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Latent structure models: two different point of views

Density estimation

I LSM can be regarded as a versatile semi parametric tool
for estimating density.

I It allows to deal with heterogeneity in the data. The latent
structure is not of particular interest.

Cluster analysis

I In this perspective, the latent structure is of primary
interest.

I For instance Gaussian mixture is the most used model in
Model-based clustering (MBC).

I The aim is to estimate and interpret the hidden structure in
the data.



Estimating LSM parameters

Two approaches:

Standard statistical inference
I Estimating the mixture parameters (through maximum

likelihood or Bayesian inference)

Clustering inference

I Simultaneous estimation of both the model parameters
and the latent structure



Quantitative data: multivariate Gaussian Mixture
(MGM)

Multidimensional observations x = (x1, . . . , xn) in Rd are
assumed to be a sample from a probability distribution with
density

f (x i |θ) =
∑

k

πkφ(x i |µk ,Σk )

where
I πk : mixing proportions
I φ(.|µk ,Σk ) : Gaussian density with mean µk and variance

matrix Σk .

This is the most popular model for clustering of quantitative
data.



Qualitative Data: latent class model (LCM)

I Observations to be classified are described with d
qualitative variables.

I Each variable j has mj response levels.

Data x = (x1, . . . , xn) are defined by

x i = (x jh
i ; j = 1, . . . , d ; h = 1, . . . , mj)

with {
x jh

i = 1 if i has response level h for variable j
x jh

i = 0 otherwise.



The standard latent class model (LCM)

Data are supposed to arise from a mixture of g multivariate
multinomial distributions with pdf

f (x i ;θ) =
∑

k

πkmk (x i ;αk ) =
∑

k

πk
∏
j,h

(αjh
k )x jh

i

where θ = (π1, . . . , πg , α11
1 , . . . , αdmd

g ) is the parameter of the
latent class model to be estimated :

I αjh
k : probability that variable j has level h in cluster k ,

I πk : mixing proportions

Latent class model is assuming that the variables are
conditionnally independent knowing the latent clusters.



EM algorithm (maximum likelihood estimation)

Algorithm

I Initial Step : initial solution θ0

I E step: Compute the conditional probabilities tik that
observation i arises from the k th component for the current
value of the mixture parameters:

tm
ik =

πm
k ϕk (x i ;α

m
k )∑

` πm
` ϕ`(x i ;α

m
` )

I M step: Update the mixture parameter estimates
maximising the expected value of the completed likelihood.
It leads to weight the observation i for group k with the
conditional probability tik .

I πm+1
k = 1

n

∑
i tm

ik
I αm+1

k : Solving the Likelihood Equations



Features of EM

I EM is increasing the likelihood at each iteration
I Under regularity conditions, convergence towards the

unique consistent solution of likelihood equations
I Easy to program
I Good practical behaviour
I Slow convergence situations (especially for mixtures with

overlapping components)
I Many local maxima or even saddle points
I Quite popular: see the McLachlan and Krishnan book

(1997)



Classification EM

The CEM algorithm, clustering version of EM, estimate both the
mixture parameters and the labels by maximising the
completed likelihood

L(θ; x, z) =
∑
k ,i

zik log πk f (xi ;αk )

Algorithm

I E step: Compute the conditional probabilities tik that
observation i arises from the k th component for the current
value of the mixture parameters.

I C step: Assign each observation i to the component
maximising the conditional probability tik (MAP principle)

I M step: Update the mixture parameter estimates
maximising the completed likelihood.



Features of CEM

I CEM aims maximising the complete likelihood where the
component label of each sample point is included in the
data set.

I Contrary to EM, CEM converges in a finite number of
iterations

I CEM provides biased estimates of the mixture parameters.
I CEM is a K-means-like algorithm.



Model-based clustering via EM

Relevant clustering can be deduced from EM

I Estimating the mixture parameters with EM
I Computing of tik , conditional probability that observation x i

comes from cluster k using the estimated parameters.
I Assigning each observation to the cluster maximising tik

(MAP : Maximum a posteriori)

This strategy could be preferred since CEM provides biased
estimates of the mixture parameters.
But CEM is doing the job for well-separated mixture
components.



Choosing the number of components

A model selection problem

I All models are wrong but some are useful (G. Box)
I The problem does not restrict to solve the bias-variance

dilemma
I The problem is to choose a useful number of components
I This choice cannot be independent of the modelling

purpose



Criteria for choosing g in a density estimation context
The AIC criterion
AIC is approximating the expected deviance of a model m with
νm free parameters. Assuming that the data arose from a
distribution belonging to the collection of models in competition,
AIC is

AIC(m) = 2 log p(x|m, θ̂m)− 2νm.

The BIC criterion
BIC is a pseudo-Bayesian criterion. It is approximating the
integrated likelihood of the model m

p(x|m) =

∫
p(x|m, θm)π(θm)dθm,

π(θm) being a prior distribution for parameter θm,

BIC(m) = log p(x|m, θ̂m)− νm

2
log(n).



Practical behaviour of BIC

Despite theoretical difficulties in the mixture context
I Simulation experiments (see Roeder & Wasserman 1997)

show that BIC works well at a practical level to choose a
sensible Gaussian mixture model,

I See also the good performances of a cross-validated
likelihood criterion proposed by Smyth (2000).

Choosing a clustering model
Since BIC does not take into account the clustering purpose for
assessing m, BIC has a tendency to overestimate g regardless
of the separation of the clusters.



Choosing g in a clustering perspective
The ICL criterion
The integrated completed log-likelihood is

log p(x, z | m) = log
∫

Θm

p(x, z | m, θ)π(θ | m)dθ,

It is closed form from conjugate non informative prior for the
LCM. For GMM, its BIC-like approximation is

ICL-BIC(m) = log p(x, ẑ|m, θ̂)− νm

2
log n,

where the missing data have been replaced by their most
probable value for parameter estimate θ̂.

Roughly speaking criterion ICL-BIC is the criterion BIC
penalized by the estimated mean entropy

E(m) = −
∑
k ,i

tm
ik log tm

ik ≥ 0.



The entropy: measure of the clustering confidence

ENT(θ; x) = −
K∑

k=1

tik (x ; θ) log tik (x ; θ) ∈ [0, log K ].

ENT(θ) =
n∑

i=1

ENT(θ; xi).
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Behaviour of the ICL criterion

Because of this additional entropy term, ICL favors model
giving rise to partitioning the data with the greatest evidence.

I ICL appears to provide a stable and reliable estimate of g
for real data sets and also for simulated data sets from
mixtures when the components are not too much
overlapping.

I But ICL, which is not aiming to discover the true number of
mixture components, can underestimate the number of
components for simulated data arising from mixture with
poorly separated components.



Contrasting BIC and ICL
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Typical solutions proposed by BIC (left) (92%) and ICL (right)
(88%) with the following features: Gaussian mixture with free
variance matrices, n = 400.
The criteria select g and the form of the variance matrices from
their eigenvalue decomposition.

I BIC outperforms ICL from the density estimation point of
view...

I But from the cluster analysis point of view ?...



Contrast Minimisation in MBC context

The classification loglikelihood with the completed data (x, z)
for model Mg :

log Lc
(
θ; (x, z)

)
=

n∑
i=1

g∑
k=1

zik log πkφ(xi ;µk ,Σk ).

An important relation is

log Lc(θ) = log L(θ) +
n∑

i=1

g∑
k=1

zik log tik (xi ; θ).

Taking the conditional expectation of this relation leads to

log Lcc(θ) = log L(θ)− ENT(θ).

and log Lcc(θ) the conditional expectation of the complete
loglikelihood is an alternative criterion to maximum likelihood.



ICL revisited

I By analogy with BIC, we get the consistent criterion Lcc-ICL

ĝLcc-ICL = argmin
g∈{1,...,gM}

{
−log Lcc(θ̂

MLccE
g ) +

νg

2
log n

}
.

I ICL can be regarded as an approximation of Lcc-ICL :

ĝICL = argmin
g∈{1,...,gM}

{
−log Lcc(θ̂

MLE
g ) +

νg

2
log n

}
.



"Cluster is not mixture component"

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

Solution selected by BIC

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14

Solution selected by ICL

−2 0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

14Combiner

deux

classes

Combined Solution



Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Simulated Data
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

BIC (K=10)
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Combined solution (K=9)
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Combined solution (K=8)
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Combined solution (K=7)
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Combined solution (K=6)
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Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

Combined solution (K=5)
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d’observations combinées

E
n
tr

o
p
ie

Combined solutions entropy



Combining mixture components
It leads to a hierarchical combining of mixtures components by
merging at each step the two components maximising the
decrease of the entropy starting from the BIC solution (Baudry
et al., JCGS 2010).
The graph of the entropy in function of the number of clusters is
helpful to choose a sensible number of clusters.

 

 

Combined solution (K=4)
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Bayesian inference
Choosing conjugate priors

I Mixing proportions π: Dirichlet priors D(a, . . . , a) are non
informative priors, with a = 1/2 we get the Jeffreys prior.

I The choice of a has been proved to be quite sensitive
(Frühwirth-Schnatter, 2011) to select the number of
components.

I Dirichlet non informative priors are also possible for
qualitative models.

I In the continuous case, the conjugate priors for α = (µ, σ2)
are weakly informative.

Priors for the number of components
This sensitive choice jeopardizes Bayesian inference for
mixtures (Aitken 2000, 2010).
Choosing truncated Poisson P(1) priors over the range
1, . . . , gmax is often a reasonable choice (Nobile 2005).



Standard MCMC

The first task is to approximate the posterior distribution of the
LSM parameters.

Gibbs sampling

I With fixed g, Gibbs sampling can be regarded as a
reference method to derive Bayesian estimates for latent
structure models.

I With unknown g, the possibility to estimate it in the same
exercise exists thanks to Reversible Jump MCMC.

I But, in my opinion, RJMCMC algorithms remain
unattractive despite efforts to improve them.



Collapsed model

The clustering view point
Considering z as a parameter, leads to computing the
collapsed joint posterior

P(g, z|x) = P(g)CF (.)

g∏
k=1

Mk

where CF (.) is a closed form function made of Gamma
functions and

Mk =

∫
P(αk )

∏
i/zi=k

p(xi |αk )dαk.



The allocation sampler
The point of the allocation sampler of Nobile and Fearnside
(2007) is to use a (RJ)MCMC algorithm on the collapsed model.

Moves with fixed numbers of clusters
I Updating the label of unit i in cluster k :

P(z̃i = k ′) ∝
n′k + 1

nk

M+i
k ′ M−i

k
Mk ′Mk

, k ′ 6= k .

I Other moves are possible (Nobile and Fearnside 2007).

Moves to split or combine clusters
Two reversible moves to split a cluster or combine two clusters
analogous to the RJMCMC moves of R & G’97 are defined.
But, thanks to collapsing, those moves are of fixed dimension.
Integrating out the parameters leads to reduce the sampling
variability.



The allocation sampler: label switching

Following Nobile, Fearnside (2007), Friel and Wyse (2010)
used a post-processing procedure with the cost function

C(k1, k2) =
C−1∑
t=1

n∑
i=1

I
{

z(c)
i 6= k1, z(C)

i = k2

}
.

1 The z(c) MCMC sequence has been rearranged such that
for s < c, z(s) uses less or the same number of
components than z(c).

2 An algorithm returns the permutation σ(.) of the labels in
z(c) which minimises the total cost

∑gC−1
k=1 C(k , σ(k)).

3 z(c) is relabelled using the permutation σ(.).



Remarks on the procedure to deal with label switching

I Due to collapsing, the cost function does not involve
sampled model parameters.

I Simple algebra lead to an efficient on-line post-processing
procedure.

I When g is large, g! is tremendous.



Summarizing MCMC output

Using the modal cluster model

I The ĝ which appeared most often is chosen,
I the N label vectors z are extracted from the MCMC sample

and post processed to undo label switching,
I then, the posterior distributions of cluster membership

(ti1, . . . , ti ĝ) are estimated by their frequencies in the
MCMC sample,

I and, i is assigned to cluster argmaxk tik .

Using the MAP
The maximum a posteriori model is the visited (g, z) having
highest probability a posteriori from the MCMC sample.



A case study
ML and Bayesian aprroaches are compared on a real data set
from a clustering point of view using the Latent Block Model.

The Latent Block Model is mixture model with two latent
structures, one for the rows, one for the columns.

The data set records the votes of 435 members (267
democrats, 168 republicans) of the 98th Congress on 16
different key issues.

For each issue, the possible votes were yes, no and abstention.

To restrict the analysis to binary variables, the votes no and
abstention have been grouped.



Bayesian Analysis
Wyse and Friel (2010) used non informative priors. The
sampler has been run 220,000 iterations with 20,000 for
burn-in.
It leads them to select a (g = 7, m = 12) solution.

Voting data collapsed LBM BEM2



Maximum Likelihood Analysis
I We use a Stochastic EM algorithm with g = 2, ..., 8 and

m = 2, ..., 12.
I Using ICL, the best solution was obtained with

(g = 5, m = 4) clusters with the following distribution for
the two political parties

Republicans Democrats
1 39 38
2 0 139
3 121 7
4 8 83

I Using the pseudo BIC criterion, the best solution was
obtained with (g = 3, m = 6) clusters. with the following
distribution for the two political parties

Republicans Democrats
1 134 24
2 32 79
3 2 164



The ICL solution



Concluding remarks
I The focus of the analysis is of primary importance for

selecting a LSM.
I This focus could also influence the choice of the algorithm

to estimate LSM with large data set (CEM...)
I Bayesian analysis for LSM suffers several drawbacks: the

more important one is the label switching problem.
I Standard methods to deal with this problem require to

identify g! clusters.
I Frühwirth-Schnatter (2005, 2011) proposed a k -means

clustering method in the point process representation of
the MCMC draws to identify g clusters instead of g!
clusters.

I Collapsing leads to promising Bayesian methods for LSM
in a clustering context.

I But, in a high dimensional setting, Bayesian analysis of
LSM remains difficult. . .
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