
Sequential Quasi Monte Carlo

N. Chopin (CREST-ENSAE)

nicolas.chopin@ensae.fr

joint work with Mathieu Gerber (Harvard)

1 / 31

Outline

Particle �ltering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore OP(N−1/2).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N−1+ε).
However, standard QMC is usually de�ned for IID problems.

The purpose of this work is to derive a QMC version of PF, which
we call SQMC (Sequential Quasi Monte Carlo).

2 / 31

Outline

Particle �ltering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore OP(N−1/2).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N−1+ε).
However, standard QMC is usually de�ned for IID problems.

The purpose of this work is to derive a QMC version of PF, which
we call SQMC (Sequential Quasi Monte Carlo).

2 / 31

Outline

Particle �ltering (a.k.a. Sequential Monte Carlo) is a set of Monte
Carlo techniques for sequential inference in state-space models.
The error rate of PF is therefore OP(N−1/2).

Quasi Monte Carlo (QMC) is a substitute for standard Monte Carlo
(MC), which typically converges at the faster rate O(N−1+ε).
However, standard QMC is usually de�ned for IID problems.

The purpose of this work is to derive a QMC version of PF, which
we call SQMC (Sequential Quasi Monte Carlo).

2 / 31

QMC basics

Consider the standard MC approximation

1

N

N∑
n=1

ϕ(un) ≈
ˆ
[0,1]d

ϕ(u)du

where the N vectors un are IID variables simulated from U
(
[0, 1]d

)
.

QMC replaces u1:N by a set of N points that are more evenly
distributed on the hyper-cube [0, 1]d . This idea is formalised
through the notion of discrepancy.

3 / 31

QMC basics

Consider the standard MC approximation

1

N

N∑
n=1

ϕ(un) ≈
ˆ
[0,1]d

ϕ(u)du

where the N vectors un are IID variables simulated from U
(
[0, 1]d

)
.

QMC replaces u1:N by a set of N points that are more evenly
distributed on the hyper-cube [0, 1]d . This idea is formalised
through the notion of discrepancy.

3 / 31

QMC vs MC in one plot

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

QMC versus MC: N = 256 points sampled independently and
uniformly in [0, 1]2 (left); QMC sequence (Sobol) in [0, 1]2 of the
same length (right)

4 / 31

Discrepancy

Koksma�Hlawka inequality:∣∣∣∣∣ 1N
N∑

n=1

ϕ(un)−
ˆ
[0,1]d

ϕ(u) du

∣∣∣∣∣ ≤ V (ϕ)D?(u1:N)

where V (ϕ) depends only on ϕ, and the star discrepancy is de�ned
as:

D?(u1:N) = sup
[0,b]

∣∣∣∣∣ 1N
N∑

n=1

1 (un ∈ [0,b])−
d∏
i=1

bi

∣∣∣∣∣ .

There are various ways to construct point sets PN =
{
u1:N

}
so

that D?(u1:N) = O(N−1+ε).

5 / 31

Discrepancy

Koksma�Hlawka inequality:∣∣∣∣∣ 1N
N∑

n=1

ϕ(un)−
ˆ
[0,1]d

ϕ(u) du

∣∣∣∣∣ ≤ V (ϕ)D?(u1:N)

where V (ϕ) depends only on ϕ, and the star discrepancy is de�ned
as:

D?(u1:N) = sup
[0,b]

∣∣∣∣∣ 1N
N∑

n=1

1 (un ∈ [0,b])−
d∏
i=1

bi

∣∣∣∣∣ .
There are various ways to construct point sets PN =

{
u1:N

}
so

that D?(u1:N) = O(N−1+ε).

5 / 31

Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
. . .

or more generally,
1

p
, . . . ,

p − 1

p
,
1

p2
, · · · .

In dimension d > 1, a Halton sequence consists of a Van der
Corput sequence for each component, with a di�erent p for each
component (the �rst d prime numbers).

6 / 31

Examples: Van der Corput, Halton

As a simple example of a low-discrepancy sequence in dimension
one, d = 1, consider

1

2
,
1

4
,
3

4
,
1

8
,
3

8
,
5

8
,
7

8
. . .

or more generally,
1

p
, . . . ,

p − 1

p
,
1

p2
, · · · .

In dimension d > 1, a Halton sequence consists of a Van der
Corput sequence for each component, with a di�erent p for each
component (the �rst d prime numbers).

6 / 31

RQMC (randomised QMC)

RQMC randomises QMC so that each un ∼ U
(
[0, 1]d

)
marginally.

In this way

E

{
1

N

N∑
n=1

ϕ(un)

}
=

ˆ
[0,1]d

ϕ(u) du

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take
un = w + vn ≡ 1, where w ∼ U([0, 1]d) and v1:N is a QMC point
set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions ϕ):

Var

{
1

N

N∑
n=1

ϕ(un)

}
= O(N−3+ε)

7 / 31

RQMC (randomised QMC)

RQMC randomises QMC so that each un ∼ U
(
[0, 1]d

)
marginally.

In this way

E

{
1

N

N∑
n=1

ϕ(un)

}
=

ˆ
[0,1]d

ϕ(u) du

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take
un = w + vn ≡ 1, where w ∼ U([0, 1]d) and v1:N is a QMC point
set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions ϕ):

Var

{
1

N

N∑
n=1

ϕ(un)

}
= O(N−3+ε)

7 / 31

RQMC (randomised QMC)

RQMC randomises QMC so that each un ∼ U
(
[0, 1]d

)
marginally.

In this way

E

{
1

N

N∑
n=1

ϕ(un)

}
=

ˆ
[0,1]d

ϕ(u) du

and one may evaluate the MSE through independent runs.

A simple way to generate a RQMC sequence is to take
un = w + vn ≡ 1, where w ∼ U([0, 1]d) and v1:N is a QMC point
set.

Owen (1995, 1997a, 1997b, 1998) developed RQMC strategies
such that (for a certain class of smooth functions ϕ):

Var

{
1

N

N∑
n=1

ϕ(un)

}
= O(N−3+ε)

7 / 31

Particle Filtering: Hidden Markov models

Consider an unobserved Markov chain (xt), x0 ∼ m0(dx0) and

xt |xt−1 = xt−1 ∼ mt(xt−1, dxt)

taking values in X ⊂ Rd , and an observed process (yt),

yt |xt ∼ g(yt |xt).

Sequential analysis of HMMs amounts to recover quantities such as
p(xt |y0:t) (�ltering), p(xt+1|y0:t) (prediction), p(y0:t) (marginal
likelihood), etc., recursively in time. Many applications in
engineering (tracking), �nance (stochastic volatility), epidemiology,
ecology, neurosciences, etc.

8 / 31

Particle Filtering: Hidden Markov models

Consider an unobserved Markov chain (xt), x0 ∼ m0(dx0) and

xt |xt−1 = xt−1 ∼ mt(xt−1, dxt)

taking values in X ⊂ Rd , and an observed process (yt),

yt |xt ∼ g(yt |xt).

Sequential analysis of HMMs amounts to recover quantities such as
p(xt |y0:t) (�ltering), p(xt+1|y0:t) (prediction), p(y0:t) (marginal
likelihood), etc., recursively in time. Many applications in
engineering (tracking), �nance (stochastic volatility), epidemiology,
ecology, neurosciences, etc.

8 / 31

Feynman-Kac formalism

Taking Gt(xt−1, xt) := gt(yt |xt), we see that sequential analysis of
a HMM may be cast into a Feynman-Kac model. In particular,
�ltering amounts to computing

Qt(ϕ) =
1

Zt
E

[
ϕ(xt)G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
,

with Zt = E

[
G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
and expectations are wrt the law of the Markov chain (xt).

Note: FK formalism has other applications that sequential analysis
of HMM. In addition, for a given HMM, there is a more than one
way to de�ne a Feynmann-Kac formulation of that model.

9 / 31

Feynman-Kac formalism

Taking Gt(xt−1, xt) := gt(yt |xt), we see that sequential analysis of
a HMM may be cast into a Feynman-Kac model. In particular,
�ltering amounts to computing

Qt(ϕ) =
1

Zt
E

[
ϕ(xt)G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
,

with Zt = E

[
G0(x0)

t∏
s=1

Gs(xs−1, xs)

]
and expectations are wrt the law of the Markov chain (xt).

Note: FK formalism has other applications that sequential analysis
of HMM. In addition, for a given HMM, there is a more than one
way to de�ne a Feynmann-Kac formulation of that model.

9 / 31

Particle �ltering: the algorithm

Operations must be be performed for all n ∈ 1 : N.
At time 0,

(a) Generate xn0 ∼ m0(dx0).

(b) Compute W n
0 = G0(xn0)/

∑
N

m=1 G0(xm0) and

ZN
0 = N−1

∑
N

n=1 G0(xn0).

Recursively, for time t = 1 : T ,

(a) Generate an
t−1 ∼M(W 1:N

t−1).

(b) Generate xnt ∼ mt(x
an
t−1
t−1 , dxt).

(c) Compute W n
t = Gt(x

an
t−1
t−1 , x

n
t)/
∑

N

m=1 Gt(x
am
t−1
t−1 , x

m
t)

and ZN
t = ZN

t−1

{
N−1

∑
N

n=1 Gt(x
an
t−1
t−1 , x

n
t)
}
.

10 / 31

Cartoon representation

Source for image: some dark corner of the Internet.

11 / 31

PF output

At iteration t, compute

QN
t (ϕ) =

N∑
n=1

W n
t ϕ(xnt)

to approximate Qt(ϕ) (the �ltering expectation of ϕ). In addition,
compute

ZN
t

as an approximation of Zt (the likelihood of the data).

12 / 31

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at
iteration t as an importance sampling step from random probability
measure

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt) (1)

to
{same thing} × Gt(x̃t−1, xt).

Idea: use QMC instead of MC to sample N points from (1); i.e.
rewrite sampling from (1) this as a function of uniform variables,
and use low-discrepancy sequences instead.

13 / 31

Formalisation

We can formalise the succession of Steps (a), (b) and (c) at
iteration t as an importance sampling step from random probability
measure

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt) (1)

to
{same thing} × Gt(x̃t−1, xt).

Idea: use QMC instead of MC to sample N points from (1); i.e.
rewrite sampling from (1) this as a function of uniform variables,
and use low-discrepancy sequences instead.

13 / 31

Intermediate step

More precisely, we are going to write the simulation from

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt)

as a function of unt = (unt , v
n
t), unt ∈ [0, 1], vnt ∈ [0, 1]d , such that:

1 We will use the scalar unt to choose the ancestor x̃t−1.

2 We will use vnt to generate xnt as

xnt = Γt(x̃t−1, v
n
t)

where Γt is a deterministic function such that, for
vnt ∼ U [0, 1]d , Γt(x̃t−1, v

n
t) ∼ mt(x̃t−1, dxt).

The main problem is point 1.

14 / 31

Intermediate step

More precisely, we are going to write the simulation from

N∑
n=1

W n
t−1δxnt−1(dx̃t−1)mt(x̃t−1, dxt)

as a function of unt = (unt , v
n
t), unt ∈ [0, 1], vnt ∈ [0, 1]d , such that:

1 We will use the scalar unt to choose the ancestor x̃t−1.

2 We will use vnt to generate xnt as

xnt = Γt(x̃t−1, v
n
t)

where Γt is a deterministic function such that, for
vnt ∼ U [0, 1]d , Γt(x̃t−1, v

n
t) ∼ mt(x̃t−1, dxt).

The main problem is point 1.

14 / 31

Case d = 1

0.0 0.5 1.0 1.5 2.0 2.5
0.0

0.2

0.4

0.6

0.8

1.0

x(1)

u1

x(2)

u2

x(3)

u3

Simply use the inverse transform method: x̃n
t−1 = F̂−1(unt), where

F̂ is the empirical cdf of

N∑
n=1

W n
t−1δxnt−1(dx̃t−1).

15 / 31

From d = 1 to d > 1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

N∑
n=1

W n
t−1δxnt−1(dx̃t−1).

Idea: we �project� the xn
t−1's into [0, 1] through the (generalised)

inverse of the Hilbert curve, which is a fractal, space-�lling curve
H : [0, 1]→ [0, 1]d .

More precisely, we transform X into [0, 1]d through some function
ψ, then we transform [0, 1]d into [0, 1] through h = H−1.

16 / 31

From d = 1 to d > 1

When d > 1, we cannot use the inverse CDF method to sample
from the empirical distribution

N∑
n=1

W n
t−1δxnt−1(dx̃t−1).

Idea: we �project� the xn
t−1's into [0, 1] through the (generalised)

inverse of the Hilbert curve, which is a fractal, space-�lling curve
H : [0, 1]→ [0, 1]d .

More precisely, we transform X into [0, 1]d through some function
ψ, then we transform [0, 1]d into [0, 1] through h = H−1.

16 / 31

Hilbert curve

The Hilbert curve is the limit of this sequence. Note the locality
property of the Hilbert curve: if two points are close in [0, 1], then
the the corresponding transformed points remains close in [0, 1]d .
(Source for the plot: Wikipedia)

17 / 31

SQMC Algorithm
At time 0,

(a) Generate a QMC point set u1:N
0 in [0, 1]d , and

compute xn0 = Γ0(un0). (e.g. Γ0 = F−1
m0

)

(b) Compute W n
0 = G0(xn0)/

∑
N

m=1 G0(xm0).

Recursively, for time t = 1 : T ,

(a) Generate a QMC point set u1:N
t in [0, 1]d+1; let

unt = (unt , v
n
t).

(b) Hilbert sort: �nd permutation σ such that

h ◦ ψ(x
σ(1)
t−1) ≤ . . . ≤ h ◦ ψ(x

σ(N)
t−1).

(c) Generate a1:N
t−1 using inverse CDF Algorithm, with

inputs sort(u1:Nt) and W
σ(1:N)
t−1 , and compute

xnt = Γt(x
σ(an

t−1)

t−1 , v
σ(n)
t). (e.g. Γt = F−1

mt
)

(e) Compute

W n
t = Gt(x

σ(an
t−1)

t−1 , xnt)/
∑

N

m=1 Gt(x
σ(am

t−1)

t−1 , xmt).

18 / 31

Some remarks

• Because two sort operations are performed, the complexity of
SQMC is O(N logN). (Compare with O(N) for SMC.)

• The main requirement to implement SQMC is that one may
simulate from Markov kernel mt(xt−1, dxt) by computing
xt = Γt(xt−1,ut), where ut ∼ U [0, 1]d , for some deterministic
function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : �rst component

is for selecting the parent particle, the d remaining

components is for sampling xnt given x
an
t−1
t−1 .

19 / 31

Some remarks

• Because two sort operations are performed, the complexity of
SQMC is O(N logN). (Compare with O(N) for SMC.)

• The main requirement to implement SQMC is that one may
simulate from Markov kernel mt(xt−1, dxt) by computing
xt = Γt(xt−1,ut), where ut ∼ U [0, 1]d , for some deterministic
function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : �rst component

is for selecting the parent particle, the d remaining

components is for sampling xnt given x
an
t−1
t−1 .

19 / 31

Some remarks

• Because two sort operations are performed, the complexity of
SQMC is O(N logN). (Compare with O(N) for SMC.)

• The main requirement to implement SQMC is that one may
simulate from Markov kernel mt(xt−1, dxt) by computing
xt = Γt(xt−1,ut), where ut ∼ U [0, 1]d , for some deterministic
function Γt (e.g. multivariate inverse CDF).

• The dimension of the point sets u1:N
t is 1 + d : �rst component

is for selecting the parent particle, the d remaining

components is for sampling xnt given x
an
t−1
t−1 .

19 / 31

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal
likelihood Zt .

• This means we can use SQMC within the PMCMC framework.
(More precisely, we can run e.g. a PMMH algorithm, where the
likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the di�erent particle smoothing
algorithms: forward smoothing, backward smoothing, two-�lter
smoothing.

20 / 31

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal
likelihood Zt .

• This means we can use SQMC within the PMCMC framework.
(More precisely, we can run e.g. a PMMH algorithm, where the
likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the di�erent particle smoothing
algorithms: forward smoothing, backward smoothing, two-�lter
smoothing.

20 / 31

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal
likelihood Zt .

• This means we can use SQMC within the PMCMC framework.
(More precisely, we can run e.g. a PMMH algorithm, where the
likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the di�erent particle smoothing
algorithms: forward smoothing, backward smoothing, two-�lter
smoothing.

20 / 31

Extensions

• If we use RQMC (randomised QMC) point sets u1:N
t , then

SQMC generates an unbiased estimate of the marginal
likelihood Zt .

• This means we can use SQMC within the PMCMC framework.
(More precisely, we can run e.g. a PMMH algorithm, where the
likelihood of the data is computed via SQMC instead of SMC.)

• We can also adapt quite easily the di�erent particle smoothing
algorithms: forward smoothing, backward smoothing, two-�lter
smoothing.

20 / 31

Main results

We were able to establish the following types of results: consistency

QN
t (ϕ)− Qt(ϕ)→ 0, as N → +∞

for certain functions ϕ, and rate of convergence

MSE

[
QN

t (ϕ)
]

= O(N−1)

(under technical conditions, and for certain types of RQMC point
sets).
Theory is non-standard and borrows heavily from QMC concepts.

21 / 31

Some concepts used in the proofs

Let X = [0, 1]d . Consistency results are expressed in terms of the
star norm

‖QN
t − Qt‖? = sup

[0,b]⊂[0,1)d

∣∣∣(QN
t − Qt

)
(B)
∣∣∣→ 0.

This implies consistency for bounded functions ϕ,
QN
t (ϕ)− Qt(ϕ)→ 0.

The Hilbert curve conserves discrepancy:

‖πN − π‖? → 0 ⇒ ‖πN
h
− πh‖? → 0

where π ∈ P([0, 1]d), h : [0, 1]d → [0, 1] is the (pseudo-)inverse of
the Hilbert curve, and πh is the image of π through π.

22 / 31

Examples: Kitagawa (d = 1)

Well known toy example (Kitagawa, 1998):yt = x2t
a

+ εt

xt = b1xt−1 + b2
xt−1

1+x2
t−1

+ b3 cos(b4t) + σνt

No paramater estimation (parameters are set to their true value).
We compare SQMC with SMC (based on systematic resampling)
both in terms of N, and in terms of CPU time.

23 / 31

Examples: Kitagawa (d = 1)

−272

−270

−268

−266

−264

−262

1000 25000 50000 75000 100000
Number of particles

M
in

/M
ax

 lo
g−

lik
el

ih
oo

d
es

tim
at

e

10−4

10−2

100

102

104

10−3 10−2 10−1 100 101

CPU time in second (log10 scale)
M

S
E

 (
 lo

g 1
0 s

ca
le

)

Log-likelihood evaluation (based on T = 100 data point and 500
independent SMC and SQMC runs).

24 / 31

Examples: Kitagawa (d = 1)

100

102

104

106

0 25 50 75 100
Time step

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

N = 25 N = 210 N = 217

100

100.5

101

101.5

102

102.5

103

0 25 50 75 100
Time step

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)
N = 27 N = 29

Filtering: computing E(xt |y0:t) at each iteration t. Gain factor is
MSE(SMC)/MSE(SQMC).

25 / 31

Examples: Multivariate Stochastic Volatility

Model is {
yt = S

1
2
t εt

xt = µ + Φ(xt−1 − µ) + Ψ
1
2νt

with possibly correlated noise terms: (εt ,νt) ∼ N2d (0,C).
We shall focus on d = 2 and d = 4.

26 / 31

Examples: Multivariate Stochastic Volatility (d = 2)

101

101.5

102

102 103 104 105

Number of particles (log10 scale)

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

10−4

10−2

100

102

10−2 10−1 100 101 102

CPU time in second (log10 scale)
M

S
E

 (
 lo

g 1
0 s

ca
le

)

Log-likelihood evaluation (based on T = 400 data points and 200
independent runs).

27 / 31

Examples: Multivariate Stochastic Volatility (d = 2)

101

102

103

104

105

0 100 200 300 400
Time step

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

N = 25 N = 210 N = 213

100

102

104

106

0 100 200 300 400
Time step

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)
N = 25 N = 210 N = 217

Log-likelihood evaluation (left) and �ltering (right) as a function of
t.

28 / 31

Examples: Multivariate Stochastic Volatility (d = 4)

100.4

100.6

100.8

101

102 103 104 105

Number of particles (log10 scale)

G
ai

n
fa

ct
or

 (
 lo

g 1
0 s

ca
le

)

10−2

100

102

104

10−1 100 101 102

CPU time in second (log10 scale)
M

S
E

 (
 lo

g 1
0 s

ca
le

)

Log-likelihood estimation (based on T = 400 data points and 200
independent runs)

29 / 31

Conclusion

• Only requirement to replace SMC with SQMC is that the
simulation of xnt |xnt−1 may be written as a xnt = Γt(x

n
t−1,u

n
t)

where unt ∼ U[0, 1]d .

• We observe very impressive gains in performance (even for
small N or d = 6).

• Supporting theory.

30 / 31

Further work

• Adaptive resampling (triggers resampling steps when weight
degeneracy is too high).

• Adapt SQMC to situations where sampling from mt(x
n
t−1, dxt)

involves some accept/reject mechanism.

• Adapt SQMC to situations where sampling from mt(x
n
t−1, dxt)

is a Metropolis step. In this way, we could develop SQMC
counterparts of SMC samplers (Del Moral et al, 2006).

• SQMC2 (QMC version of SMC2, C. et al, 2013)?

Paper on Arxiv, will be published soon as a read paper in JRSSB.

31 / 31

Further work

• Adaptive resampling (triggers resampling steps when weight
degeneracy is too high).

• Adapt SQMC to situations where sampling from mt(x
n
t−1, dxt)

involves some accept/reject mechanism.

• Adapt SQMC to situations where sampling from mt(x
n
t−1, dxt)

is a Metropolis step. In this way, we could develop SQMC
counterparts of SMC samplers (Del Moral et al, 2006).

• SQMC2 (QMC version of SMC2, C. et al, 2013)?

Paper on Arxiv, will be published soon as a read paper in JRSSB.

31 / 31

