Estimation of Copula Models with Discrete Margins (via Bayesian Data Augmentation)

Michael S. Smith
Melbourne Business School,
University of Melbourne
(Joint with Mohamad Khaled,
University of Queensland)

Introduction

- Copula models with discrete margins
- Distribution augmented with latent variables
- Augmented likelihood & some conditional posteriors
- •Two MCMC sampling schemes for estimation; outline just one.
- Application to small online retail example
- Application to D-vine; illustration with longitudinal count data

- Let X be a vector of m discrete-valued random variables
- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x)=C(F_1(x_1),...,F_m(x_m))$$

- Let X be a vector of m discrete-valued random variables
- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x) = C(F_1(x_1), ..., F_m(x_m))$$

Joint CDF of
$$X=(X_1,...,X_m)$$

- Let X be a vector of m discrete-valued random variables
- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x)=C(F_1(x_1),\ldots,F_m(x_m))$$

Univariate CDFs of $X_1,...,X_m$

- Let X be a vector of m discrete-valued random variables
- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x) = C(F_1(x_1), \dots, F_m(x_m))$$

Copula Function on [0,1]^m

- Let X be a vector of m discrete-valued random variables
- Many existing multivariate models for discrete data can be written in copula form with distribution function:

$$F(x)=C(F_1(x_1),...,F_m(x_m))$$

- •For arbitrary *F*, the copula function *C* is not unique
- •Nevertheless, F is a well-defined distribution function when C is a parametric copula function

•We use the differencing notation:

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$$

We use the differencing notation:

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k})u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$$

•The v_k is simply an "index of differencing"

•We use the differencing notation:

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$$

In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} ... \Delta_{a_m}^{b_m} C(v_1, v_2, ..., v_m)$$

where

$$b_j = F_j(x_j)$$
 $a_j = F_j(x_j)$

•We use the differencing notation:

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$$

In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} ... \Delta_{a_m}^{b_m} C(v_1, v_2, ..., v_m)$$

where

Left-hand Limit at x_i

$$b_j = F_j(x_j)$$
 $a_j = F_j(x_j)$

•We use the differencing notation:

$$\Delta_{a_{k}}^{b_{k}}C(u_{1},...,u_{k-1},v_{k},u_{k+1},...,u_{m}) = C(u_{1},...,u_{k-1},b_{k},u_{k+1},...,u_{m}) - C(u_{1},...,u_{k-1},a_{k},u_{k+1},...,u_{m})$$

In that case the PMF is given by

$$f(x) = \Delta_{a_1}^{b_1} \Delta_{a_2}^{b_2} ... \Delta_{a_m}^{b_m} C(v_1, v_2, ..., v_m)$$

where

For ordinal data

$$b_{j} = F_{j}(x_{j})$$
 $a_{j} = F_{j}(x_{j}^{-}) = F_{j}(x_{j}^{-}1)$

Difficulties with Estimation

- •Genest & Nešlehová (07) highlight the problems of using rank-based estimators
- •However, in general, it is difficult to compute MLE of the copula parameters because:
 - •evaluation of the PMF (and hence MLE) involves $O(2^m)$ computations
 - Direct maximization of the likelihood can be difficult

$$f(x_j|u_j) = I(F_j(x_j) \le u_j < F_j(x_j^-))$$

- •where:
 - • $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false

$$f(x,u) = f(x|u)f(u)$$

- •where:
 - • $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false

$$f(x,u) = f(x \mid u)c(u) = \prod_{j=1}^{m} \mathcal{J}(F_{j}(x_{j}^{-}) \le u_{j} < F_{j}(x_{j}))c(u)$$

- •where:
 - • $\mathcal{I}(A)=1$ if A is true, and $\mathcal{I}(A)=0$ if A is false
 - • $c(u)=\partial C(u)/\partial u$ is the copula density for C
- This is a "mixed augmented density"

$$f(x,u) = f(x \mid u)c(u) = \prod_{j=1}^{m} \mathcal{J}(F_{j}(x_{j}^{-}) \le u_{j} < F_{j}(x_{j}))c(u)$$

- •It can be shown that the <u>marginal PMF of</u>

 X is that of the copula model
- •The aim is to construct <u>likelihood-based</u> inference using the <u>augmented posterior</u> constructed using f(x,u)

- •In our DA approach we sample the *U*'s explicitly
- •The latent variable *U* (conditional on *X*) follows a multivariate constrained distribution

$$f(u \mid x) = \frac{c(u)}{f(x)} \prod_{j=1}^{m} \mathcal{J}(a_j \le u_j < b_j)$$

Two MCMC DA Schemes

•Scheme 1:

- •Generates u as a block using MH with an approximation q(u) which is "close to" f(u|x)
- •Need to compute the conditional copula CDFs $C_{i|1,...,i-1}$ a total of 5(m-1) times

Scheme 2:

- •Generates u_i one-at-a-time
- •Need to compute the conditional copula CDFs $C_{i|k\neq j}$ a total of m times
- Can use at least one scheme for all copula models currently being employed

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> distribution

$$f(u_{j} | u_{1},...,u_{j-1},x) =$$

$$c_{j|1,...,j-1}(u_{j} | u_{1},...,u_{j-1}) \mathcal{F}(a_{j} \leq u_{j} < b_{j}) \mathcal{K}_{j}(u_{1},...,u_{j})$$

Conditional copula density

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> distribution

$$f(u_{j} | u_{1},...,u_{j-1},x) = c_{j|1,...,j-1}(u_{j} | u_{1},...,u_{j}) \mathcal{J}(a_{j} \leq u_{j} < b_{j}) \mathcal{K}_{j}(u_{1},...,u_{j})$$

Constrained to [a_i,b_i)

•The development of Scheme 1 relies on the derivation of the following <u>conditional</u> distribution

$$f(u_{j} | u_{1},...,u_{j-1},x) = c_{j|1,...,j-1}(u_{j} | u_{1},...,u_{j-1})\mathcal{I}(a_{j} \leq u_{j} < b_{j})\mathcal{K}_{j}(u_{1},...,u_{j})$$

With a $O(2^{m-j})$ term that is a function of $u_1, ..., u_j$

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•Generate sequentially from each g_j (j=1,...,m)

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j}|--) = \frac{C_{j|1,...,j-1}(u_{j}|--;\varphi)\mathcal{J}(a_{j} \leq u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j}|--;\varphi)-C_{j|1,...,j-1}(a_{j}|--;\varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j(u_1,...,u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j} | -) = \frac{c_{j|1,...,j-1}(u_{j} | -); \varphi) \mathcal{J}(a_{j} \leq u_{j} \leq b_{j})}{C_{j|1,...,j-1}(b_{j} | -); \varphi) - C_{j|1,...,j-1}(a_{j} | -); \varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

Just saving space with this notation!

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j} | ---) = \frac{C_{j|1,...,j-1}(u_{j} | ---; \varphi) \mathcal{J}(a_{j} \leq u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---; \varphi) - C_{j|1,...,j-1}(a_{j} | ---; \varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

Constrained conditional copula distribution

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j}|--) = \frac{C_{j|1,...,j-1}(u_{j}|--;\varphi)\mathcal{J}(a_{j} \leq u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j}|--;\varphi)-C_{j|1,...,j-1}(a_{j}|--;\varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \leq u_{i1} < b_{i1}) \wedge (b_{1j} - a_{1j})$$

The normalising constants...

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j}|--) = \frac{C_{j|1,...,j-1}(u_{j}|--;\varphi)\mathcal{J}(a_{j} \leq u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j}|--;\varphi)-C_{j|1,...,j-1}(a_{j}|--;\varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

To implement, just need to be able to compute $C_{j|1,...j-1}$ and its inverse... 3(m-1) times

•The proposal density for *u* is:

$$g_j(u) = \prod_{j=2}^m g_j(u_j | u_1, ..., u_{j-1})g_1(u_1)$$

•where:

$$g_{j}(u_{j} | ---) = \frac{C_{j|1,...,j-1}(u_{j} | ---; \varphi) \mathcal{J}(a_{j} \leq u_{j} < b_{j})}{C_{j|1,...,j-1}(b_{j} | ---; \varphi) - C_{j|1,...,j-1}(a_{j} | ---; \varphi)}$$

and

$$g_1(u_{i1}) = \mathcal{J}(a_{i1} \le u_{i1} < b_{i1}) / (b_{1j} - a_{1j})$$

As $|F_j(x_j) - F_j(x_j^-)| \to 0$, then $g(u) \to f(u|\phi, x)$,
So that is a "close" approximation

- •Conditional on *u*, it is much easier to generate any copula parameters φ
- •Posterior is:

$$f(\varphi|u,\Theta,x) = f(\varphi|u)$$

- •Conditional on *u*, it is much easier to generate any copula parameters φ
- •Posterior is:

$$f(\varphi|u, \Theta, x) = f(\varphi|u)$$
$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$

- •Conditional on u, it is much easier to generate any copula parameters φ
- •Posterior is:

$$f(\varphi|u,\Theta,x) = f(\varphi|u)$$
$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$

copula density evaluated at each vector $u_i=(u_{i1},....,u_{im})$ '

- •Conditional on u, it is much easier to generate any copula parameters φ
- •Posterior is:

$$f(\varphi|u,\Theta,x) = f(\varphi|u)$$

$$= \prod_{i} c(u_{i}|\varphi)\pi(\varphi)$$
prior structure

Bayesian Estimation: Advantages

- Provides likelihood-based inference (particularly important for this model)
- •Can compute dependence structure of *U*, and of *X*, from fitted copula model
- Allows for shrinkage priors, such as:
 - for correlation matrix (eg Pitt et al. 06; Daniels
 & Pourahmadi 09)
 - model averaging (Smith et al. 10/Czado & Min'11)
 - hierarchical models (eg. Almeida & Czado '10)
- Numerically robust

Illustration: Online Retail

- •*n*=10,000 randomly selected visits to amazon.com collected by ComScore
- •Bivariate example with:
 - $-X_1 \in \{1,2,3,\ldots\} = \#$ of unique page views
 - $-X_2 \in \{0, 1\}$ = sales incidence
- •92% of observations are non-zeros
- •Positive dependence between X_1 and X_2
- Three different bivariate copulas with positive dependence:
 - -Clayton, BB7, Gaussian

Illustration: Online Retail

	Bayes	MLE	PMLE
		Clayton Copula	
$\hat{\phi}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
	(0.698, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^L$	0.869	0.873	0.437
,,	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\tau}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
		BB7 Copula	
$\hat{m{\phi}}_1$	1.008	1.000	1.000
	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
72	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^L$	0.870	0.873	0.440
	(0.860, 0.878)	(0.004)	(0.009)
$\hat{\lambda}^U$	0.011	0.000	0.000
	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
	(0.1042, 0.1055)	(0.0013)	_
	<u>(</u>	Gaussian Copula	
$\hat{\phi}$	0.635	0.637	0.128
	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
	(0.337, 0.528)	(0.056)	(0.017)
$\hat{\tau}^F$	0.0983	0.0990	-
	(0.0806, 0.1128)	(0.0096)	_

	Bayes		MLE	PMLE
		<u>C</u>	layton Copula	
$\hat{\phi}$	4.960		5.099	0.838
Ψ	(4.616, 5.309)		(0.182)	(0.020)
î	0.713		0.718	0.293
-	(0.698, 0.726)		(0.007)	(0.005)
$\hat{\lambda}^L$	0.869		0.873	0.437
	(0.861, 0.878)		(0.004)	(0.009)
$\hat{\tau}^F$	0.1056		0.1055	_
	(0.1037, 0.1072)		(0.0010)	_
		В	B7 Copula	
$\hat{\phi}_1$	1.008		1.000	1.000
Ψ1	(1.000, 1.026)		(0.030)	(0.001)
$\hat{\phi}_2$	4.972		5.095	0.837
Ψ_2	(4.589, 5.308)		(0.183)	(0.020)
î	0.713		0.718	0.295
	(0.696, 0.726)		(0.007)	(0.005)
$\hat{\lambda}^L$	0.870		0.873	0.440
	(0.860, 0.878)		(0.004)	(0.009)
$\hat{\lambda}^U$	0.011		0.000	0.000
	(0.000, 0.034)		(0.041)	(0.001)
$\hat{\tau}^F$	0.1048		0.1055	_
-	(0.1042, 0.1055)		(0.0013)	_
		<u>G</u>	<u>aussian Copula</u>	
$\hat{\phi}$	0.635		0.637	0.128
Ψ	(0.506, 0.738)		(0.068)	(0.027)
î	0.440		0.440	0.081
_	(0.337, 0.528)		(0.056)	(0.017)
$\hat{\tau}^F$	0.0983		0.0990	_
_	(0.0806, 0.1128)		(0.0096)	_

Bayes same as MLE: reassuring

	Bayes	MLE		PMLE		
<u>Clayton Copula</u>						
$\hat{\boldsymbol{\phi}}$	4.960	5.099		0.838		
Ψ	(4.616, 5.309)	(0.182)		(0.020)		
î	0.713	0.718		0.293		
	(0.698, 0.726)	(0.007)		(0.005)		
$\hat{\lambda}^L$	0.869	0.873		0.437		
~	(0.861, 0.878)	(0.004)		(0.009)		
$\hat{\tau}^F$	0.1056	0.1055		_		
	(0.1037, 0.1072)	(0.0010)		_		
	<u>E</u>	B7 Copula				
$\hat{m{\phi}}_1$	1.008	1.000		1.000		
ΨΙ	(1.000, 1.026)	(0.030)		(0.001)		
$\hat{\phi}_2$	4.972	5.095		0.837		
Ψ2	(4.589, 5.308)	(0.183)		(0.020)		
î	0.713	0.718		0.295		
	(0.696, 0.726)	(0.007)		(0.005)		
$\hat{\lambda}^L$	0.870	0.873		0.440		
	(0.860, 0.878)	(0.004)		(0.009)		
$\hat{\lambda}^U$	0.011	0.000		0.000		
	(0.000, 0.034)	(0.041)		(0.001)		
$\hat{\tau}^F$	0.1048	0.1055		_		
	(0.1042, 0.1055)	(0.0013)		_		
G <mark>aussian Copula</mark>						
$\hat{\boldsymbol{\phi}}$	0.635	0.637		0.128		
Ψ	(0.506, 0.738)	(0.068)		(0.027)		
î	0.440	0.440		0.081		
-	(0.337, 0.528)	(0.056)		(0.017)		
$\hat{\tau}^F$	0.0983	0.0990		-		
-	(0.0806, 0.1128)	(0.0096)		_		

Psuedo MLE is total junk

	Bayes	MLE	PMLE
_			
$\hat{\phi}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
ľ	(0.698, 0.726)	(0.007)	(0.005)
$\tilde{\lambda}^L$	0.869	0.873	0.437
	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\bar{\tau}}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
		BB7 Copula	
$\hat{m{\phi}}_1$	1.008	1.000	1.000
71	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
42	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
_	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^L$	0.870	0.873	0.440
	(0.860, 0.878)	(0.004)	(0.009)
$\hat{\lambda}^U$	0.011	0.000	0.000
	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
	(0.1042, 0.1055)	(0.0013)	_
		Gaussian Copula	
$\hat{m{\phi}}$	0.635	0.637	0.128
7	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
_	(0.337, 0.528)	(0.056)	(0.017)
$\tilde{\tau}^F$	0.0983	0.0990	_
	(0.0806, 0.1128)	(0.0096)	_

Kendall's tau for $U \in [0,1]^m$ differs from Kendall's tau for X

	Bayes	MLE	PMLE
•	<u>Cla</u>	ayton Copula	
$\hat{\boldsymbol{\phi}}$	4.960	5.099	0.838
Ψ	(4.616, 5.309)	(0.182)	(0.020)
î	0.713	0.718	0.293
٠	(0.698, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^L$	0.869	0.873	0.437
1	(0.861, 0.878)	(0.004)	(0.009)
$\hat{\tau}^F$	0.1056	0.1055	_
	(0.1037, 0.1072)	(0.0010)	_
	BE	37 Copula	
$\hat{m{\phi}}_1$	1.008	1.000	1.000
71	(1.000, 1.026)	(0.030)	(0.001)
$\hat{\phi}_2$	4.972	5.095	0.837
72	(4.589, 5.308)	(0.183)	(0.020)
î	0.713	0.718	0.295
	(0.696, 0.726)	(0.007)	(0.005)
$\hat{\lambda}^L$	0.870	0.873	0.440
	(0.860, 0.878)	(0.004)	(0.009)
$\hat{\lambda}^U$	0.011	0.000	0.000
	(0.000, 0.034)	(0.041)	(0.001)
$\hat{\tau}^F$	0.1048	0.1055	_
	(0.1042, 0.1055)	(0.0013)	_
	<u>Ga</u>	ussian Copula	
$\hat{\boldsymbol{\phi}}$	0.635	0.637	0.128
	(0.506, 0.738)	(0.068)	(0.027)
î	0.440	0.440	0.081
	(0.337, 0.528)	(0.056)	(0.017)
$\hat{\tau}^F$	0.0983	0.0990	_
	(0.0806, 0.1128)	(0.0096)	_

Clayton and BB7 copulas identify strong lower tail dependence in the u-space.....

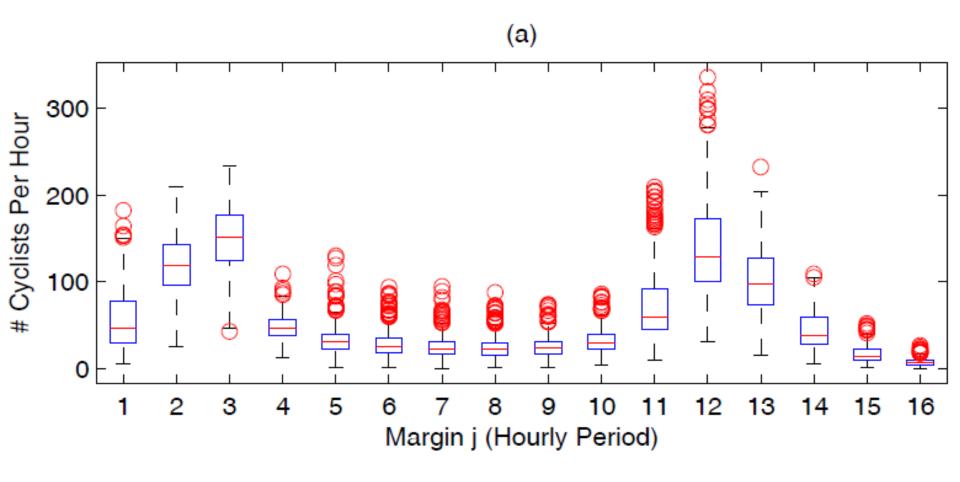
Illustration: (Parsimonious) D-vine for Bicycle Counts

• Longitudinal count data where:

 X_{ij} = # of bicycles on working day *i* during hour *j*

- Collected on an off-road bike path in Melbourne used for commuting
- Counts highly variable due to high variance in weather conditions
- •*m*=16, *n*=565
- •Use EDFs for the margins, and D-vine for C (with selection of independence pair-cops.)

Counts



D-vine

- •The vector $X=(X_1,...,X_{16})$ is longitudinal
- •A D-vine is a particularly good choice for the dependence structure when the process is likely to exhibit *Markov structure*
- •Note that from Smith et al. (10) in a D-vine:

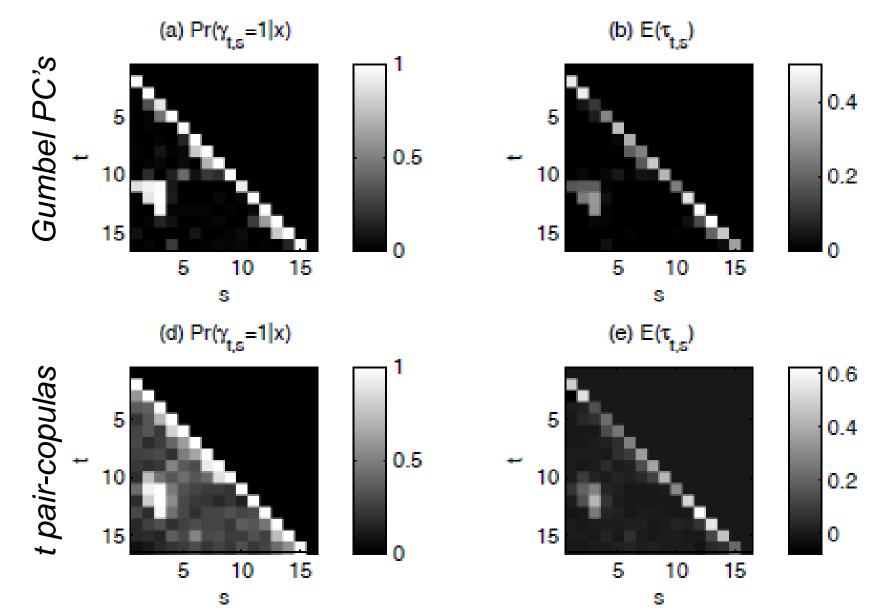
$$C_{j|1,...,j-1}(u_{j}|u_{1},...,u_{j-1})=h_{j,1}\circ h_{j,2}\circ ...\circ h_{j,j-1}(u_{j})$$

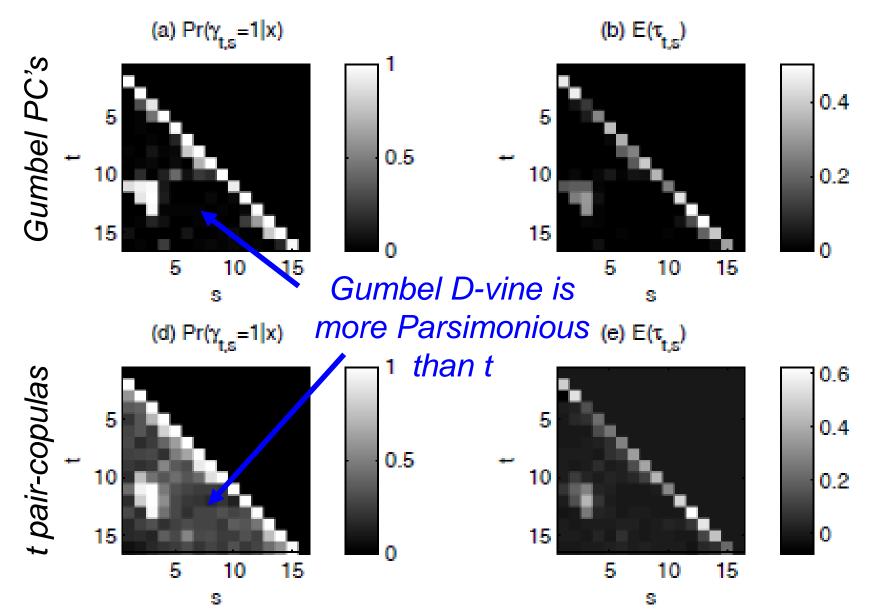
$$C_{j|1,...,j-1}^{-1}(z_{j}|u_{1},...,u_{j-1})=h_{j,j-1}^{-1}\circ h_{j,j-2}^{-1}\circ ...\circ h_{j,1}^{-1}(z_{j})$$

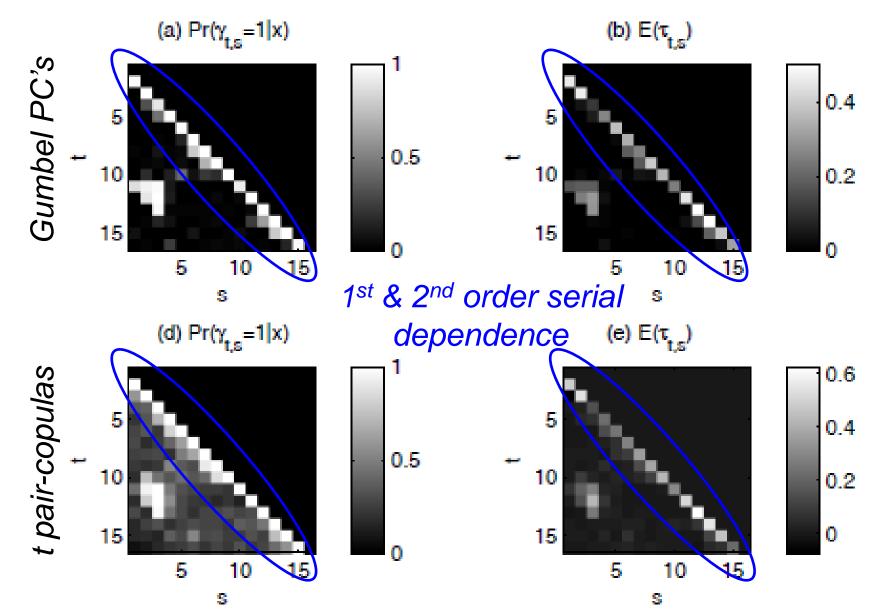
•The $h_{j,t}$ functions are the conditional CDFs of the pair-copulas (see Joe 96; Aas et al. 09 and others)

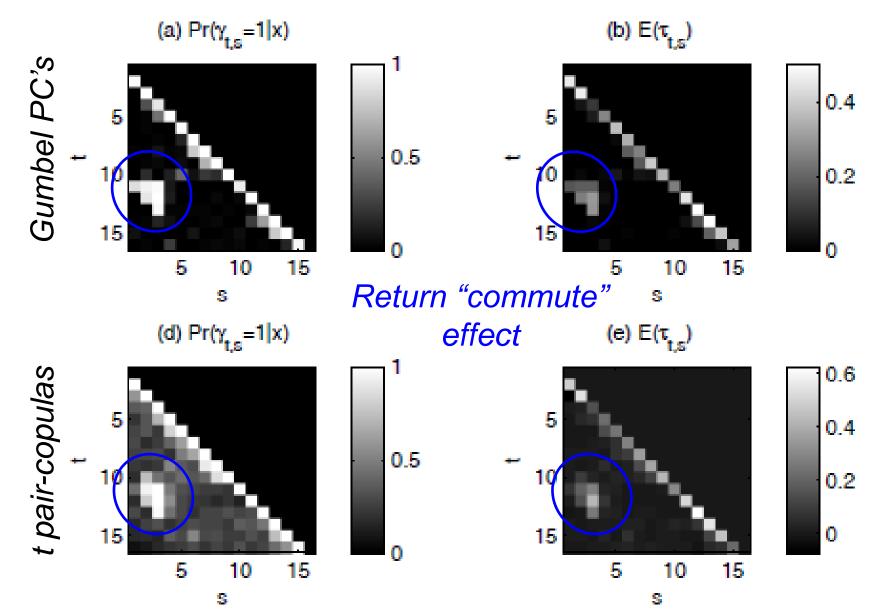
D-vine: Models

- •We use three D-vines with "pair-copula selection" and:
 - Gumbel pair-copulas
 - Clayton pair-copulas
 - t pair-copulas (two parameter copula)
- •Some objectives are to see:
 - Whether there is parsimony in the D-vines?
 - Whether choice of pair-copula type makes a difference?
 - Can you predict the evening peak (j=12) given the morning peak (j=3)?

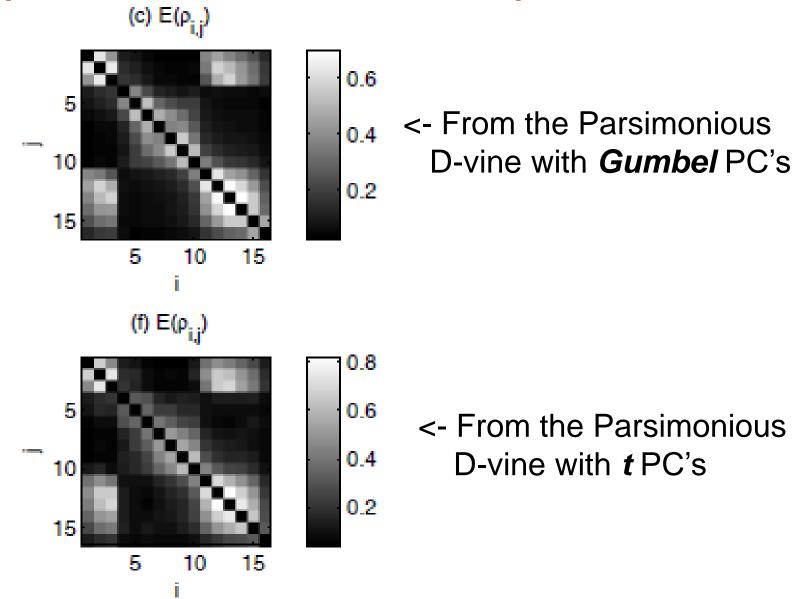








Spearman Pairwise Dependences



Bivariate Margins

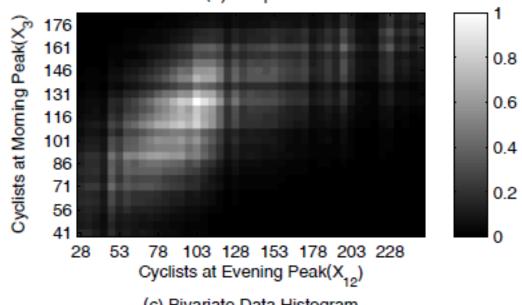
- •We compute the bivariate margins in:
 - $-X_3$: the morning peak hour on the bike path
 - $-X_{12}$: the evening peak hour on the bike path

$$F_{3,12}(x_3', x_{12}') = \int C_{3,12}(F_3(x_3'), F_{12}(x_{12}'); \phi) f(\phi \mid x) d\phi$$

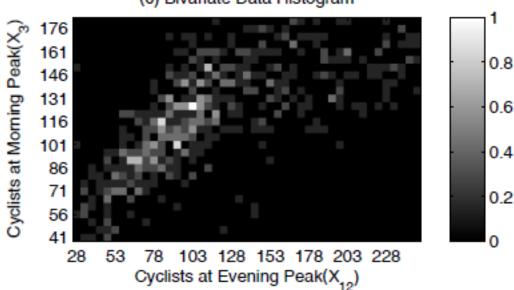
•The dependence parameter is integrated out with respect to its posterior distribution (ie "fitted" distribution)

Bivariate Margins

(b) t-copula



(c) Bivariate Data Histogram



Mixed Margins

- The approach can be extended to the case where some margins are discrete, others continuous
- Latent variables are only introduced for the discrete margins
- •Extending the earlier results to this case is **non-trivial** (see paper)
- •But once done, adjusted versions of Sampling Schemes 1 and 2 can be derived (see paper)

Some Features of Approach

- A general approach applicable to all popular parametric copula functions
- At least one of the two sampling schemes can be used for a given copula model
- •Speed depends upon how fast it is to compute $C_{j|1,...j-1}$ and/or $C_{j|k\neq j}$
- •It is likelihood-based; see discussion in Genest & Nešlehová (07) & Song et al. (09/10) for the importance of this

Some Features of Approach

- •For copulas constructed by <u>inversion</u> of distribution G, probably better to augment with latents $X^*\sim G$ (cf: Pitt et al. 06; Smith, Gan & Kohn 10; Danaher & Smith 11)
- •Not widely appreciated that the Gaussian copula is as restrictive for some discrete data, just as for continuous data (cf: Nikoloulopoulos & Karlis 08; 10)
- Similarly, with model averaging (eg. in a pair-copula model in Smith et al. 10)