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Abstract The cut function defined by the OpenBUGS soft-
ware is described as a “valve” that prevents feedback in
Bayesian graphical models. It is shown that the MCMC algo-
rithm applied by OpenBUGS in the presence of a cut func-
tion does not converge to a well-defined limiting distribution.
However, it may be improved by using tempered transitions.
The cut algorithm is compared with multiple imputation as
a gold standard in a simple example.

Keywords Bayesian inference · Cutting feedback ·
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1 Introduction

Cut models are an alternative to Bayesian full probability
models that are used to modulate the flow of information
from data to parameters. Cut models arise in applications
with multiple data sources that provide information about
different parameters in the model. A simplified graphical rep-
resentation of a typical cut model is shown in Fig. 1. Interest
lies in parameters θ , which are informed by data Y. The likeli-
hood for θ includes nuisance parameters ϕ that are estimated
using auxiliary data Z. In a full probability model, informa-
tion from Y “feeds back” through the graph to influence the
posterior distribution of ϕ. There are circumstances in which
this feedback may be considered unhelpful:
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1. If the dose-response relationship that describes the rela-
tionship between θ and Y is speculative, we may prefer
to use only information from Z to estimate ϕ.

2. If there is conflict between the different data sources such
that p(ϕ | Y, Z) is very different from p(ϕ | Z), we
may consider Z to be a more reliable source of infor-
mation about ϕ and so down-weight the influence of Y.
For example, in measurement error models, Z represents
surrogate exposure data, and the study design typically
includes a validation or reliability sub-study, which is
directly informative about the error properties of the sur-
rogate. The more complex graphical models associated
with such designs are explored by Richardson and Gilks
(1993).

3. If there are computational problems with Markov Chain
Monte Carlo (MCMC), convergence and mixing may be
improved in a model in which ϕ is estimated only from
Z.

Cuts have most extensively been investigated in popula-
tion pharmacokinetic / pharmacodynamic (PK/PD) models.
In such models, separate data sources provide information on
the PK and the PD parameters. When both data sources are
analyzed using a single probability model, feedback occurs
from the PD data into the PK model. Sequential analysis, in
which the PK data are analysed first, and then estimates are
plugged into the model for the PD data, may be both faster
and more robust (Bennett and Wakefield 2001; Zhang et al.
2003a, b). Sequential analysis is also the basis of regression
calibration (Carroll et al. 2007), a frequentist method used to
correct for measurement error in generalized linear models.

A disadvantage of Bayesian sequential analysis is that
uncertainty in the imputed values in the first phase is not car-
ried forward to the second phase. A potential solution to this
problem is provided by the WinBUGS and OpenBUGS soft-
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ware packages, which implement a modified MCMC algo-
rithm through the use of a “cut” function. The cut function
modifies a key step in MCMC on a graph – the construction
of the full conditional distribution. This is the distribution
of a node given the values of all other nodes in the graph.
In practice, the full conditional distribution depends only on
local nodes (the Markov blanket) so that the full conditional
density can typically be expressed as the product of few fac-
tors, even in a large graphical model. The cut function sim-
plifies the full conditional density further by ignoring some
terms. In Fig. 1, the graph is divided by a cut into two sub-
graphs G1 and G2. When constructing the full conditional
distributions for parameters in G1, likelihood terms involv-
ing random variables in G2 are ignored. Hence ϕ is sampled
using only Z and not Y, despite the dependence of Y on ϕ.
Conversely when parameters in G2 are sampled, prior terms
involving random variables in G1 are included as normal in
the construction of the full conditional density.

The OpenBUGS manual describes the cut function infor-
mally as follows: “The cut function acts as a kind of valve in
the graph: prior information is allowed to flow downwards
through the cut, but likelihood information is prevented from
flowing upwards” (Spiegelhalter et al. 2004). The cut func-
tion has been used in a variety of applications in different
fields (Haining et al. 2007; Carrigan et al. 2007; Scollnick
2004; Mwalili et al. 2005; Jackson et al. 2008; Choi et al.
2009). Its use in PK/PD models is reviewed by Lunn et al.
(2009). The same modified MCMC sampling technique has
also been applied in custom software (Rougier 2008; He and
Zaslavsky 2009). In the sequel, this algorithm will be referred
to as the “naive cut algorithm”.

Liu et al. (2009) describe the cut function as an example
of “modularization”—the division of a large complex model
into smaller modules that interact more weakly than in a full
Bayesian analysis. They note that attempts to modify the
flow of information in Bayesian models can also be found in

G1 G2

ϕ

Z

θ

Y

Fig. 1 Graphical representation of a cut model

inconsistent dependency networks (Heckerman et al. 2000)
and inconsistent Gibbs (Raghunathan et al. 2001).

The naive cut algorithm has been used either as a useful
computational technique to increase speed and improve con-
vergence of MCMC, or informally introduced as an approach
to model robustness. However, as noted by Liu et al. (2009),
modularization occurs in the context of settings that are too
complex for formal analysis. Thus it can be difficult to deter-
mine the validity of cut models. The purpose of the current
paper is to provide a simple illustration of cutting feedback
with a toy example drawn from epidemiology, to demon-
strate the lack of convergence of the naive cut algorithm and
to provide an alternative approximate solution.

2 Target distribution for cut models

The naive cut algorithm is defined operationally, in terms of
a modified MCMC update scheme, rather than in terms of
simulating from a target distribution. In order to evaluate the
algorithm it is helpful to define this target distribution.

By assumption, the variables represented by nodes in
Fig. 1 have a joint distribution that factorizes on the graph
as:

p(Y, Z, θ ,ϕ) = p(Y | θ ,ϕ)p(Z | ϕ)p(θ)p(ϕ) (1)

We assume that the factors on the right-hand side of (1) can
be expressed in closed form, or otherwise can be easily com-
puted.

In the simplest form of the naive cut algorithm, it is pos-
sible to sample directly from the conditional distributions
p(ϕ | Z) and p(θ | Y,ϕ), where p(ϕ | Z) ∝ p(ϕ)p(Z | ϕ)

is the posterior distribution of ϕ when Z is observed but Y is
not. If direct sampling is possible, then the resulting sequence
of samples (ϕt , θ t ) for t = 1, 2, . . . are independent draws
from the joint distribution

p∗(θ,ϕ) = p(θ | Y,ϕ)p(ϕ | Z) (2)

This differs from the full Bayesian posterior

p(θ,ϕ | Y, Z) = p(θ | Y,ϕ)p(ϕ | Y, Z) (3)

In the Bayesian posterior (3), the second factor depends on
Y. In the cut distribution (2) it does not. Hence p∗, while
being a valid probability distribution, is not a true posterior.

In general, it is not possible to sample directly from the
conditional distributions p(ϕ | Z) and p(θ | Y,ϕ). If (2)
can be expressed in closed form (up to a multiplicative con-
stant) then it may be used as a target for a standard MCMC
algorithm. However, this is rarely possible. The target may
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be rewritten as

p∗(θ ,ϕ) ∝ p(Y, Z, θ ,ϕ)

p(Y | ϕ)

The numerator can be expressed in closed form via the fac-
torization (1), but the marginal likelihood in the denominator
is an integral

p(Y | ϕ) =
∫

p(Y | θ ,ϕ)p(θ)dθ

which can only be expressed in closed form in very simple
models.

Since ϕ is a nuisance parameter, interest may lie only in
the marginal distribution of θ :

p∗(θ) =
∫

p(θ | Y,ϕ)p(ϕ | Z)dϕ (4)

The target distribution p∗(θ) can always be estimated by mul-
tiple imputation (MI), i.e. generating a sequence of samples
ϕ1, . . . ϕT and then fitting T separate models for θ such that,
under model t , ϕ is considered to be observed at ϕ = ϕt .
Pooled MCMC samples from all T models can be used to
estimate the marginal density p∗(θ). Moreover, if p∗(θ) is
approximately normal and the ϕt are independent, the multi-
ple imputation combining rules of Little (1992) may be used
to provide an approximation to p∗(θ) and in this case rela-
tively few imputations may be required.

3 Example: ecological study of HPV and cervical cancer

To illustrate cuts, we consider a toy example that illustrates
many of the important features of cut models while being
simple and reproducible. The example is derived from a real
epidemiological study.

The motivation for the example is an investigation of
the international correlation between human papillomavirus
(HPV) prevalence and cervical cancer incidence (Maucort-
Boulch et al. 2008). Cervical cancer is known to be caused
by around 20 types of HPV, which are known collectively
as “high-risk” types. In this study, high-risk HPV prevalence
data came from a series of surveys in 13 different countries.
Incidence data come from cancer registries in the same pop-
ulations. We consider the oldest age group (55–64 years)
in the survey, which demonstrated the strongest correlation
between HPV and cervical cancer.

In population i , the outcome Yi is the number of cancer
cases arising from Ti woman-years of follow-up; Zi is the
number of women infected with high-risk HPV in a sample
of size Ni from the same population. We assume a Poisson
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Fig. 2 Comparison of the posterior for θ2 under the full probability
model and under the cut model estimated by multiple imputation

and a Binomial distribution for these data respectively:

Yi ∼ Poisson(μi )

μi = λi Ti

Zi ∼ Binomial(Ni , ϕi )

We postulate a log linear relationship between high-risk
HPV prevalence ϕi and incidence λi in the same population:

log(λi ) = θ1 + θ2ϕi (5)

and focus on the slope parameter θ2.
Since the dose-response relationship (5) is speculative, it

falls into the first case considered in Sect. 1 motivating the
use of a cut model to prevent feedback from the incidence
data when estimating the prevalence parameters ϕ.

3.1 Multiple imputation

Figure 2 shows a comparison of the posterior distribution of
θ2 for the full probability model and for the cut model using
multiple imputation. Two results for multiple imputation are
shown: an approximation using the combining rules of Little
(1992) for 20 imputations, and a full density estimate based
on 1000 imputations.

There is little overlap between the supported regions of
the two models, showing the strong influence of feedback in
the probability model. The approximate posterior based on
the multiple imputation combining rules captures the loca-
tion and scale of the cut model. This approximation is less
accurate in the tails, as may be expected.
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Fig. 3 Posterior density of θ2 using the naive cut algorithm with three
different update methods, and a comparison with multiple imputation

A large number of imputations are required for the density
estimate due to the fact that the variance of θ between impu-
tations is much higher than the variance within imputations.
This can be summarized as a rate of missing information
(Little 1992) of 0.98 in this example.

Although multiple imputation with a large number of
replicates is feasible in this small example, it would be use-
ful to have a way to sample from the target distribution in a
single MCMC chain.

3.2 Naive cut algorithm

Figure 3 shows posterior estimates of θ2 using the naive cut
algorithm implemented in OpenBUGS 3.2.2. OpenBUGS
is designed to be a “black box” that automatically chooses
appropriate sampling methods for the user. Nevertheless the
user has partial control over the sampling methods-referred
to as “updaters” in OpenBUGS-which allows us to fit the
same model with different sampling methods (See appen-
dix for details). Figure 3 shows results for three updaters,
labelled “log-linear block glm”, “log-linear rejection” and
“adaptive Metropolis 1D”. Updaters are not documented by
OpenBUGS, so a full understanding of the sample methods
in use in Fig. 3 can only be obtained by inspecting the source
code. Each updater defines a different transition kernel for
the Markov chain. In standard MCMC, all of these transition
kernels converge to the same posterior distribution, although
they may differ in their efficiency.

Each updater was run in two parallel chains with initial
values drawn from the prior. The density estimates for the
two parallel chains coincide, demonstrating convergence of

all three updaters. However, the three transition kernels con-
verge to different limiting distributions. Of the three updaters,
the “adaptive Metropolis 1D” comes closest to the result from
multiple imputation (Fig. 3). This is not the default updater
chosen by OpenBUGS, and in the absence of the multiple
imputation estimate, we would not know which of the sam-
pling methods produced the best approximation to the target
density.

4 Convergence of the naive cut algorithm

In general, MCMC methods do not sample directly from the
target density, but supply a sequence of reversible transitions
in detailed balance with the full conditional distribution. For
notational simplicity, we consider only block sampling in
which θ and ϕ are updated in separate blocks. Hence, under
the naive cut algorithm, ϕ is updated in detailed balance with
p(ϕ | Z) and θ is updated in detailed balance with p(θ |
Y,ϕ).

The transition kernel of ϕ is defined by the probability
of moving from the old value ϕt−1 to the new value ϕt at
iteration t . We represent the probability density of this move
with the notation p(ϕt−1 → ϕt ). Unlike the posterior density
p(ϕ|Z), which is determined by the model, we have free
choice in defining the transition kernel, but it must satisfy
the detailed balance relation:

p(ϕt−1 | Z)p(ϕt−1 → ϕt ) = p(ϕt | Z)p(ϕt → ϕt−1) (6)

This ensures that if ϕt−1 is a random sample from the poste-
rior p(ϕ|Z) then so is ϕt (and vice versa if one is observing
the process in reverse time).

Similarly we represent the probability density of the move
from θ t−1 to θ t at iteration t as p(θ t−1 → θ t |ϕt ). This
transition kernel is more complex, as it may depend on the
current value of ϕ. The transition kernel must satisfy the
detailed balance relation:

p(θ t−1 | Y,ϕt )p(θ t−1 → θ t | ϕt )

= p(θ t | Y,ϕt )p(θ t → θ t−1 | ϕt ) (7)

So that if θ t−1 is a random sample from the conditional pos-
terior p(θ |Y,ϕt ) then so is θ t (and vice versa).

Suppose that (ϕt−1, θ t−1) is a random sample from
p∗(ϕ, θ) and that first ϕ is updated according to (6) then θ

is updated according to (7). Then (ϕt , θ t ) is a random sam-
ple from the weighted density p∗(ϕ, θ)w(ϕ, θ) where the
weight function is given by

w(ϕ, θ) =
∫

p(θ ′ | Y,ϕ′)
p(θ ′ | Y,ϕ)

p(ϕ → ϕ′)p(θ → θ ′ | ϕ)dϕ′dθ ′

(8)
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In a standard MCMC update, the first factor in the integrand
cancels out with likelihood terms from the full conditional
distribution of ϕ. However, with the naive cut algorithm,
these terms are ignored when ϕ is updated, and cancellation
does not take place. Hence p∗ is not the stationary distribution
of the Markov chain under the naive cut algorithm. Note that
the weightw is a function of the transition kernels p(ϕ → ϕ′)
and p(θ → θ ′ | ϕ). This explains why different transition
kernels converge to different limiting distributions.

For the naive cut algorithm to draw approximate samples
from (2), w should be as close as possible to 1, at least over
the range of (ϕ, θ) with posterior support. This may occur in
two limiting situations

– The probability of the transition θ → θ ′ does not depend
on θ . In this limit

p(θ → θ ′ | ϕ)

p(θ ′ | Y,ϕ)
→ 1

– The transition ϕ → ϕ′ only permits very small steps
leading to slow mixing of the Markov chain for ϕ. In this
limit

p(θ ′ | Y,ϕ′)
p(θ ′ | Y,ϕ)

→ 1

In the example of Sect. 3 the ϕ parameters have a conjugate
beta distribution and are sampled directly from p(ϕ | Z).
This leads to large jumps in ϕ between iterations and is as
far as possible from the ideal situation for the good behaviour
of the naive cut algorithm

Working backwards from (8) it is possible determine what
conditions on the transitions are necessary in order to have
p∗ as the stationary distribution. The conditions on the transi-
tions for ϕ are unchanged. However, for θ , a different balance
equation is required:

p(θ t−1 | Y,ϕt−1)p(θ t−1 → θ t | ϕt−1,ϕt )

= p(θ t | Y,ϕt )p(θ t → θ t−1 | ϕt ,ϕt−1) (9)

This balance relation uses both the current and previous val-
ues of ϕ.

One possibility to correct the transition probabilities is
to consider a transition generated by (6) and (7) and add
a Metropolis acceptance step. The acceptance probability
would be min(1, R) where

R = p(θ t | Y,ϕt )

p(θ t−1 | Y,ϕt−1)

p(θ t → θ t−1 | ϕt−1)

p(θ t−1 → θ t | ϕt )
(10)

In general, R will be hard to evaluate. The second factor
requires the transition probabilities to be available in closed

form. However, some sampling methods such as slice sam-
pling and Hamiltonian Monte Carlo are designed to generate
reversible transitions without providing an explicit formula
for the transition probabilities. This problem could be over-
come by restricting sampling methods to those that generate
explicit transition probabilities, such as Metropolis-Hastings.
A second problem that is not so easily overcome, is that the
first factor (which also appears inside the integrand of the
weight function in (8)) is the ratio of two normalized prob-
ability distributions. To make this more explicit, it can be
further factorized as

p(θ t , Y | ϕt )

p(θ t−1, Y | ϕt−1)

p(Y | ϕt−1)

p(Y | ϕt )

Hence calculation of R requires a formula for the marginal
likelihood p(Y | ϕ). Thus attempting to rescue the naive
cut algorithm with a Metropolis step brings us back to the
problem of the intractable marginal likelihood.

5 Tempered cut algorithm

The two limiting cases that allow the weight function (8) to
approach the value 1 suggest some approximate methods that
may improve on the naive cut function. One possibility is to
run multiple updates of θ for each update of ϕ. The new value
θ t would be retained after discarding a number of “burn-in”
iterations of θ . This is effectively an MCMC implementation
of multiple imputation. If the burn-in is sufficiently long the
new sample θ t will depend weakly on the previous value
θ t−1 and the weight function w should be close to 1. Note
however that if the jump ϕt−1 → ϕt is large, the burn-in
period may have to be correspondingly long. This suggests a
second modification. Instead of moving directly from ϕt−1

to ϕt , we move along a linear path

ϕ(c) = cϕt + (1 − c)ϕt−1

in a sequence c1, . . . cm with ci = i/m. At each step we
draw a new sample of θ but keep only the sample at the
last step m, which becomes θ t . The linear path provides a
tempered transition between the probability densities at ϕt−1

and ϕt . If ϕ is discrete-valued then a parametric path is not
possible, but an alternate path through distribution space can
be constructed, e.g.
{

p(Y, θ | ϕt−1)
}1−c {

p(Y, θ | ϕt )
}c

As the number of steps m increases, the sampled value θ t

becomes less dependent on the value θ t−1 at the previous
iteration, and the changes in ϕ(c) between steps get smaller.
Both of these approach the asymptotic conditions for good
behaviour of the naive cut algorithm. For sufficiently large m,
the tempered cut algorithm should therefore provide approx-
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Fig. 4 Posterior density of θ2 using the tempered cut algorithm with
an increasing number of steps

imate samples from the target distribution p∗. The number
of steps m required must be determined empirically.

In the cervical cancer example, each prevalence parame-
ter ϕi has a conjugate beta distribution and can be sampled
directly from its posterior distribution. For sampling θ we
include an inner loop at each iteration in which ϕ is moved
from its value at the previous iteration (denoted phi.old
below) to the newly sampled value (phi.new) in m steps.
This may be represent in pseudocode:

For j = 1 to m
For k = 1 to LENGTH(m)

Phi [k] = (j * phi.new[k] + (m-j) * phi.old[k]) / m
ENDFOR
FOR k = 1 to LENGTH(theta)

Sample new theta [k]
ENDFOR

ENDFOR

The R implementation of this algorithm is provided in the
appendix. Elements of θ were sampled using a random walk
Metropolis algorithm with separate step sizes tuned to give
acceptance probabilities in the range 0.26 − 0.45.

Figure 4 shows the results of applying the tempered cut
algorithm to the example with the number of steps increasing
in powers of two between m = 1 (corresponding to the naive
cut algorithm) and m = 128. Between m = 64 and m = 128
the posterior distribution shows evidence of convergence.

6 Discussion

Cut models are widely used, due largely to the implemen-
tation of the naive cut algorithm in OpenBUGS but also to
the intuitive attractiveness of the “modularization” that cut
models appear to offer. Unfortunately the naive cut algorithm
does not converge to a well-defined distribution. The present
article should serve as a warning and avoid further appli-
cations of the naive cut algorithm without due caution (e.g.
sensitivity analyses using different sampling methods).

I have proposed a modified algorithm based on tempered
transitions. However, this offers only an approximate solu-
tion. Moreover, it requires an additional convergence check
(of the number of tempering steps required) in addition to
the usual evaluation of MCMC convergence. It should also
be noted that the tempered algorithm has only a heuristic jus-
tification. It should not be confused with the well-founded
tempered transition algorithm for multi-model posterior dis-
tributions developed by Neal (1996). Exact MCMC sampling
from a cut model seems to require evaluating the marginal
likelihood p(Y | ϕ) which is computationally expensive
(Gelman and Meng 1998). It might be possible, as suggested
by a reviewer, that auxiliary variable methods such as the one
proposed by Møller et al. (2006) may allow this evaluation to
be skipped. Otherwise, it appears unlikely that any MCMC
method can sample exactly from the target density p∗(θ,ϕ).

Multiple imputation can always be used for approximate
inference in cut models, and is an attractive approach in an
increasingly parallel computing environment. The combin-
ing rules of Little (1992) can be applied with few imputa-

tions, but depend crucially on an assumption of normality.
This may not be valid in the complex, nonlinear models to
which the cut algorithm is typically applied, such as PK/PD
models.

This article has concentrated on the computational aspects
of cut models. Clearly more work needs to be done to see if
more efficient MCMC approximations are available. It is not
clear if this goal can be realised, and even if it can then a more
in-depth statistical critique of this methodology is required.
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One fundamental issue that must be addressed is whether
cut models are admissible from a Bayesian viewpoint. Since
p∗(θ ,ϕ) is not a standard Bayesian posterior, it cannot rep-
resent the coherent belief of any individual. However, it may
represent the consensus belief of two individuals who are
observing different data sets and communicating with each
other via summary statistics. Since this reflects the reality
of scientific communication, it may be useful to develop a
theoretical and computational framework for understanding
this process.
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