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Compound decision problem

e Estimate (predict) a vector u = (py,- -+, in)
Many quantities here, and not that much of sample for those

e Observing one Y; for every p;, with (conditionally) known
distribution

Example: Y; ~ Binomial(ny, i), ny known

Another example: Y; ~ N(p;, 1)

Yet another example: Y; ~ Poisson(p; )

e 11;’s assumed to be sampled (— random) iid-ly from P

Thus, when the conditional density (...) of the Y;’s is @(y, ),
then the marginal density of the Y;’s is

oly) = jcp(y, W) dP(y)



A sporty example

Data: known performance of individual players, typically
summarized as of successes, ki, in a number, n;, of some
repeated trials (bats, penalties) - typically, data not very
extensive (start of the season, say); the objective is to predict
“true” capabilities of individual players

One possibility: Y; = ki ~ Binomial(n, p)

ki +1/4 1
Another possibility: take Y; = arcsin 711::——1//2 <N (pi, 4T11>
Solutions via maximum likelihood
i =ki/ni  orfii =W
The overall mean (or marginal MLE) is often better than this

Efron and Morris (1975), Brown (2008),
Koenker and Mizera (2014): bayesball



player
1 Yao
2 Frye
3 Camby
4 Okur
5 Blount
6 Mihm
7  Ilgauskas
8 Brown
9 Curry
10 Miller

11 Haywood
12 Olowokandi
13 Mourning
14 Wallace
15 Ostertag

NBA data (Agresti, 2002)

n k prop
13 10 0.7692
10 9 0.9000
15 10 0.6667
14 9 0.6429
6 4 0.6667
10 9 0.9000
10 6 0.6000
4 4 1.0000
11 6 0.5455
10 9 0.9000
8 4 0.5000
9 8 0.8889
9 7 0.7778
8 5 0.6250
6 1 0.1667

it may be better to take
the overall mean!



An insurance example

Y; - known number of accidents of individual insured motorists
Predict their expected number - rate, ; (in next year, say)
Y; ~ Poisson( ;)

Maximum likelihood: =Y

Nothing better?



The data of Simar (1976)

Ea(0ilyi)

yi count mg(y;) Robbins Gamma NPML
0 7840 .82867 .168 159 .168
1 1317 13920 .363 417 372
2 239 .02526 527 675 610
3 42 .00444 1.333 933 1.001
4 14 .00148 1.429 1.191 1.952
B 4 .00042 6.000 1.449 2.836
6 4 .00042 1.750 1.707 3.123
1 1 .00011 0.000 1.965 3.142

Table 3.1 Simar (1976) Accident Data: Observed counts and empirical Bayes
posterior means for each number of claims per year for k = 9461 policies issued by
La Royal Belge Insurance Company. The y: are the observed frequencies, Pg is the
observed relative frequency, “Robbins” is the Robbins NPEB rule, “Gamma” is the
PEB posterior mean estimate based on the Poisson/gamma model, and “NPML"
is the posterior mean estimate based on the EB rule for the nonparametric prior.



So, what is better?

First, what is better?

We express it via some (expected) loss function

Most often it is averaged or aggregated squared error loss

D (A —w)?

i

But it could be also some other loss...

And then?

Well, it is sooo simple...



... if P is known!

ui’s are sampled iid-ly from P - prior distribution
Conditionally on p;, the distribution of Y; is, say, N(ui, 1)

The optimal prediction is the posterior mean, the mean of the
posterior distribution: conditional distribution of p; given Y;

(given that the loss function is quadratic!)

For instance, if P is N(0, 02), then (homework)
1

the best predictor is {i; = Y; — 21

Yi

Borrowing strength via shrinkage
“neither will be the good that good, nor the bad that bad”

More generally, p; can be N(p, 02) and Y; then N(pi, 03),
2

0 .
And then (i; =Y; — ﬁodé (Yi—n) (iffo?= O‘%, halfway to p)
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“If only all of them published posthumously...

Thomas Bayes (1701-1761)



But do we know P (or ¢2)?

“Hierarchical model”
“Random effects”
“Smoothing”
“Empirical Bayes”

“no less Bayes than empirical Bayes”

“we know it is frequentist, but frequentists think it is Bayesian,
so this is why we discuss it here”

Many inventors ...

10



What is mathematics?

Herbert Ellis Robbms (1915-2001)
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On experience in statistical decision theory (1954)

\a
Antonin Spacek (1911-1961)

12



I. J. Good (2000)

Lrats. i -3 i
S e f.

Alann Mathison Turing (1912-1954)

13



So, how

A. we may try to estimate the prior - “f-modeling”, Efron (2014)
B. or more directly, the prediction rule - “g-modeling”

A’. Estimated normal prior (parametric)
(Nonparametric ouverture)

A. Empirical prior (nonparametric)

B. Empirical prediction rule (nonparametric)

Simulation contests

14



A’. Estimated normal prior

James-Stein (JS): if P is N(0, 0?)

1
then the unknown part, a1 of the prediction rule

-2
can be estimated by 5 where S = Z i

15



A’. Estimated normal prior

James-Stein (JS): if P is N(0, 0?)

1
then the unknown part, T

-2
can be estimated by 5 where S = Z i

, of the prediction rule

For general p in place of 0, the rule is
n—3

fi=Yi———(Yi—Y), withV = — ZY andeZ(Yi—V)z

15



JS as empirical Bayes: Efron and Morris (1975)

Charles Stein (1920-)

16



Nonparametric ouverture: MLE of density

Density estimation: given the datapoints Xi, Xy, ..., Xy, solve

n

H g(Xi) + max!

i=1 g

or equivalently

—Zlogg q—>m1n'

under the side conditions

g=>0, Jg—l

17
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How to prevent Dirac catastrophe?

19



Reference

Koenker and Mizera (2014)
... and those that cite it (Google Scholar)

“... the chance meeting on a dissecting-table of a
sewing-machine and an umbrella”

See also REBayes package on CRAN

For simplicity:
¢@(y, 1) = @(y — n), and the latter is standard normal density

20



A. Empirical prior

MLE of P: Kiefer and Wolfowitz (1956)

_; log <J e(Yi—u) dP(u)> LEN mPin!

The regularizer is the fact that it is a mixture

No tuning parameter needed (but “known” form of ¢!)
The resulting P is atomic (“empirical prior”)

However, it is an infinite-dimensional problem...

21



EM nonsense

Laird (1978), Jiang and Zhang (2009):

Use a grid {uy,..un}  (m = 1000)

containing the support of the observed sample
and estimate the “prior density” via EM iterations

n

A (k)
(k+1) 1 P;j e(Yi — )
j >

N ﬁgk)@(Yi —ug)

Sloooooow... (original versions: 55 hours for 1000 replications)

p

4

22



Convex optimization!

Koenker and Mizera (2014): it is a convex problem!

_; log <J e(Yi—u) dP(u)> - mPin[

When discretized
1 Y. . in!
Ei og ( g o (Yi u])p]> - rr}pm

or in a more technical form

— E logyi + min! Az=yandz € $§
, Y
1

where A = (@(Y; —u;)) and § ={s € R™: 1Ts=1, s >0}

23



With a dual

The solution is an atomic probability measure, with not more
than n atoms. The locations, {i;, and the masses, p;, at these

locations can be found via the following dual characterization:

the solution, ¥, of
n n
Zlogvi > max ! Z\’i(o(Yi—u) <nforallp
i=1 H i=1

1
~ 7
i

satisfies the extremal equations Z e(Yi—)p; =

j
and {i; are exactly those u where the dual constraint is active.

And one can use modern convex optimization methods again...

(And note: everything goes through for general ¢ (y, 1))

(And one can also handle - numerically - alternative loss
functions!)

24



A typical result: ; drawn from U(5, 15)
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Left: mixture density (blue: target)
Right: decision rule (blue: target)
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B. Empirical prediction rule

Lawrence Brown, personal communication
Also, looks like in Maritz and Lwin (1989)
Do not estimate P, but rather the prediction rule

Tweedie formula: for known (general) P, and hence known g,
the Bayes rule is

_ g'(y)

One may try to estimate g and plug it in - when knowing o?
(=1, for instance)

Brown and Greenshtein (2009)

by an exponential family argument, 5(y) is nondecreasing in y
(van Houwelingen & Stijnen, 1983)

(that came automatic when the prior is estimated)



Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = log g)

- but with some shape-constraint regularization,
- like log-concavity: (logg)” <0

g'(y)
g(y)
- that is, %yz +logg(y) = %yz +h(y) convex

- but we rather want y + =y + (log g(y))’ nondecreasing

27



Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = log g)
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g'(y)
g(y)
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—Zlogg i) q—>m1n' g=0, J9:1

27



Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = log g)
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g'(y)
g(y)
- that is, %yz +logg(y) = %yz +h(y) convex

- but we rather want y + =y + (log g(y))’ nondecreasing

—Zlogg i) Q—>m1n' —loggconvex ¢g=>0 Jgdx:l
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Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = log g)

- but with some shape-constraint regularization,
- like log-concavity: (logg)” <0

g'(y)
g(y)
- that is, %yz +logg(y) = %yz +h(y) convex

- but we rather want y + =y + (log g(y))’ nondecreasing

n
—Zh(Xi) EE m&n! —hconvex e*>0 Jehdx =1
i=1
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Maximum likelihood again (h = log g)
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- like log-concavity: (logg)” <0

g'(y)
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Monotone (estimate of) empirical Bayes rule

Maximum likelihood again (h = log g)

- but with some shape-constraint regularization,
- like log-concavity: (logg)” <0

g'(y)
g(y)
- that is, %yz +logg(y) = %yz +h(y) convex

- but we rather want y + =y + (log g(y))’ nondecreasing

n
1
- Z h(Xi) + Jehdx L3 m&n! Eyz + h(y) convex
i=1

The regularizer is the monotonicity constraint

No tuning parameter, or knowledge of ¢
- but knowing all the time that 0% = 1

A convex problem again
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Some remarks

After reparametrization, omitting constants, etc. one can write
it as a solution of an equivalent problem

1 n
— > KM —i—JeK(‘-’)d@C(y) »min! KeX
i=1

Compare:

1 n
—Zh(XJ%—Jehdx%min! —heX
n &~ h

28



Dual formulation

Analogous to Koenker and Mizera (2010):
The solution, K, exists and is piecewise linear. It admits a dual
characterization: eX(¥) = f, where f is the solution of

d(Pn — G)

_ in! f——n % -
Jf(y)logf(g)d@(y} L3 min! f 10 ,GeX

The estimated decision rule, §, is piecewise constant and has no
jumps at min Y; and max Yj.

29



A typical result: ; drawn from U(5, 15)
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Left: mixture density (blue: target)
Right: piecewise constant, “empirical decision rule”
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Doable also for some other exponential families

However: a version of the Tweedie formula may be obtainable
only for the canonical parameter (binomial!) and depends on
the loss function

For the Poisson case:

- the optimal prediction with respect to the quadratic loss
function is, forx =0,1,2,...,

ilx) =

7

(x+1)gx+1)
g(x)

where g is the marginal density of the Y;’s

- for the loss function (1 — {1)?/u, the optimal prediction is, for
x=1,2,...
xg(x)

i(x) = m

31



What can be done with that?

One can estimate g(x) by the relative frequency, as Robbins
(1956):
#HYi=x+1
Ax) = (x+1)w C (x+ DY =x+1)
WO TR = T #HYi=x
n

however, the predictions obtained this way are not monotone,
and also erratic, especially when some denominator is 0 - the
latter can be rectified by the adjustment of Maritz and Lwin
(1989):

(x+1D#Yi=x+1}

A =8 =9

32



Better: monotonizations

The suggestion of van Houwelingen & Stijnen (1983): pool
adjacent violators - also requires a grid

Or one can estimate the marginal density under the
shape-restriction that the resulting prediction is monotone:

(x+1)g(x+1) < (x+2)§(x+2)
§(x) T g+ 1)

After reparametrization in terms of logarithms, the problem is
almost linear: linear constraint resulting from the one above,
and linear objective function - with a nonlinear Lagrange term
ensuring that the result is a probability mass function. At any
rate, again a convex problem - and the number of variables is
the number of the x’s

33



Why all this is feasible: interior point methods

(Leave optimization to experts)

Andersen, Christiansen, Conn, and Overton (2000)

We acknowledge using Mosek, a Danish optimization software
Mosek: E. D. Andersen (2010)

PDCO: Saunders (2003)

Nesterov and Nemirovskii (1994)

Boyd, Grant and Ye: Disciplined Convex Programming

Folk wisdom: “If it is convex, it will fly.”

34



Simulations - or how to be highly cited

Johnstone and Silverman (2004): empirical Bayes for sparsity

n = 1000 observations

k of which have p all equal to one of the 4 values, 3,4,5,7
the remaining n — k have p =0

there are three choices of k: 5, 50, 500

Criterion: sum of squared errors, averaged over replications,
and rounded

Seems like this scenario (or similar ones) became popular

35



The first race

Estimator k=5 k=50 k =500
p=3 p=d p=d p=7 p=3opsd psd opsl wsdopsd psh ue
) o3 20 11 1 1L 6 16 488 30 145w

Semuesp 330 16 8 13 107 51 11 He 216 121 18
demuesew 31 93 A 1 162 111 5 14 458 28 130 18
o 5N 4 42 179 136 81 40 484 302 18 48
J-S Min MR 1T 7 201 16 9% 52 829 730 609 505

e empirical prediction rule

e empirical prior, implementation via convex optimization

e empirical prior, implementation via EM

e Brown and Greenshtein (2009): 50 replications
report (best?) results for bandwith-related constant 1.15

e Johnstone and Silverman (2004): 100 replications, 18 methods
(only their winner reported here, J-S Min)



A new lineup

2 3 4 5 6 7
BL 299 386 424 450 474 493
DL(1/n) 307 354 271 205 183 169
DL(1/2) 368 679 671 374 214 160
HS 268 316 267 213 193 177
EBMW 324 439 306 175 130 123
EBB 224 243 171 92 53 45
EBKM 207 223 152 79 44 37
oracle 197 214 144 71 34 27

Bhattacharya, Pati, Pillai, Dunson (2012): “Bayesian shrinkage”
BL: “Bayesian Lasso”
DL: “Dirichlet-Laplace priors” (with different strengths)

HS: Carvalho, Polson, and Scott (2009) “horseshoe priors”
EBMW: “asympt. minimax EB” of Martin and Walker (2013)

elsewhere: Castillo & van der Vaart (2012) “posterior concentration”



Comments (Conclusions ?)

¢ both approaches typically outperform other methods

o Kiefer-Wolfowitz empirical prior typically outperforms
monotone empirical Bayes (for the examples we considered!)
e both methods adapt to general P, in particular to those with
multiple modes

e however, Kiefer-Wolfowitz empirical prior is more flexible:
(much) better adapts to certain peculiarities vital in practical
data analysis, like unequal o3, inclusion of covariates, etc

e in particular, it also exhibits certain independence of the
choice of the loss function (the estimate of the prior, and hence
posterior is always the same)

e but, in certain situations Kiefer-Wolfowitz (on the grid!) may
be more computationally demanding
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player
1 Yao
2 Frye
3 Camby
4 Okur
5 Blount
6 Mihm
7  Ilgauskas
8 Brown
9 Curry
10 Miller

11 Haywood
12 Olowokandi
13 Mourning
14 Wallace
15 Ostertag

NBA data again

n prop
13 0.769
10 0.900
15 0.667
14 0.643
6 0.667
10 0.900
10 0.600
4 1.000
11 0.545
10 6.900
8 0.500
9 0.889
9 0.778
8 0.625
6 0.167

k

—_
(=]

= U1 NN OO OO O O
@D P PO rRrQororooeeerr

ast

.058
.219
.950
.925
.942
.219
.881
.333
.829
.219
.785
.200
.063
.904
.454

sigma
.139
.158
.129
.134
.204
.158
.158
.250
.151
.158
.177
.167
.167
.177
.204

(=B — I — I — I — I — I — R — R — I — R — I — I — A — ]

[ =R — I — I — I — I — I — R — R — I — R — I — I — I — I —]

ebkw
.724
.724
.724
.724
.721
.724
.722
.724
.719
.724
.709
.724
.724
.722
.364

[ — I — I — I — I — I — R — B — I — I — I — I — A — I —]

j smm
.735
.794
.682
.670
.689
.794
.657
.781
.630
.794
.626
.783
.732
.672
.529

[ — I — I — I — I — Y — N — I — Y — N — I — I — i — =]

glmm
.724
.738
.716
.715
.719
.738
.715
.733
712
.738
.706
.735
.725
.717
.323

(=B — I — I — I — I — R — R — R — I — N — R — A — A — ]

Imer
.729
.757
.697
.690
.705
.757
.684
.745
.666
.757
.666
.751
.727
.694
.616
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Mixing distribution (“empirical prior”)
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Mixing distribution for glmm
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The auto insurance predictions

uowqgoiguowpoe
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That’s it?

What if P is unimodal? Cannot we do better in such a case?
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What if P is unimodal? Cannot we do better in such a case?

And if we can, will it be (significantly) better than James-Stein?
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That’s it?

What if P is unimodal? Cannot we do better in such a case?
And if we can, will it be (significantly) better than James-Stein?

Joint work with Mu Lin
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OK, so just impose unimodality on P ...

... or more precisely, constrain P to be log-concave (or g-convex)
(unimodality does not work well in this context)
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OK, so just impose unimodality on P ...

... or more precisely, constrain P to be log-concave (or g-convex)

(unimodality does not work well in this context)
However, the resulting problem is not convex!

Nevertheless, given that:
log-concavity of P + that of ¢ implies that of the convolution

o(y) ZJ@(y—u)dP(u)
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OK, so just impose unimodality on P ...

... or more precisely, constrain P to be log-concave (or g-convex)
(unimodality does not work well in this context)

However, the resulting problem is not convex!

Nevertheless, given that:
log-concavity of P + that of ¢ implies that of the convolution

o(y) ZJ@(y—u)dP(u)

one can impose log-concavity on the mixture!
(So that the resulting formulation then a convex problem is.)

46



3. “Unimodal” Kiefer-Wolfowitz

g mPin! g= —Zlog (J'(p(Yi —u) dP(u))

(Works, but needs a special version of Mosek)
May be demanding for large sample sizes
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3. “Unimodal” Kiefer-Wolfowitz

g+e rr}Din! g=— Z log <J (Y —u) dP(u)) and g convex

(Works, but needs a special version of Mosek)
May be demanding for large sample sizes

47



3. “Unimodal” Kiefer-Wolfowitz

ge mm' Z log (J —1u)dP(u )) and g convex

(Works, but needs a special version of Mosek)
May be demanding for large sample sizes
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4. “Unimodal” monotone empirical Bayes

%yz + h(y) convex

h(y) concave

n
1
- Z h(Xi) + Jehdx L3 rrgn! Eyz + h(y) convex
i=1
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4. “Unimodal” monotone empirical Bayes

%yz + h(y) convex

h(y) concave

mn
_Zh(Xi) —i—Jehdx% rr}iin! 1+h'(y) >0
i=1
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4. “Unimodal” monotone empirical Bayes

%yz + h(y) convex

h(y) concave

n
- Z h(Xi) + Jehdx - n}iin!
i=1

h(y) > -1
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4. “Unimodal” monotone empirical Bayes

%yz + h(y) convex

h(y) concave

n
_Zh(Xi) + Jehdx - rrEn! 0>h'(y) > -1
i=1
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4. “Unimodal” monotone empirical Bayes

%y2 + h(y) convex

h(y) concave
n
_Zh(Xi) + Jehdx - rrgn! 0>h'(y) > -1

i=1

Very easy, very fast
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0.00

A typical result, again from U(5, 15)

Mixture density Prediction rule

(Empirical prior, mixture unimodal)
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0.00

A typical result, again from U(5, 15)

Mixture density Prediction rule

(Empirical prediction rule, mixture unimodal)
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Some simulations

Sum of squared errors, averaged over replications, rounded

u[5,15] t3 X3 0051205  0s0l250  0Oos/505  Os0l550
br 101.5 112.4 77.8 19.7 57.3 12.6 21.1
kw 92.6 1144 719 17.4 51.3 10.0 17.0
brlc 85.6 98.1 67.6 17.3 51.7 21.6 58.2
kwlc 84.9 98.2 66.8 16.5 50.4 21.2 67.6
mle 100.2 100.1 100.2 100.7 100.4 100.1 99.6
js 89.8 98.5 80.2 18.5 52.1 56.2 86.8
oracle 81.9 97.5 63.9 12.6 449 49 11.5

Last four: the mixtures of Johnstone and Silverman (2004):
n = 1000 observations, with 5% or 50% of pequal to 2 or 5
and the remaining ones are 0
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- if it is not, then it does not pay

- unimodal Kiefer-Wolfowitz still appears to outperform the
unimodal monotonized empirical Bayes by small margin

- and both outperform James-Stein, significantly for
asymmetric mixing distribution

- computationally, unimodal monotonized empirical Bayes is
much more painless than unimodal Kiefer-Wolfowitz
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