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Disclaimer:
= This is my first work around computing worst(/best) Value-at-Risk.
® | am not an expert on the theory for computing these bounds.

= | will address practical aspects (@R: Pkg qrmtools, demo (VaR_bounds))

Recall: H(z1,...,zq) = C(Fi(z1),...,Fy(zq)) (Sklar's Theorem)

The problem: Computing worst(/best) VaR

We are given (one-period ahead) losses L1 ~ F1,...,Lg ~ F; (e.g., based
on fitted Fi, ..., F;) with known margins and unknown copula C'. Consider

d
LT =) Ljand VaR4 (L") = F, (o) =inf{z € R: F+(z) > a}.
j=1
Question: How to compute bounds VaR (L"), VaR, (L") on VaR4(L1)?
(i.e., the best and worst VaR, (L") over the set of all copulas)

We will focus on VaR,(L™).
© 2015 Marius Hofert | University of Waterloo



We focus on two cases:
1) The homogeneous case (i.e., F1 =--- = Fy;=: F):

= The dual bound approach (see Puccetti and Riischendorf (2013),
Embrechts et al. (2013, Prop. 4))

= \Wang's approach (see Embrechts et al. (2014, Prop. 1))

2) The inhomogeneous case: The Rearrangement Algorithm (RA; see
Puccetti and Rischendorf (2012), Embrechts et al. (2013))

Not discussed here are, e.g.:

= Bernard et al. (2013) and Bernard et al. (2014) (partial information
known about C')

= Bernard and McLeish (2015), Jakobsons et al. (2015) (alternatives to
the RA)

®  QOther references (quickly growing in this field).
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1 Solutions in the homogeneous case

Wang’s approach for computing VaR, (L")

= Assume that F' = F} has a decreasing density on [f3,00).

" leta,=a+(d—1)c b.=1—cand

B "be
()= — Fo(y)dy, ce(0,(1—a)/d

o b(t — Q¢ . Qe
Embrechts et al. (2014, Prop. 1) and Wang et al. (2013, Cor. 3.7):
For L ~ F and a € [F(§),1),

VaR, (L") =dE[L|L € [F~(ac), F~(b.)]] s dl(c),
ups.
where c is the smallest number in (0, (1 — «)/d] such that
= d—1 1
I(c) > TF*(aC) - aF*(bc).

© 2015 Marius Hofert | University of Waterloo



Algorithm (Computing VaR, (L") based on Wang's approach;
worst_VaR_hom(..., method="Wang"))

1) Specify an initial interval [c, ¢,] with 0 < ¢ < ¢y, < (1 —a)/d.
2) Root-finding in ¢: Iterate over ¢ € [¢, ¢,] until a ¢* is found for

which
h(c*) :=I(c*) — (d%le*(ac*) + %F*(bc*)) =0.

3) Then return (d — 1)F~ (ae+) + F~ (ber).

= We only need to know the quantile function '~ to compute VaR,(L™).

® The numerical integration (for I) is typically straightforward; explicit
for Par(#) margins.

= |t remains unclear how to choose [¢;, ¢,| (open problem in general):
» ¢ h(0) = —oo (fine) but also undefined (co—oo; for Par(f € (0, 1]))
» ¢,: Numerically problematic: /((1 — «)/d) o 0
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How can we choose ¢; and ¢, for F' = Par(0)?

Proposition (¢, ¢,, worst_VaR_hom(..., method="Wang.Par"))
The initial interval end points ¢; and ¢, can be chosen as

(1=6)(1=a) i
L if § € (0,1), (—a)d=140) ¢ 4 g
= — == if 6 =1, oy =q D@D 7
(d+1)5=T +d-1 = =1
o _ 3d/2—1° ’

(d/(0—1)+1)0+d—1"

Proof (idea).

= ¢ Rewrite hi(c) =0 < ha(z.) =0 for z. = (1 —a)/c— (d —1) and
ho(z) = (1% — Do~ ot — (d— Va7 + 2 — (dt&5 + 1), = € [1,00).
Separately for 6 € (0,1), 6 =1 and 0 € (1,00), approximate hy from
below by an invertible function with a root z. > 1; then solve for c.

® ¢,: The inflection point of hg is a lower bound x. on the root of hg;

then solve for c. O
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Example (VaR, (L") for Par(6) risks)
Consider F' = Par(6) and a = 0.99 and plot the objective function h(c)
for d = 8 (left) and d = 100 (right):
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(Values h(c) < 0 have been omitted due to log-scale)

© 2015 Marius Hofert | University of Waterloo



VaR,, (L") for various o, 6 and d = 8 (left) and d = 100 (right):
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= Nice, right?

= Anything else?
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Example (Comparison for Par(6) risks)

= \Wang's approach: with/without num. integration for I; without num.

integration and uniroot ()'s default tolerance
® Dual bound approach: Numerically trickier... two nested root-findings

= Lower/upper bound RA bounds (results standardized by the hy approach)
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Remark /summary (Word of warning; may apply beyond Par(6))

1) As just seen, the tolerance of uniroot () is critical; see below (right)

2) Without ¢,,: see (left/right) for h((1—«)/d) = .Machine$double.xmin
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= These are things that are not recognized unless thoroughly tested!
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2 The Rearrangement Algorithm
= For the inhomogeneous case for computing (VaR,, (L") and) VaR, (L")
" The theoretical convergence of Sy — sy — 0 is an open problem.

= We focus on practical aspects, not the theory.

2.1 How the RA works
= Two columns a, b are oppositely ordered if (a; — a;)(b; —bj) <0 Vi, j.
" Row-sum operator s(X) = mini<i<n >1<j<a Tij
Algorithm (RA for computing VaR, (L))
1) Fixa € (0,1), Fi,...,F;, N € N (# of discr. points), ¢ > 0 (tol.)
2) Compute the lower bound sy:

2.1) Define the (N, d)-matrix X = (F; (a+ <1701ﬁ))”

2.2) Randomly permute each column of X“ (to avoid sy — sy — 0)
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2.3) Iterate over each column of X® and permute it so that it becomes
oppositely ordered to the sum of all others = Matrix Y¢

2.4) Repeat Step 2.3) until s(¥%) — s(X”) < =, then set sy = s(Y'%).
3) Compute the upper bound Sy Similarly as in Step 2), but based on
X* = (FJ_ (a+ (1_7]\,&)2))” compute 5y = s(Y").
4) Return (sy, 3n) (rearrangement range; taken as VaR,(L™) bounds)

® Goal: Solving the maximin problem (minimax for VaR,,). This can fail,
though; see Haus (2014, Lemma 6) for a counter-example.

® Intuition: Obtaining a completely mixable matrix (row sums constant).
This minimizes the variance of L*|L" > F, . (a) to concentrate more
of the 1 — a mass of Fy+ in its tail. = VaR, (L")

A picture is worth a thousand words. . .
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VaRo(L+) < ES,(L*) = E[L*|L* > VaRa(L1)]

LT cont.

fi+(x)

T
VaR,(L") ES,(L")

Ideally: Fiy,...,F, jointly mixable = P(L1+---+Lg=c¢)=1,c€R

(in the tail).
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Example

1) Where it works (to compute the optimum of the maximin problem):
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2) Where it fails (to compute the optimum of the maximin problem):

111 30101 3 31
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333 Z_1=(g) 13 3 E_f(g) 113
- 12 3
= VaR,(LT)=5<6 = for |2 3 1
Z=(5) 2= g) 3.1 2
5 7
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Question (Toronto, 2014; Zurich 2015):
“How to choose N € N and € > 0?"

= No real guidance given in papers. Embrechts et al. (2013, Table 3):
Chosen & = 0.1 is roughly 0.000004% of the computed VaRg.go(L™).

®  Concerning ¢, there are two problems:

1) It would be more natural to use relative tolerances, which guarantee
that the change in the minimal row sum from X% (X%) to Y* (V%)
is of the right order.

2) e is only used for checking individual “convergence” of sy and of

Sn. There is no guarantee that sy and sy are jointly close.

= Also, the algorithm should return more useful information, e.g., 1)
(5 — sn)/Sn
number of iterations used; 4) the row sums after each iteration; or 5)

; 2) the individual tolerances reached for sy, 3Sn; 3) the

the number of oppositely ordered columns; see RA() and ARAQ).
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2.2 Empirical performance under various scenarios
= As studies, we consider the following:

Study 1: N € {27,28 ...,2!"} and d = 20

Study 2: N =256 and d € {22,23,...,2'0} (not considered further)

= |n each study we investigate the following cases (based on o = 0.99,
e = 0.001 and Pareto Fj(z) =1 — (1+ 2)~% margins):
Case HH : 64, ..., 60, equidistant in [0.6, 0.4] (all heavy-tailed)
Case LH : 6y,..., 6, equidistant in [1.5, 0.5] (light- to heavy-tailed)
Case LL : 64,...,04 equidistant in [1.6, 1.4] (all light-tailed)
Case HyL: 0,...,0; as in Case LL and 61 = 0.5 (only first heavy-tailed)

= We consider B = 200 replicated simulation runs (= empirical 95%
confidence intervals); this allows us to study the effect of randomization.
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Results of Study 1 (N running, d fixed)
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= As N increases, run time (in s) increases (= linearly).
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= The number of iterations rarely exceeds 12 as N increases.

Number of oppositely ordered calumns
Number of oppositely ordered columns

Number of oppositely ordered columns

o2 Sera 50103 Sev04 lew02  ses02 50103 Se04 e Sera 50403 50104 lew2  Ses02 50103 50404

N N N N

= The rate of decrease (# of opp. ordered columns) depends on the F}'s
(especially small for Case LL); = = NULL not useful
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3 The Adaptive Rearrangement Algorithm
= Algorithmically improved RA for computing s and 3p; see ARA().
" |mprovements:

1) Chooses more meaningful relative tolerances (and two!)

2) Adaptively chooses N

3.1 How the ARA works
Algorithm (ARA for computing VaR, (L))
1) Fixa € (0,1), Fy,...,F;, avector N and relative tol. € = (€1, ¢2).
2) For N ¢ N, do:
2.1) Compute the lower bound sp:
2.1.1) Define the (N, d)-matrix X* = (F (o + U=2{=1)).

2.1.2) Randomly permute each column of X°.
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2.1.3) lIterate over each column of X so that it becomes oppo-
sitely ordered to the sum of aII others = Matrix Y¢.

s

2.1.4) Repeat Step 2.1.3) (Ym
is reached. Then set sy = s(Y%).

‘ < g7 or until maxiter

2.2) Compute the upper bound Sy Similarly as in Step 2.1), but based
on X* = (F (o 4 U522 )) compute 5y = s(Y").

2.3) If both =
3) Return (sy, Sn) (rearrangement range; taken as VaR, (L") bounds)
= |f N = (N), the ARA reduces to the RA but uses relative individual
tolerances and joint convergence is checked.
» Defaults (from simulations): IV = (28,29 ...,2?9) maxiter = 12
= A useful choice for € may be e = (0.001, 0.01); can be freely chosen in
ARAQ).
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3.2 Empirical performance under various scenarios

= As before: d € {20,100}, the Cases HH, LH, LL, H;L and B = 200

" e = (g1 =0.1%, &2 € {0.5%,1%,2%})

= We investigate 1) sy, Sy; 2) the /V used in the final iteration; 3) the
run time (in s); 4) the number of oppositely ordered columns; and 5)
the number of iterations over all columns (for the last N used).

Boxplots of the VaRg.g9(L™) bounds sy (left) and sy (right):

= Cls are close; sy, 5y also close (as expected).
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o
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= The N used differs for sy (left) and sy (right); but small for both.
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= Doubling €5 reduces run time by ~ 50%; good choice of 5 is important.
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HHLH LML HHLH LML HHLH LLHL HHLH LML HHLH LML HHLH LU HL HHLH LML HHLH LML HH L LLHL HHLH LML HHLH LML HHLH LLHL
=005 =001 52002 =0005 =001 =002 ©=0005 G=001 =002 =005 G=001 =002
a-20 a=20 4= 4=100 4=10 =100 4= 4= 4= 4=10 =100 4=100

= Only 1 or 2 are oppositely ordered (not worth spending more time...).

HHLH LML HHLH LML HHLH LLHL HHLH LML HHLH LML HHLH LU AL HHLH LML HHLH LML HHLH LLHL HHLH LKL HHLH AL HHLH AL
e-0005 =00 s-00 e-0005 =00 s-00 -0005 s-001 -0 =005 G=001 s-002
a-20 a-20 420 =100 =100 =10 a=20 920 4= =100 =10 4=100

= The number of iterations consistently remains below 5 (over all B runs).
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Outlook

DCARA (Dimension Reduction Adaptive Rearrangement Algorithm)
DRARA (Divide and Conquer Adaptive Rearrangement Algorithm)
How to use the reordering from the last /N used before doubling N7

How to apply the (A)RA without fitting the margins if the columns have
different lengths?

How to incorporate some information about the underlying copula C?

Fast C/C++ version
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