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Framework for Univariate Responses

Model for pu; = E(y;i|x;)
i = h(n;) or g(ui) =
with link function g (response function h = g—1) and 7; determined by predictors

Structuring of the influential term
> Linear
n=Po+x1f1+ -+ xBp
» Additive
n=po+ f)(a) + -+ fip) (xp),

with unknown functions f;
> Varying coefficients

Selection Strategies

» Stepwise forward backward

> Lasso for metric predictors
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The case of categorical predictors

n=PR+xB1+ - +xBp+Fflz1)+....

For categorical predictor P € {1,..., k} one obtains a linear predictor by using dummy

variables.
Various coding schemes available:

0-1-Coding

otherwise

1 ifP=j
XP1) = o

Effect Coding

1 ifP=j
xpy =4 -1 ifP=k
0 otherwise

Each categorical predictor increases the number of parameters by k — 1

Lasso? Selection depends on coding!
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Example: Urban Districts

> Response: monthly rent per m

2
etc.

[m]

> Predictors: urban district, decade of construction, number of rooms, floor space,

=



For categorical predictors

Two cases should be distinguished:
» Unordered factors: Permutation invariance postulated.

» Ordinal predictors: Palindromic invariance postulated.

In both cases the following questions should be answered:
» Which categorical predictors should be included in the model?
Variable selection

> Which categories within one categorical predictor are to be distinguished?

Clustering
Reduction to relevant variables/categories necessary since otherwise

> estimates are instable, do not exist or are not unique

> interpretation is harder because too much noise is fitted
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(1) Ordinal Predictors

Given predictor x with ordered categories/levels O, ..., K, let the linear predictor be
n=oa+Boxo+ ...+ Brxk,

with dummy variables xp, ..., xk, i.e.

_J1 x =k
k=1 0 otherwise

Identifiability is obtained by specifying reference category k = 0, so that 5y = 0.

> Since levels are ordered response y is assumed to change slowly between two
adjacent levels of x.

> We try to avoid high jumps and prefer a smoother coefficient vector [3.
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Example: Choice of coffee brand

Logit Model with binary response: cheap discounter or branded product
Explanatory variables: Ordered variables age group, social class, monthly income

Linear model versus full model

8
°
0.
0.2

0.4

dummy coefficient
0.2
dummy coefficient
-15 -1.0
°
dummy coefficient
0.1

-0.1
L

-04 -02 0.0
!

age group social class monthly income
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Smooth Effects by Penalizing Differences
= Maximization of the penalized log-likelihood

b(8) = — 550 = XB)T (v = X6) — S(B),

with design matrix X, vector of response values y, and penalty

1 0 - 0

-1 1 - 0

J(B) =K (B — Br_1)?=BTUTUB=BTQB. U= : .
0 - -1 1

= For linear model one obtains the generalized ridge estimator with tuning parameter
A=voc2and Q=UTU R
B* = (XTX+20) "' Xy,

» For GLMs iterative estimation procedure

> Regularization ensures existence of estimates

Bias-Variance

(XTX +2Q)1XTXB = B — AXTX + Q) 7108,
V(B*) = AXTX+2Q)IXTX(XTX + Q)7L

m
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Illustration

> Balanced designs with n observations

and coefficient vectors (o = 0):

2.0

\
\
\

coefficient
1.0
0

0.0
N

class

coefficient

in each of K 4 1 = 11 classes, 0%/n = 0.2

05 1.0
\
J

5
/

class

> (squared) bias (---), variance (—-) and (scalar) MSE (—):

1.0 20 3.0

0.0

1.0 20 3.0

0.0
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Example: Chronic Widespread Pain

> Pain involving several regions of the body, which causes

> problems in functioning, psychological distress, poor sleep quality, difficulties in
activities of daily life,...

> No systematic framework that covers the spectrum of symptoms and limitations
of patients with CWP (cf. Cieza et al., 2004).

= ICF - International Classification of Functioning, Disability and Health (WHO,
2001) to define the typical spectrum of problems of patients with CWP.

The ICF consists of ~ 1400 ordinally scaled factors (variables), e.g.:

Variable "walking” (component ”activities and participation”):

0 1 e 4
no difficulty  mild difficulty ... complete difficulty

From the ICF categories experts selected the (Comprehensive) ICF Core Set (67
variables) for CWP (see Cieza et al., 2004).
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Some Coefficient Paths

ICF Core Sets — SF36 (Wellness score)

» Environmental factor "social norms, practices and ideologies” (left).

v

Factor "walking” (component "activities and participation”, right).
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Smooth Effects Including Variable Selection: Penalty Approach

For unordered response approaches available.
The Group Lasso (Yuan & Lin, 2006) works with a Lasso penalty at the factor level.

For p factors it has the form

p p
Jg(B) = 3" \Jd6\ /BT B, = 3 \Ja5118,112
j=1 J=1

where 3; refers to the parameter vector of the jth variable.
Thus the group of coefficients collected in 3; is shrunk by use of a lasso type penalty

Effects:
> Encourages sparsity at the factor level
> Designed for nominal factors, uses no ordering of categories

» R add-on package grplasso (Meier et al., 2008)
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Group Lasso for Ordered Categories

Transform the problem with difference penalties
(y = XB)T(y = XB) + AJ(B) = (y = XB) T (y — XB) + AJ(B),

I T ~T ~T S 1
with X = (1/X41]...Xp), B = (2, By ,...,B,)T, and X; = X;UT, B; = U;

New parameters have the form Ej, = Bj,r+1 — Bjr

o

Then the penalty becomes

—~ o~ p ~ ~
B =SB/ B, .

Jj=1

Equivalent to predictors given in split-coding

5 {1 ifA>
XA(i) =

0 otherwise
Software for group lasso can be used by appropriate definition of design matrix

= Enforces selection on the factor level including smoothness across categories
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Smooth Effects Including Variable Selection: Boosting Approach

Blockwise Boosting

Componentwise L,-Boosting (Biihlmann, 2006):
> Repeated least squares fitting of residuals.

> In each iteration only one predictors is selected, and the corresponding coefficient
updated.

Blockwise Boosting:

> Groups - or blocks - of coefficients are updated.
> Blocks are formed by groups of dummy coefficients.
> In each iteration: Regression with difference penalty.

» Coefficients which are never updated remain zero.

= Variable Selection.
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Likelihood-based Boosting

Let y; be from an exponential family distribution with mean p; = E(y;|x;) and the link between
the mean and the structuring term specified by

pi=h(mi) or g(ui)=mi

1 Initialization

For given data (yi,x;),i = 1,..., n, fit the intercept model 1()(x) = h(np) by maximizing
the likelihood, yielding n(® = A, 2 = h(#).

2 lteration For | = 0,1, ...
Fitting step

Fit the model ,
i = h(1" () + n(x1, 7))

to data (y;, xi),i = 1,...,n, where ﬁ(/)(x;) is treated as an offset and the predictor is
estimated by fitting the parametrically structured term n(x;, <), obtaining %

Update step
The improved fit is obtained by

A o0) = AOx) + A, 5), AT = h(R"D (x)

For normally distributed response and least squares fitting equivalent to Lp-boosting
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Blockwise Boosting of Coefficients

> Parametrically structured term includes only one factor

For predictor j
n(xi,v) = xb;
> Penalized fitting

Fit for all variables j =1, ..., p the one-variable model

pi = h(a" + x]b))

by one step Fisher scoring in the form 5}76 = Fp(ﬁ(r 1)) 1sp(6j(-r_1)), where Fp,
is the penalized Fisher matrix, sp is the penalized score function
For linear models one uses ﬁj = (XJTXJ- + )\Qj)_liju, where u” = (u1,...,up)

contains the residuals u; = y; — xl.Tﬁj B ), i=1,...,n

> Selection of block that is updated

Choose J, such that the deviance or AIC is minimized,
» Update

D=V, B =8IV )
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Application to ICF Core Sets

Comparisons Blockwise Boosting / Group Lasso: Some Coefficients
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Application to ICF Core Sets

Comparisons Blockwise Boosting / Group Lasso: Selection Results

Blockwise Boosting Group Lasso Comprehensive
ICF Core Set
18 Predictors 30 Predictors 67 Predictors

Selected Selected

Overlap:
18 Predictors

> The Group Lasso shows a slightly better fit (= 7 % lower RSS).
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(2) Clustering of Categories for Categorical Predictors

Which categories should be distinguished?
Clustering Ordered Categories

Quadratic penalty is replaced by L; difference penalty:

p K
JB) =D 18i— Bl

j=1 i=1

v

Clustering if some adjacent dummy coefficients are set equal.

v

Exclusion if all coefficients belonging to the same predictor are set to zero / equal.

» Equivalent to original Lasso based on split-coding
> Corresponds to blockwise Fused Lasso (Tibshirani et al., 2005).
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General Lasso Type Differences

Penalty
> Ordered Predictor
P o) ki
JB)=>_ w1 — Bjial
j=1 i=1

» Nominal Predictor
0
JB) =D w18 — Bl
= i>1
Bondell & Reich, 2009 for ANOVA; Gertheiss & Tutz, 2009 for selection
Weights given by
il

) = W, YL~ A1

= Include:
» Dependence on local sample sizes.

> |s adaptive by using consistent estimates (like Zou, 2006).
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[llustration ordered case

Non-Adaptive Adaptive
< o < 4
o o o 4
€ T
g o 5 o
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8 8
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/Smax 8/Smax
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Larg

(p=1)

e Sample Properties

v

0 = (010, 20, - - -, Gk,k,l)T: vector of pairwise differences 6; = 3; — 3.

C={(i,1): B #By,i>I}: set of indices i > | corresponding to differences of
(true) dummy coefficients 8} which are truly non-zero.

v

v

Cp: estimate of C with sample size n.

\4

05/ Oc: true / estimated vector of pairwise differences included in C.

Proposition
Suppose A = A\, with A\p/y/n — 0 and X\, — oo, and all class-wise sample sizes n;

satisfy nj/n — c;, where 0 < ¢; < 1. Then weights w; = d),-/(n)|5’fl'$) - BA/(L5)|_1, with
oi(n) = qir (0 < gy < 00) Vi, 1, ensure that

(2) V(be —0z) —a N(O, %),

(b) limpsoo P(Ch =C) =1.
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Computational Issues

Solution by Quadratic programming
or
Approximate Solution using LARS (much faster)

Vector of pairwise differences is 6 = (610, 620, - - - ,Ok,k_l)T with 0; = B; — 3
Therefore parameters must fulfill restrictions. Since 6;9 = 3;, one has 6; = 6;9 — 0)g.

Use adaptive Net Penalty
With Z so that Z6 = X3, minimize
Oy =(y—20)"(y = 20) +~ > (8io— 0o — 05)° + 2> _ 105]-
i>j>0 i>j
A simple choice of Z is Z = (X]0), since 00 = B;, i =1,..., k.

The exact solution of the is obtained as the limit

0= lim 0, .
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[llustration ordered case

Exact Solution

g
5

U
00 02 04 06 08 10

dummy coefficient

Approximate Solution

U
00 02 04 06 08 10
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Coefficient Paths for Munich Rent Data

Unordered and Ordered Categories

dummy coefficient

0.0

-0.5

-1.0

-15

Urban District
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24
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S/ Smax
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dummy coefficient

15

1.0

0.5

0.0

-0.5

-1.0

Year of Construction

2000s
1990s

1980s

1970s

1960s

1950s

1930s
1940s

1920s

25 /62



Rent Data

Some Clustering Results (Adaptive Version with Refitting)

> All in all the estimated model has 32 df (i.e. unique non-zero coefficients).
> The full model has 58 df.

Dac
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Rent Data

Some results (adaptive version with refitting)

predictor label coefficient
urban district 14, 16, 22, 24 -1.931
11, 23 -1.719
7 -1.622
8, 10, 15, 17, 19, 20, 21, 25 -1.361
6 -1.061
9 -0.960
13 -0.886
2,4,5, 12,18 -0.671
3 -0.403
number of rooms 4,56 -0.502
3 -0.180
2 0.000
quality of residential area  good 0.373
excellent 1.444
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Rent Data

Some results (adaptive version with refitting)

predictor label coefficient

year of construction 1920s -1.244
1930s, 1940s -0.953
1950s -0.322
1960s 0.073
1970s 0.325
1980s 1.121
1990s, 2000s 1.624

floor space (m?) [140, c0) -4.710
[90, 100), [100, 110), [110, 120),
[120, 130), [130, 140) -3.688
[60, 70), [70, 80), [80, 90) -3.443
[50, 60) -3.177
[40, 50) -2.838
[30, 40) -1.733
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Rent Data

Prediction accuracies and model complexities (standard/adaptive with refitting)

diff. MSEP

Model Complexities

Standard - OLS Adaptive - OLS
9 ] . 2 ] g
b 3 b

0.10
I
0.10
I

0.08
I

0.05
I

0.00

|

dift MSEP
0.00

|

density
0.06

|

0.05
I

-0.05
-0.05

-0.10
-0.10
0.02
|

-0.15
-0.15

-0.20
-0.20

> Based on random splitting of the data into
(1953/100 observations).

> 100 independent repetitions.

10 20 30 40 50

degrees of freedom

independent training and test sets
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Generalizations to Non-Normal Outcomes

Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

> Instances are to be classified as benign (y = 0) or malignant (y = 1)
> Available covariates are cytological characteristics as

> marginal adhesion,

> bare nuclei,

> mitoses,

>

> Predictors are graded on a 1 to 10 scale at the time of sample collection, with 1
being the closest to normal tissue and 10 the most anaplastic.

v

We fit a logistic regression model using penalized likelihood estimation.

> Minimize the penalized negative log-likelihood

—Ip(8) = =1(B) + AJ(B).
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Generalizations to Non-Normal Outcomes

Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

Some estimated coefficient functions (cf. Stelz, 2010):

» standard/adaptive Lj-regularization (using R package glmpath (Park & Hastie,
2007)),

» quadratic difference penalty for smooth modeling (using R package ordPens
(Gertheiss, 2010)).

marginal adhesion bare nuclei mitoses
o
i ] [ + -+ x
N |-a— standard i} X g 4 n—a —A— standard ;e
-+ adaptive ' X o |-* adaptive o !
‘u;:; ﬁ 4%+ quadratic g 1 : E « % quadratic x
k= 8 o | = x
k5 o 5N ° o | x
Q 4 Q [o
; — ; B ; < A—A—a—a—aA
£ Es £ '
0 -7 W
3 o . * 3 —A— standard 3o *
’(.»" 7 -+ - adaptive "
O | aa—a—a—. = > quadratic =3 [PV U,
o T T T T T © T T T T T T T T T T o T T T T T T T T T T
1 2 3 45 1 2 3 45 6 7 8 9 10 1 2 3 4 5 6 7 8 910
grade grade
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Numerical Experiments

Simulation Design

» Setting with 8 predictors (intercept o = 1):

type no. of levels  true dummy coefficients

nominal 4 0,2,2)
nominal 8 (0,1,1,1,1,-2,-2)
nominal 4 (0,0,0)
nominal 8 (0,0,0,0,0,0,0)
ordinal 4 (0,-2,-2)
ordinal 8 (0,1,1,2,2,4,4)
ordinal 4 (0,0,0)
ordinal 8 (0,0,0,0,0,0,0)

» Standard normal error.

> Training set size n = 500.

» 100 simulation runs.

> Independent test set (n = 1000).

» Compare ordinary least squares (ols), standard, adaptive version, with/without
refitting.
Refitting means the selected coefficients are fitted in the last step - selection of
tuning parameters refers to the whole procedure.

32/62



Numerical Experiments

Performance Measures

Errors of Parameter Estimates and Prediction:
> MSE of parameter estimates.

> Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Clustering Performance:
> False Positive Rates / FPR:

> Variable Selection: Any dummy coefficient of a pure noise factor is set to non-zero.

» Clustering / Identifying Differences: A difference within a non-noise factor which is
truly zero is set to non-zero.
> False Negative Rates / FNR:

> Variable Selection: All dummy coefficients of a truly relevant factor are set to zero.
> Clustering / ldentifying Differences: A truly non-zero difference is set to zero.
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Numerical Experiments

Errors of Parameter Estimates and Prediction

MSE Prediction Accuracy

H .
3 T —
. SRR ==
Tt = -7
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Numerical Experiments

Variable Selection and Clustering Performance

adapt

Variable Selection (FPRIFNR)

srd

= 0

adaptf

stdrd

ols.

Identifying Differences (FPR/FNR)

| N .

adapt strd adaptt surd ols
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(3) Varying-Coefficient Models

Varying-coefficient models (Hastie & Tibshirani, 1993) offer a quite flexible framework
for regression modeling.

In a linear model, with one effect modifier u:

y =Bo(u) +x1Br(u) + ... +xBp(u) + ¢,
with E(e) = 0 and Var(e) = o2

— Functions §j(u) are allowed to vary with the effect modifier u.

Usually metric/continuous effect modifiers u are investigated, and 3;(u) are modeled
as smooth functions.
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Varying-Coefficient Models

Model selection

Two questions should be answered:
(1) Variable selection, i.e. selecting relevant predictors x;.
— Determine if §;(u) = 0.

(2) Identify varying coefficients 3;(-).
— Determine if 8;(u) is a constant or not.

Given continuous u, penalty approaches have been used to answer (one of) these

questions:
(1) Wang et al. (2008), Wang & Xia (2009);

(2) Leng (2009).

In this talk:
» Categorical effect modifier u.
> Penalty approach that accounts for both (1) and (2).
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Categorical Effect Modifiers

> For categorical u € {1,..., k} the varying functions have the form

k
Bi(u) =" Birl(u=r).
r=1

> The model with p predictors contains (p + 1)k parameters:

k k k
y= Zﬂo,l(u =r)+ leﬂl,l(u =r-+... +pr,8prl(u =r)+e

r=1 r=1 r=1

> On level r of u:
y:BOr+X1ﬂ1r+---+Xpﬂpr+€
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An lllustrative Example
Whiteside's insulation data (Hand et al., 1994; Venables & Ripley, 2002)

u € {1,2} = {Before, After}:

E(Y|X7 u= r) = Bor + xPu1r +X252r

Before Insulation After Insulation
~ - ~ -
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Average external temperature (deg. C) Average external temperature (deg. C)
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Penalized Estimation

Minimization of the penalized least-squares criterion

B = argming Qp(8),
with

n

2
> (y; = Bo(u;) — injﬁj(ui)> + AJ(B)
=

Qo (8)

i=1
= (y—2B)"(y—2ZB)+ (),

y=01,-..,ya)" and B=(8],....8])7,
with 3, = (BOr:,BIrv .. ~76pr)T-

The ith row of design matrix Z is ((1,x7)/(u; = 1),..., (1, x7)I(u; = k)).

But: classical penalties are not designed for categorical effect modifiers.

40/62



Categorical Effect Modifiers

Penalized estimation

> Nominal u:

p Pk
J(B) = ZZ 1Bjr — Bis| +ZZ |Bjel, or

j=0 r>s j=1r=1

P Pk
JB) =Y D 1B — Bl + (1 =) D> 1Byl

Jj=0r>s j=1r=1

» Ordinal u:

Pk Pk
JB)Y=D D" 1Bjr = Bir—al + D D> |Bjel, or

j=0 r=2 j=1 r=1

P k P k
JBY) =D > 1B — Bir—al + (1 =) D> 1B

Jj=0 r=2 Jj=1r=1
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Large Sample Properties

as before

Suppose 0 < A\ < oo has been fixed, and all class-wise sample sizes n, satisfy
ne/n— cr, where 0 < ¢ < 1.

> The non-adaptive estimator B is consistent in terms of
limn—oo P(||B — B*|> > €) = 0 for all € > 0, if 3* denotes the vector of true
coefficient functions 3;(u), resp. true §;,.

> No consistency in terms of variable selection and the identification of relevant
differences j3;, — Bjs.

Choose A = A, with A\p/4/n — 0 and X\, — oo.

> Adaptive version for selection and fusion consistency.
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Large Sample Properties

The adaptive version

Given nominal u, we employ the adaptive penalty

p Pk
J(ﬁ) = ZZ Wrs(j)lﬁjr - 5js| + ZZ Wr(j)‘ﬁjrla

j=0r>s Jj=1r=1

with adaptive weights (similarly to Zou, 2006)
A(LS A(LS)|— A(LS) | —
Wis(j) = ¢rsg)(")|5}, ) - ﬁ}s )71 and W) = %m(”)\ﬁ}, Uit
with B}rLS) denoting the ordinary least squares estimator of f3;,.

> brs(j)(N) = qrs(jy and ¢,y (n) — qy(j) respectively, with 0 < gyg(j), qr(j) < 0.
> drs(jy(n) and ¢,(;y(n) will usually be fixed, for example as ¥ and (1 — ).
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Large Sample Properties

The adaptive version

> ﬁfo,r = (ﬁln e ’5pr)T,
5 = (B2 — Bt Bja — Biy - > Bik — Bjk—1) . =0,...,p.
61-0 = (61-0’1’ .- ‘7BIO,k)’ 6T = (63—7 .- .’5‘;1')’ and 07 = (6I076T)-

> C the set of indices corresponding to entries of 6 which are truly non-zero, C, the
estimate with sample size n.

\4

v

v

0 the true vector of f-entries included in C, and éc the corresponding estimate.

Suppose A = A, with A,/+/n — 0 and A, — oo, and all class-wise sample sizes n,
satisfy n,/n — ¢, where 0 < ¢, < 1. Then the adaptive penalty ensures

(a) Asymptotic normality: +/n(fc — 05) —a N(O,X).

(b) Selection/fusion consistency: limp— o P(C, =C) = 1.
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Income Data

Data and modeling

Model:

Response: Monthly income in Euro

Predictors:  Age in years between 21 and 60
Job tenure in months
Body height in cm
Gender male/female
Married no/yes
Abitur (= A-levels)  no/yes
Blue-collar worker no/yes

log(Income) = Jo(Gender) + S1(Gender)Age + [3»(Gender)Age?

+ 4+ +

B3(Gender)Tenure + B4(Gender)Height
Bs(Gender)Married + B6(Gender)Abitur
B7(Gender)Blue-collar + .
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Income Data

Coefficient paths | (adaptive estimator with fixed 1) = 0.5)

Intercept Age
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Income Data

Coefficient paths Il (adaptive estimator with fixed i) = 0.5)

Age Job tenure
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Income Data

Coefficient paths Il (adaptive estimator with fixed ¢ = 0.5)

Body height Married
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Income Data

Coefficient paths IV (adaptive estimator with fixed ) = 0.5)

Abitur Blue—collar worker
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(4) Multinomial Response Models

For data (Y;,x;),i =1,...,n, with Y; € {1,..., p} denoting the response variable and

x; the predictor, the multinomial logit model specifies

eXp(B,o + X,Tﬂr) _ eXP(ﬂfr)

P(Y; =rlxj) = =
( rlxi) Sk exp(Bso +xTBs) Sk exp(nis)

with predictor
Nir = BrO + X/‘Tﬁﬁ

where B = (Br1,- -+, Brp).

More generally in the linear predictor category-specific variables wjq, . .
included yielding the predictor

Nir = Bro + %] B, + (wir —wix) e, r=1,...,k—-1

)

., W/, can be
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Penalized log-likelihood approach maximizes

Ip(B) = 1(B) — AJ(B).

Straightforward use of the lasso uses

k—1 p
Z 18111 =D 1841,
r=1 j=1
(Friedman et al, 2010).
Drawback:
> Single effects are selected, no variable selection because one variable has k-1
effects
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A Grouping Penalty for the Multinomial Logit Model

With the focus on variable selection one collects all the parameters linked to variable j
in ﬁ; = (Byj,---,Bk—1,j)- We propose the penalty

J

P
J(B) =7 stk = 1)lIB;ll2 + (1 = v)s(1)]|ex]|
Jj=1
P L
=7 stk=1)(B5 + -+ B )2+ (1 =)D s(D)layl,
= j=1

1

where ~ is an additional tuning parameter that balances the penalty on the global and

the category-specific variables, and s(m) = m'/2 accounts for the number of penalized
parameters within one term.

Minimization by appropriate block coordinate ascent algorithm.
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Example Spatial Election Theory

Response is party

» Christian Democratic Union (CDU: 1)
> Social Democratic Party (SPD: 2)
Green Party (3)

Liberal Party (FDP: 4)

Left Party (Die Linke: 5)

\4

v

v

Global Predictors

> age, political interest (1: less interested 0: very interested),

> religion (1: evangelical, 2: catholic, 3: otherwise),

> regional provenance (west; 1: former West Germany, 0: otherwise),
> gender (1: male, 0: female),

> union (1: member of a union 0: otherwise),

> satisfaction with the functioning of democracy (democracy; 1: not satisfied 0:
satisfied),

» unemployment (1: currently unemployed, 0: otherwise),

> high school degree (1: yes, 0: no)
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Category-specific predictors are distances between position of the voter and the
perceived position of the party on

> attitude toward immigration of foreigners
> attitude toward the use of nuclear energy

> positioning on a left-right scale
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selected global variables of party choice data.
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Figure: Coefficient buildups for category-specific variables of party choice data (L denotes left right

scale, R denotes the rest).
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Summary

» Common shrinking methods are typically designed for metric predictors.
> In case of categorical covariates penalties must be modified.

> Quadratic regularization for smooth modeling of ordinal predictors.

> L;i-penalization of pairwise differences of dummy coefficients allows for:

> Variable Selection.
> Clustering of categories <> ldentification of relevant differences/jumps.

> Sparser representations of varying-coefficient models with categorical effect
modifiers via penalizing absolute differences and Li-norms of coefficients.

» Simulation studies and real-world data evaluation showed:

> Model complexity can be reduced, which facilitates interpretation.
> Estimation accuracy can be increased.

> Appropriate Penalization allows Variable Selection in Multinomial Response
Models.
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Numerical Experiments / Finite Sample Performances

Simulation design

> True model on level u = 1:

y=-—1—2x3 + 2x3 + 0x3 + Oxg4 + Oxs5 + Oxg + Ox7 + Oxg + €,
> on level u = 2:

y =41 —4x; + 2x2 + 2x3 + 0x4 + Ox5 + Oxg + Ox7 + Oxg + ¢,
> on level u=3:

y =41+ 2x1 + 2x2 + 2x3 — 4x4 + Ox5 + Oxp + Ox7 + Oxg + ¢,
> on level u = 4:

y=-14+1x +2x + 3x3 — 4xa — 2x5 + Oxp + Ox7 + Oxg + €.

> Data: balanced design with respect to u, training set size n = 400, independent
test set (n = 1200), x; ~ U[0,1] (iid), e ~ N(0,2) (iid), 100 simulation runs.
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Numerical Experiments / Finite Sample Performances

Performance measures

Errors of Parameter Estimates and Prediction:
> Empirical MSE of parameter estimates.

» Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Fusion Performance:

> Sensitivity:
> Variable Selection: Proportion of relevant variables which are selected.
> Fusion / Identifying Differences: Proportion of relevant differences between coefficients

which are set to non-zero.

> Specificity:
> Variable Selection: Proportion of noise variables which are not selected.
> Fusion / Identifying Differences: Proportion of zero differences which are set to zero.
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Numerical Experiments / Finite Sample Performances

Errors of parameter estimates and prediction

We compare:

> ordinary least squares (ols) estimation,

> Lj-regularization standard/adaptive version with fixed ¢ = 0.5 or flexible 1,

» forward selection based on AIC/BIC.

method MSE MSEP

ols 11.380 (.380) 2.219 (.011)

stdrd, fixed 1) 7.500 (.240) 2.163 (.010)
stdrd, flex. 1) 8.183 (.455)  2.173 (.010)
adapt, fixed b 6.920 (.334)  2.149 (.010)
adapt, flex. ¢ 7.091 (.334) 2.151 (.010)
forward select, AIC 9.755 (.414)  2.191 (.011)

forward select, BIC

10.856 (.698)

2.215 (.016)
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Numerical Experiments / Finite Sample Performances

Variable selection and fusion performance

Variable Selection: Sensitivity/Specificity Identifying Differences: Sensitivity/Specificity

1.0

1.0

proportion
proportion
0.6

0.4
0.4

ols
ols

stdrd, fixed psi
stdrd, flexible psi
adapt, fixed psi
adapt, flexible psi
forward select, AIC
forward select, BIC
stdrd, fixed psi
stdrd, flexible psi
adapt, fixed psi
adapt, flexible psi
forward select, AIC
forward select, BIC
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