂GMLEBEM 37 33 21 11 162 111 56 14 458 285 130 18

δ̃1.15 53 49 42 27 179 136 81 40 484 302 158 48
J-S Min 34 32 17 7 201 156 95 52 829 730 609 505

Table 2. Risk of Shape Constrained Rule, δ̂ compared to: two ver-
sions of Jaing and Zhang’s GMLEB procedure, one using 100 EM
iterations denoted GMLEBEM and the other, GMLEBIP, using the
interior point algorithm described in the text, the kernel procedure,
δ̃1.15 of Brown and Greenshtein, and best procedure of Johnstone
and Silverman. Sum of squared errors in n = 1000 observations.
Reported entries are based on 1000, 100, 100, 50 and 100 replica-
tions, respectively.

Estimator n = 10,000 n = 100,000
k =100 k =300 k =500 k =500 k =1000 k =5000

δ̂GMLEB 268 703 1085 1365 2590 10709

δ̂ 282 736 1136 1405 2659 10930

δ̃1.05 306 748 1134 2410 3810 10400
Oracle 295 866 1430 3335 5576 16994

Table 3. Empirical Risk of a gridded version of the GMLEB rule,
the Shape Constrained Rule, δ̂, compared to kernel procedure, δ̃1.05

of Brown and Greenshtein, and an oracle hard threshholding rule
described in the text. The first two rows of the table are based on
1000 replications. The last two rows are as reported in Brown and
Greenshtein and based on 50 replications.

taken from Brown and Greenshtein (2009). The row labeled “strong oracle,” also
taken from Brown and Greenshtein (2009), is a hard-thresholding rule which takes
δ(X) to be either 0 or X depending on whether |X| > C for an optimal choice of C.
Since the shape constrained estimator is quite quick we have done 1000 replica-
tions, while the other reported values are based on 50 replications as reported in
Brown and Greenshtein (2009). As in the preceeding table the reported values are
the sum of squared errors over the n observations, averaged over the number of
replications. Again, the shape constrained estimator performs quite satisfactorily,
while circumventing difficult questions of bandwidth selection.

Given the dense form of the constraint matrix A, neither the EM or IP forms
of the GMLE methods are feasible for sample sizes like those of the experiments
reported in Table 3. Solving a single problem with n = 10, 000 requires about
one hour using the Mosek interior point algorithm. However, it is possible to bin
the observations on a fairly fine grid and employ a slight variant of the proposed
interior point approach in which the likelihood terms are weighted by the rela-
tive (multinomial) bin counts. This approach, when implemented with a equally
spaced grid of 600 points yields the results in the first row of Table 3. Not too
unexpectedly given the earlier results, this procedure performs somewhat better

• empirical prediction rule
• empirical prior, implementation via convex optimization
• empirical prior, implementation via EM
• Brown and Greenshtein (2009): 50 replications

report (best?) results for bandwith-related constant 1.15
• Johnstone and Silverman (2004): 100 replications, 18 methods

(only their winner reported here, J-S Min)
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A new lineup

2 3 4 5 6 7
BL 299 386 424 450 474 493
DL(1/n) 307 354 271 205 183 169
DL(1/2) 368 679 671 374 214 160
HS 268 316 267 213 193 177
EBMW 324 439 306 175 130 123
EBB 224 243 171 92 53 45
EBKM 207 223 152 79 44 37
oracle 197 214 144 71 34 27

Bhattacharya, Pati, Pillai, Dunson (2012): “Bayesian shrinkage”
BL: “Bayesian Lasso”
DL: “Dirichlet-Laplace priors” (with different strengths)

HS: Carvalho, Polson, and Scott (2009) “horseshoe priors”
EBMW: “asympt. minimax EB” of Martin and Walker (2013)

elsewhere: Castillo & van der Vaart (2012) “posterior concentration”
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Comments (Conclusions ?)

• both approaches typically outperform other methods
• Kiefer-Wolfowitz empirical prior typically outperforms
monotone empirical Bayes (for the examples we considered!)
• both methods adapt to general P, in particular to those with
multiple modes
• however, Kiefer-Wolfowitz empirical prior is more flexible:
(much) better adapts to certain peculiarities vital in practical
data analysis, like unequal σi, inclusion of covariates, etc
• in particular, it also exhibits certain independence of the
choice of the loss function (the estimate of the prior, and hence
posterior is always the same)
• but, in certain situations Kiefer-Wolfowitz (on the grid!) may
be more computationally demanding
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NBA data again

player n prop k ast sigma ebkw jsmm glmm lmer

1 Yao 13 0.769 10 1.058 0.139 0.724 0.735 0.724 0.729

2 Frye 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

3 Camby 15 0.667 10 0.950 0.129 0.724 0.682 0.716 0.697

4 Okur 14 0.643 9 0.925 0.134 0.724 0.670 0.715 0.690

5 Blount 6 0.667 4 0.942 0.204 0.721 0.689 0.719 0.705

6 Mihm 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

7 Ilgauskas 10 0.600 6 0.881 0.158 0.722 0.657 0.715 0.684

8 Brown 4 1.000 4 1.333 0.250 0.724 0.781 0.733 0.745

9 Curry 11 0.545 6 0.829 0.151 0.719 0.630 0.712 0.666

10 Miller 10 0.900 9 1.219 0.158 0.724 0.794 0.738 0.757

11 Haywood 8 0.500 4 0.785 0.177 0.709 0.626 0.706 0.666

12 Olowokandi 9 0.889 8 1.200 0.167 0.724 0.783 0.735 0.751

13 Mourning 9 0.778 7 1.063 0.167 0.724 0.732 0.725 0.727

14 Wallace 8 0.625 5 0.904 0.177 0.722 0.672 0.717 0.694

15 Ostertag 6 0.167 1 0.454 0.204 0.364 0.529 0.323 0.616
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A (partial) picture
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Mixing distribution (“empirical prior”)
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Mixing distribution for glmm
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The auto insurance predictions
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That’s it?

What if P is unimodal? Cannot we do better in such a case?

And if we can, will it be (significantly) better than James-Stein?

Joint work with Mu Lin
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OK, so just impose unimodality on P ...

... or more precisely, constrain P to be log-concave (or q-convex)
(unimodality does not work well in this context)

However, the resulting problem is not convex!

Nevertheless, given that:
log-concavity of P + that of ϕ implies that of the convolution

g(y) =

∫
ϕ(y− µ)dP(µ)

one can impose log-concavity on the mixture!
(So that the resulting formulation then a convex problem is.)
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3. “Unimodal” Kiefer-Wolfowitz

g# min
P

! g = −
∑

i

log
(∫
ϕ(Yi − u)dP(u)

)

(Works, but needs a special version of Mosek)
May be demanding for large sample sizes
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4. “Unimodal” monotone empirical Bayes

1
2y

2 + h(y) convex

h(y) concave

−

n∑

i=1

h(Xi) +

∫
ehdx# min

h
!

1
2
y2 + h(y) convex

Very easy, very fast
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A typical result, again from U(5, 15)
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Some simulations

Sum of squared errors, averaged over replications, rounded

U[5, 15] t3 χ2
2 095|205 050|250 095|505 050|550

br 101.5 112.4 77.8 19.7 57.3 12.6 21.1
kw 92.6 114.4 71.9 17.4 51.3 10.0 17.0
brlc 85.6 98.1 67.6 17.3 51.7 21.6 58.2
kwlc 84.9 98.2 66.8 16.5 50.4 21.2 67.6
mle 100.2 100.1 100.2 100.7 100.4 100.1 99.6
js 89.8 98.5 80.2 18.5 52.1 56.2 86.8
oracle 81.9 97.5 63.9 12.6 44.9 4.9 11.5

Last four: the mixtures of Johnstone and Silverman (2004):
n = 1000 observations, with 5% or 50% of µ equal to 2 or 5
and the remaining ones are 0
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Conclusions II

- when the mixing (and then the mixture) distribution is
unimodal, it pays to enforce this shape constraint for the
estimate

- if it is not, then it does not pay

- unimodal Kiefer-Wolfowitz still appears to outperform the
unimodal monotonized empirical Bayes by small margin

- and both outperform James-Stein, significantly for
asymmetric mixing distribution

- computationally, unimodal monotonized empirical Bayes is
much more painless than unimodal Kiefer-Wolfowitz
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