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Framework for Univariate Responses

Model for µi = E(yi |xi )
µi = h(ηi ) or g(µi ) = ηi

with link function g (response function h = g−1) and ηi determined by predictors

Structuring of the influential term
I Linear

η = β0 + x1β1 + · · ·+ xpβp

I Additive
η = β0 + f(1)(x1) + · · ·+ f(p)(xp),

with unknown functions f(j)
I Varying coefficients

η = . . . xj f (uj ) + . . .

Selection Strategies

I Stepwise forward backward
I Lasso for metric predictors
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The case of categorical predictors

η = β0 + x1β1 + · · ·+ xpβp + f (z1) + . . . .

For categorical predictor P ∈ {1, . . . , k} one obtains a linear predictor by using dummy
variables.

Various coding schemes available:

0-1-Coding

xP(j) =

{
1 if P = j j = 1, . . . , k − 1

0 otherwise

Effect Coding

xP(j) =


1 if P = j

−1 if P = k j = 1, . . . , k − 1

0 otherwise

Each categorical predictor increases the number of parameters by k − 1

Lasso? Selection depends on coding!
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Example: Urban Districts

I Response: monthly rent per m2.

I Predictors: urban district, decade of construction, number of rooms, floor space,
etc.
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For categorical predictors

Two cases should be distinguished:

I Unordered factors: Permutation invariance postulated.

I Ordinal predictors: Palindromic invariance postulated.

In both cases the following questions should be answered:

I Which categorical predictors should be included in the model?

Variable selection

I Which categories within one categorical predictor are to be distinguished?

Clustering

Reduction to relevant variables/categories necessary since otherwise

I estimates are instable, do not exist or are not unique

I interpretation is harder because too much noise is fitted
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(1) Ordinal Predictors

Given predictor x with ordered categories/levels 0, . . . ,K , let the linear predictor be

η = α+ β0x0 + . . .+ βK xK ,

with dummy variables x0, . . . , xK , i.e.

xk =

{
1 x = k
0 otherwise

Identifiability is obtained by specifying reference category k = 0, so that β0 = 0.

I Since levels are ordered response y is assumed to change slowly between two
adjacent levels of x .

I We try to avoid high jumps and prefer a smoother coefficient vector β.
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Example: Choice of coffee brand

Logit Model with binary response: cheap discounter or branded product

Explanatory variables: Ordered variables age group, social class, monthly income

Linear model versus full model
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Smooth Effects by Penalizing Differences

⇒ Maximization of the penalized log-likelihood

lp(β) = −
1

2σ2
(y − Xβ)T (y − Xβ)−

ψ

2
J(β),

with design matrix X , vector of response values y , and penalty

J(β) =
∑K

k=1(βk − βk−1)2 = βT UT Uβ = βT Ωβ. U =


1 0 · · · 0
−1 1 · · · 0

0
. . .

. . . 0
0 · · · −1 1

 .

⇒ For linear model one obtains the generalized ridge estimator with tuning parameter
λ = ψσ2 and Ω = UT U

β̂∗ = (X T X + λΩ)−1X T y ,

I For GLMs iterative estimation procedure

I Regularization ensures existence of estimates

Bias-Variance

E(β̂∗) = (X T X + λΩ)−1X T Xβ = β − λ(X T X + λΩ)−1Ωβ,

V (β̂∗) = σ2(X T X + λΩ)−1X T X (X T X + λΩ)−1.
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Illustration

I Balanced designs with n observations in each of K + 1 = 11 classes, σ2/n = 0.2
and coefficient vectors (α = 0):
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Example: Chronic Widespread Pain

I Pain involving several regions of the body, which causes
I problems in functioning, psychological distress, poor sleep quality, difficulties in

activities of daily life,...

I No systematic framework that covers the spectrum of symptoms and limitations
of patients with CWP (cf. Cieza et al., 2004).

⇒ ICF - International Classification of Functioning, Disability and Health (WHO,
2001) to define the typical spectrum of problems of patients with CWP.

The ICF consists of ≈ 1400 ordinally scaled factors (variables), e.g.:

Variable ”walking” (component ”activities and participation”):

0 1 . . . 4
no difficulty mild difficulty . . . complete difficulty

From the ICF categories experts selected the (Comprehensive) ICF Core Set (67
variables) for CWP (see Cieza et al., 2004).
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Some Coefficient Paths

ICF Core Sets → SF36 (Wellness score)

I Environmental factor ”social norms, practices and ideologies” (left).

I Factor ”walking” (component ”activities and participation”, right).
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Smooth Effects Including Variable Selection: Penalty Approach

For unordered response approaches available.
The Group Lasso (Yuan & Lin, 2006) works with a Lasso penalty at the factor level.

For p factors it has the form

Jgl (β) =

p∑
j=1

√
dfj

√
βT

j βj =

p∑
j=1

√
dfj ||βj ||2

where βj refers to the parameter vector of the jth variable.
Thus the group of coefficients collected in βj is shrunk by use of a lasso type penalty

Effects:

I Encourages sparsity at the factor level

I Designed for nominal factors, uses no ordering of categories

I R add-on package grplasso (Meier et al., 2008)
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Group Lasso for Ordered Categories

Transform the problem with difference penalties

(y − Xβ)T (y − Xβ) + λJ(β) = (y − X̃β̃)T (y − X̃β̃) + λJ̃(β̃),

with X̃ = (1|X̃1| . . . |X̃p), β̃ = (α, β̃
T
1 , . . . , β̃

T
p )T , and X̃j = Xj U

−1
j , β̃j = Ujβj ,

New parameters have the form β̃jr = βj,r+1 − βjr

Then the penalty becomes

J̃gl (β̃) =

p∑
j=1

√
β̃

T
j Ij β̃j , .

Equivalent to predictors given in split-coding

x̃A(i) =

{
1 if A > i

0 otherwise

Software for group lasso can be used by appropriate definition of design matrix

⇒ Enforces selection on the factor level including smoothness across categories
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Smooth Effects Including Variable Selection: Boosting Approach

Blockwise Boosting

Componentwise L2-Boosting (Bühlmann, 2006):

I Repeated least squares fitting of residuals.

I In each iteration only one predictors is selected, and the corresponding coefficient
updated.

Blockwise Boosting:

I Groups - or blocks - of coefficients are updated.

I Blocks are formed by groups of dummy coefficients.

I In each iteration: Regression with difference penalty.

I Coefficients which are never updated remain zero.

⇒ Variable Selection.
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Likelihood-based Boosting

Let yi be from an exponential family distribution with mean µi = E(yi |xi ) and the link between
the mean and the structuring term specified by

µi = h(ηi ) or g(µi ) = ηi

1 Initialization

For given data (yi , xi ), i = 1, . . . , n, fit the intercept model µ(0)(x) = h(η0) by maximizing

the likelihood, yielding η(0) = η̂0, µ̂
(0) = h(η̂0).

2 Iteration For l = 0, 1, . . .

Fitting step

Fit the model
µi = h(η̂(l)(xi ) + η(xi ,γ))

to data (yi , xi ), i = 1, . . . , n, where η̂(l)(xi ) is treated as an offset and the predictor is
estimated by fitting the parametrically structured term η(xi ,γ), obtaining γ̂

Update step

The improved fit is obtained by

η̂
(l+1)(xi ) = η̂

(l)(xi ) + η̂(xi , γ̂), µ̂
(l+1)
i = h(η̂(l+1)(xi ))

For normally distributed response and least squares fitting equivalent to L2-boosting
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Blockwise Boosting of Coefficients

I Parametrically structured term includes only one factor

For predictor j
η(xi ,γ) = xT

j bj

I Penalized fitting

Fit for all variables j = 1, . . . , p the one-variable model

µi = h(η̂
(l)
i + xT

j bj )

by one step Fisher scoring in the form b̂
new
j = Fp(β̂

(r−1)
j )−1sp(β̂

(r−1)
j ), where Fp

is the penalized Fisher matrix, sp is the penalized score function

For linear models one uses b̂j = (XT
j Xj + λΩj )

−1XT
j u, where uT = (u1, . . . , un)

contains the residuals ui = yi − xT
i β̂

(r−1)
j , i = 1, . . . , n

I Selection of block that is updated

Choose ĵr such that the deviance or AIC is minimized,

I Update

β
(r)
jr

= β
(r−1)
jr

+ bj , β
(r)
j = β

(r−1)
j , j 6= jr
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Application to ICF Core Sets
Comparisons Blockwise Boosting / Group Lasso: Some Coefficients

●

●

●

●

●

0 1 2 3 4

−
1.

5
−

0.
5

0.
0

class

co
ef

●

●

●

●

●

sensation of pain

●

●

●

● ●

0 1 2 3 4

−
5

−
3

−
1

0

class

co
ef

●

●

●

● ●

walking

● ●

●

●

●

●

●

●

●

−4 −2 0 2 4

−
1.

0
0.

0
1.

0

class

co
ef

● ●
●

●

●

●

●

●

●

drugs

● ●
●

●
●

●

● ● ●

−4 −2 0 2 4

0.
0

0.
5

1.
0

class

co
ef

● ●
● ● ●

●

●
●

●

individual attitudes of health professionals

17/62



lmul ogos/logomitsiegel

Application to ICF Core Sets
Comparisons Blockwise Boosting / Group Lasso: Selection Results

Blockwise Boosting

18 Predictors
Selected

Group Lasso

30 Predictors
Selected

Overlap:
18 Predictors

Comprehensive
ICF Core Set

67 Predictors

I The Group Lasso shows a slightly better fit (≈ 7 % lower RSS).
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(2) Clustering of Categories for Categorical Predictors

Which categories should be distinguished?

Clustering Ordered Categories

Quadratic penalty is replaced by L1 difference penalty:

J(β) =

p∑
j=1

kj∑
i=1

|βji − βj,i−1|

I Clustering if some adjacent dummy coefficients are set equal.

I Exclusion if all coefficients belonging to the same predictor are set to zero / equal.

I Equivalent to original Lasso based on split-coding

I Corresponds to blockwise Fused Lasso (Tibshirani et al., 2005).
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General Lasso Type Differences

Penalty

I Ordered Predictor

J(β) =

p∑
j=1

w
(j)
il

kj∑
i=1

|βji − βj,i−1|

I Nominal Predictor

J(β) =

p∑
j=1

w
(j)
il

∑
i>l

|βji − βjl |

Bondell & Reich, 2009 for ANOVA; Gertheiss & Tutz, 2009 for selection

Weights given by

w
(j)
il = w(n

(j)
i , n

(j)
l )|β(LS)

ji − β(LS)
jl |−1,

⇒ Include:

I Dependence on local sample sizes.

I Is adaptive by using consistent estimates (like Zou, 2006).
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Illustration ordered case
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Large Sample Properties
(p = 1)

I θ = (θ10, θ20, . . . , θk,k−1)T : vector of pairwise differences θil = βi − βl .

I C = {(i , l) : β∗i 6= β∗l , i > l}: set of indices i > l corresponding to differences of
(true) dummy coefficients β∗i which are truly non-zero.

I Cn: estimate of C with sample size n.

I θ∗C / θ̂C : true / estimated vector of pairwise differences included in C.

Proposition
Suppose λ = λn with λn/

√
n→ 0 and λn →∞, and all class-wise sample sizes ni

satisfy ni/n→ ci , where 0 < ci < 1. Then weights wil = φil (n)|β̂(LS)
i − β̂(LS)

l |−1, with
φil (n)→ qil (0 < qil <∞) ∀i , l , ensure that

(a)
√

n(θ̂C − θ∗C)→d N(0,Σ),

(b) limn→∞ P(Cn = C) = 1.
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Computational Issues

Solution by Quadratic programming
or
Approximate Solution using LARS (much faster)

Vector of pairwise differences is θ = (θ10, θ20, . . . , θk,k−1)T with θil = βi − βl

Therefore parameters must fulfill restrictions. Since θi0 = βi , one has θil = θi0 − θl0.

Use adaptive Net Penalty

With Z so that Zθ = Xβ, minimize

θ̂γ,λ = (y − Zθ)T (y − Zθ) + γ
∑

i>j>0

(θi0 − θj0 − θij )
2 + λ

∑
i>j

|θij |.

A simple choice of Z is Z = (X |0), since θi0 = βi , i = 1, . . . , k.

The exact solution of the is obtained as the limit

θ̂ = lim
γ→∞

θ̂γ,λ.
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Illustration ordered case

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4

s smax

du
m

m
y 

co
ef

fic
ie

nt

Exact Solution

1

2

3

4
5

6

7

8

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

4

s smax
du

m
m

y 
co

ef
fic

ie
nt

Approximate Solution

1

2

3

4
5

6

7

8

24/62



lmul ogos/logomitsiegel

Coefficient Paths for Munich Rent Data
Unordered and Ordered Categories
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Rent Data
Some Clustering Results (Adaptive Version with Refitting)

I All in all the estimated model has 32 df (i.e. unique non-zero coefficients).

I The full model has 58 df.
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Rent Data
Some results (adaptive version with refitting)

predictor label coefficient

urban district 14, 16, 22, 24 -1.931
11, 23 -1.719
7 -1.622
8, 10, 15, 17, 19, 20, 21, 25 -1.361
6 -1.061
9 -0.960
13 -0.886
2, 4, 5, 12, 18 -0.671
3 -0.403

number of rooms 4, 5, 6 -0.502
3 -0.180
2 0.000

quality of residential area good 0.373
excellent 1.444
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Rent Data
Some results (adaptive version with refitting)

predictor label coefficient

year of construction 1920s -1.244
1930s, 1940s -0.953
1950s -0.322
1960s 0.073
1970s 0.325
1980s 1.121
1990s, 2000s 1.624

floor space (m2) [140,∞) -4.710
[90, 100), [100, 110), [110, 120),
[120, 130), [130, 140) -3.688
[60, 70), [70, 80), [80, 90) -3.443
[50, 60) -3.177
[40, 50) -2.838
[30, 40) -1.733
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Rent Data
Prediction accuracies and model complexities (standard/adaptive with refitting)
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Model Complexities

I Based on random splitting of the data into independent training and test sets
(1953/100 observations).

I 100 independent repetitions.
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Generalizations to Non-Normal Outcomes
Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

I Instances are to be classified as benign (y = 0) or malignant (y = 1)
I Available covariates are cytological characteristics as

I marginal adhesion,
I bare nuclei,
I mitoses,
I ...

I Predictors are graded on a 1 to 10 scale at the time of sample collection, with 1
being the closest to normal tissue and 10 the most anaplastic.

I We fit a logistic regression model using penalized likelihood estimation.

I Minimize the penalized negative log-likelihood

−lp(β) = −l(β) + λJ(β).
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Generalizations to Non-Normal Outcomes
Example: Wisconsin breast cancer database (Wolberg & Mangasarian, 1990)

Some estimated coefficient functions (cf. Stelz, 2010):

I standard/adaptive L1-regularization (using R package glmpath (Park & Hastie,
2007)),

I quadratic difference penalty for smooth modeling (using R package ordPens

(Gertheiss, 2010)).
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Numerical Experiments
Simulation Design

I Setting with 8 predictors (intercept α = 1):

type no. of levels true dummy coefficients

nominal 4 (0, 2, 2)′

nominal 8 (0, 1, 1, 1, 1,−2,−2)′

nominal 4 (0, 0, 0)′

nominal 8 (0, 0, 0, 0, 0, 0, 0)′

ordinal 4 (0,−2,−2)′

ordinal 8 (0, 1, 1, 2, 2, 4, 4)′

ordinal 4 (0, 0, 0)′

ordinal 8 (0, 0, 0, 0, 0, 0, 0)′

I Standard normal error.

I Training set size n = 500.

I 100 simulation runs.

I Independent test set (n = 1000).

I Compare ordinary least squares (ols), standard, adaptive version, with/without
refitting.
Refitting means the selected coefficients are fitted in the last step - selection of
tuning parameters refers to the whole procedure.
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Numerical Experiments
Performance Measures

Errors of Parameter Estimates and Prediction:

I MSE of parameter estimates.

I Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Clustering Performance:
I False Positive Rates / FPR:

I Variable Selection: Any dummy coefficient of a pure noise factor is set to non-zero.
I Clustering / Identifying Differences: A difference within a non-noise factor which is

truly zero is set to non-zero.

I False Negative Rates / FNR:
I Variable Selection: All dummy coefficients of a truly relevant factor are set to zero.
I Clustering / Identifying Differences: A truly non-zero difference is set to zero.

33/62



lmul ogos/logomitsiegel

Numerical Experiments
Errors of Parameter Estimates and Prediction
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Numerical Experiments
Variable Selection and Clustering Performance

adapt stdrd adapt,rf stdrd,rf ols
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(3) Varying-Coefficient Models

Varying-coefficient models (Hastie & Tibshirani, 1993) offer a quite flexible framework
for regression modeling.

In a linear model, with one effect modifier u:

y = β0(u) + x1β1(u) + . . .+ xpβp(u) + ε,

with E(ε) = 0 and Var(ε) = σ2.

↪→ Functions βj (u) are allowed to vary with the effect modifier u.

Usually metric/continuous effect modifiers u are investigated, and βj (u) are modeled
as smooth functions.
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Varying-Coefficient Models
Model selection

Two questions should be answered:

(1) Variable selection, i.e. selecting relevant predictors xj .
↪→ Determine if βj (u) = 0.

(2) Identify varying coefficients βj (·).
↪→ Determine if βj (u) is a constant or not.

Given continuous u, penalty approaches have been used to answer (one of) these
questions:

(1) Wang et al. (2008), Wang & Xia (2009);

(2) Leng (2009).

In this talk:

I Categorical effect modifier u.

I Penalty approach that accounts for both (1) and (2).
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Categorical Effect Modifiers

I For categorical u ∈ {1, . . . , k} the varying functions have the form

βj (u) =
k∑

r=1

βjr I (u = r).

I The model with p predictors contains (p + 1)k parameters:

y =
k∑

r=1

β0r I (u = r) +
k∑

r=1

x1β1r I (u = r) + . . .+
k∑

r=1

xpβpr I (u = r) + ε

I On level r of u:
y = β0r + x1β1r + . . .+ xpβpr + ε
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An Illustrative Example
Whiteside’s insulation data (Hand et al., 1994; Venables & Ripley, 2002)

u ∈ {1, 2} = {Before,After}:

E(y |x , u = r) = β0r + xβ1r + x2β2r
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Penalized Estimation

Minimization of the penalized least-squares criterion

β̂ = argminβ Qp(β),

with

Qp(β) =
n∑

i=1

yi − β0(ui )−
p∑

j=1

xijβj (ui )

2

+ λJ(β)

= (y − Zβ)T (y − Zβ) + λJ(β),

y = (y1, . . . , yn)T and β = (βT
1 , . . . , β

T
k )T ,

with βr = (β0r , β1r , . . . , βpr )T .

The ith row of design matrix Z is ((1, xT
i )I (ui = 1), . . . , (1, xT

i )I (ui = k)).

But: classical penalties are not designed for categorical effect modifiers.
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Categorical Effect Modifiers
Penalized estimation

I Nominal u:

J(β) =

p∑
j=0

∑
r>s

|βjr − βjs |+
p∑

j=1

k∑
r=1

|βjr |, or

J(β;ψ) = ψ

p∑
j=0

∑
r>s

|βjr − βjs |+ (1− ψ)

p∑
j=1

k∑
r=1

|βjr |

I Ordinal u:

J(β) =

p∑
j=0

k∑
r=2

|βjr − βj,r−1|+
p∑

j=1

k∑
r=1

|βjr |, or

J(β;ψ) = ψ

p∑
j=0

k∑
r=2

|βjr − βj,r−1|+ (1− ψ)

p∑
j=1

k∑
r=1

|βjr |
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Large Sample Properties
as before

Suppose 0 ≤ λ <∞ has been fixed, and all class-wise sample sizes nr satisfy
nr/n→ cr , where 0 < cr < 1.

I The non-adaptive estimator β̂ is consistent in terms of
limn→∞ P(||β̂ − β∗||2 > ε) = 0 for all ε > 0, if β∗ denotes the vector of true
coefficient functions βj (u), resp. true βjr .

I No consistency in terms of variable selection and the identification of relevant
differences β̂jr − β̂js .

Choose λ = λn with λn/
√

n→ 0 and λn →∞.

I Adaptive version for selection and fusion consistency.
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Large Sample Properties
The adaptive version

Given nominal u, we employ the adaptive penalty

J(β) =

p∑
j=0

∑
r>s

wrs(j)|βjr − βjs |+
p∑

j=1

k∑
r=1

wr(j)|βjr |,

with adaptive weights (similarly to Zou, 2006)

wrs(j) = φrs(j)(n)|β̂(LS)
jr − β̂(LS)

js |−1 and wr(j) = φr(j)(n)|β̂(LS)
jr |−1,

with β̂
(LS)
jr denoting the ordinary least squares estimator of βjr .

I φrs(j)(n)→ qrs(j) and φr(j)(n)→ qr(j) respectively, with 0 < qrs(j), qr(j) <∞.

I φrs(j)(n) and φr(j)(n) will usually be fixed, for example as ψ and (1− ψ).
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Large Sample Properties
The adaptive version

I β−0,r = (β1r , . . . , βpr )T ,

I δj = (βj2 − βj1, βj3 − βj1, . . . , βjk − βj,k−1)T , j = 0, . . . , p.

I βT
−0 = (βT

−0,1, . . . , β
T
−0,k ), δT = (δT

0 , . . . , δ
T
p ), and θT = (βT

−0, δ
T ).

I C the set of indices corresponding to entries of θ which are truly non-zero, Cn the
estimate with sample size n.

I θ∗C the true vector of θ-entries included in C, and θ̂C the corresponding estimate.

Suppose λ = λn with λn/
√

n→ 0 and λn →∞, and all class-wise sample sizes nr

satisfy nr/n→ cr , where 0 < cr < 1. Then the adaptive penalty ensures

(a) Asymptotic normality:
√

n(θ̂C − θ∗C)→d N(0,Σ).

(b) Selection/fusion consistency: limn→∞ P(Cn = C) = 1.
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Income Data
Data and modeling

Response: Monthly income in Euro
Predictors: Age in years between 21 and 60

Job tenure in months
Body height in cm
Gender male/female
Married no/yes
Abitur (≈ A-levels) no/yes
Blue-collar worker no/yes

Model:

log(Income) = β0(Gender) + β1(Gender)Age + β2(Gender)Age2

+ β3(Gender)Tenure + β4(Gender)Height

+ β5(Gender)Married + β6(Gender)Abitur

+ β7(Gender)Blue-collar + ε.
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Income Data
Coefficient paths I (adaptive estimator with fixed ψ = 0.5)
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Income Data
Coefficient paths II (adaptive estimator with fixed ψ = 0.5)
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Income Data
Coefficient paths III (adaptive estimator with fixed ψ = 0.5)
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Income Data
Coefficient paths IV (adaptive estimator with fixed ψ = 0.5)
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(4) Multinomial Response Models

For data (Yi , xi ), i = 1, . . . , n, with Yi ∈ {1, . . . , p} denoting the response variable and
xi the predictor, the multinomial logit model specifies

P(Yi = r |xi ) =
exp(βr0 + xT

i βr )∑k
s=1 exp(βs0 + xT

i βs )
=

exp(ηir )∑k
s=1 exp(ηis )

,

with predictor
ηir = βr0 + xT

i βr ,

where βT
r = (βr1, . . . , βrp).

More generally in the linear predictor category-specific variables wi1, . . . ,wik can be
included yielding the predictor

ηir = βr0 + xT
i βr + (wir − wik )Tα, r = 1, . . . , k − 1.
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Penalized log-likelihood approach maximizes

lp(β) = l(β)− λJ(β).

Straightforward use of the lasso uses

J(β) =

k−1∑
r=1

||βr ||1 =

k−1∑
r=1

p∑
j=1

|βrj |,

(Friedman et al, 2010).

Drawback:

I Single effects are selected, no variable selection because one variable has k-1
effects
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A Grouping Penalty for the Multinomial Logit Model

With the focus on variable selection one collects all the parameters linked to variable j
in βT

.j = (β1j , . . . , βk−1,j ). We propose the penalty

J(β) =γ

p∑
j=1

s(k − 1)||β j̇ ||2 + (1− γ)s(1)||α||

= γ

p∑
j=1

s(k − 1)(β2
1j + · · ·+ β2

k−1,j )
1/2 + (1− γ)

L∑
j=1

s(1)|αj |,

where γ is an additional tuning parameter that balances the penalty on the global and
the category-specific variables, and s(m) = m1/2 accounts for the number of penalized
parameters within one term.

Minimization by appropriate block coordinate ascent algorithm.
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Example Spatial Election Theory

Response is party

I Christian Democratic Union (CDU: 1)

I Social Democratic Party (SPD: 2)

I Green Party (3)

I Liberal Party (FDP: 4)

I Left Party (Die Linke: 5)

Global Predictors

I age, political interest (1: less interested 0: very interested),

I religion (1: evangelical, 2: catholic, 3: otherwise),

I regional provenance (west; 1: former West Germany, 0: otherwise),

I gender (1: male, 0: female),

I union (1: member of a union 0: otherwise),

I satisfaction with the functioning of democracy (democracy; 1: not satisfied 0:
satisfied),

I unemployment (1: currently unemployed, 0: otherwise),

I high school degree (1: yes, 0: no)
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Category-specific predictors are distances between position of the voter and the
perceived position of the party on

I attitude toward immigration of foreigners

I attitude toward the use of nuclear energy

I positioning on a left-right scale
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Figure: Coefficient buildups for selected global variables of party choice data.
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Summary

I Common shrinking methods are typically designed for metric predictors.

I In case of categorical covariates penalties must be modified.

I Quadratic regularization for smooth modeling of ordinal predictors.

I L1-penalization of pairwise differences of dummy coefficients allows for:
I Variable Selection.
I Clustering of categories ↔ Identification of relevant differences/jumps.

I Sparser representations of varying-coefficient models with categorical effect
modifiers via penalizing absolute differences and L1-norms of coefficients.

I Simulation studies and real-world data evaluation showed:
I Model complexity can be reduced, which facilitates interpretation.
I Estimation accuracy can be increased.

I Appropriate Penalization allows Variable Selection in Multinomial Response
Models.
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Numerical Experiments / Finite Sample Performances
Simulation design

I True model on level u = 1:

y = −1− 2x1 + 2x2 + 0x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + ε,

I on level u = 2:

y = +1− 4x1 + 2x2 + 2x3 + 0x4 + 0x5 + 0x6 + 0x7 + 0x8 + ε,

I on level u = 3:

y = +1 + 2x1 + 2x2 + 2x3 − 4x4 + 0x5 + 0x6 + 0x7 + 0x8 + ε,

I on level u = 4:

y = −1 + 1x1 + 2x2 + 3x3 − 4x4 − 2x5 + 0x6 + 0x7 + 0x8 + ε.

I Data: balanced design with respect to u, training set size n = 400, independent
test set (n = 1200), xj ∼ U[0, 1] (iid), ε ∼ N(0, 2) (iid), 100 simulation runs.
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Numerical Experiments / Finite Sample Performances
Performance measures

Errors of Parameter Estimates and Prediction:

I Empirical MSE of parameter estimates.

I Prediction Accuracy: Empirical sum of squared test set errors.

Variable Selection and Fusion Performance:
I Sensitivity:

I Variable Selection: Proportion of relevant variables which are selected.
I Fusion / Identifying Differences: Proportion of relevant differences between coefficients

which are set to non-zero.

I Specificity:
I Variable Selection: Proportion of noise variables which are not selected.
I Fusion / Identifying Differences: Proportion of zero differences which are set to zero.
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Numerical Experiments / Finite Sample Performances
Errors of parameter estimates and prediction

We compare:

I ordinary least squares (ols) estimation,

I L1-regularization standard/adaptive version with fixed ψ = 0.5 or flexible ψ,

I forward selection based on AIC/BIC.

method MSE MSEP
ols 11.380 (.380) 2.219 (.011)

stdrd, fixed ψ 7.500 (.240) 2.163 (.010)
stdrd, flex. ψ 8.183 (.455) 2.173 (.010)

adapt, fixed ψ 6.920 (.334) 2.149 (.010)
adapt, flex. ψ 7.091 (.334) 2.151 (.010)

forward select, AIC 9.755 (.414) 2.191 (.011)
forward select, BIC 10.856 (.698) 2.215 (.016)
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Numerical Experiments / Finite Sample Performances
Variable selection and fusion performance
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